(完整)八年级数学_实数习题精选(含答案),推荐文档
- 格式:pptx
- 大小:153.37 KB
- 文档页数:3
八年级数学上册《第三章实数》练习题-含答案(湘教版) 一、选择题1.下列各数:1.414,2和-13,0,其中是无理数的是( )A.1.414B. 2C.-13D.02.3的相反数是()A. 3B.33C.﹣ 3D.﹣333.在实数-13,-2,0,3中,最小的实数是( )A.-2B.0C.-13D. 34.与3最接近的整数是( )A.0B.2C.4D.55.估计20的算术平方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.已知实数x,y,m满足2x+|3x+y+m|=0,若y为负数,则m的取值范围是( ) A.m>6 B.n<6 C.m>-6 D.m<-67.利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是( )A.2.5B.2.6C.2.8D.2.98.在如图所示的数轴上,AB=AC,A,B两点对应的实数分别是3和-1,则点C所对应的实数是()A.1+ 3B.2+ 3C.23-1D.23+1 二、填空题9.在实数中,无理数有________个.10.若a +-a 有意义,则a = 11.化简:|3-10|+(2-10)=______.12.把无理数17,11与5和-3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是 .13.如图,在数轴上点A 和点B 之间的整数是 .14.已知2018≈44.92,201.8≈14.21,则20.18≈________.三、解答题15.计算:;16.计算:.17.计算:9-327+3641-(-13)2;18.计算:.19.已知表示实数a,b的两点在数轴上的位置如图所示,化简:|a-b|+(a+b)2.20.若5+11的小数部分为x,5-11的小数部分为y,求x+y的值.21.阅读理解∵4<5<9,即2<5<3.∴1<5﹣1<2∴5﹣1的整数部分为1.∴5﹣1的小数部分为5﹣2.解决问题:已知a是17﹣3的整数部分,b是17﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.22.现有一组有规律排列的数:其中这六个数按此规律重复出现.问:(1)第50个数是什么数?(2)把从第1个数开始的前2027个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?参考答案1.B2.C3.A4.B5.C6.A7.B8.D9.答案为:210.答案为:0.11.答案为:-1.12.答案为:11.13.答案为:2.14.答案为:4.49215.解:原式=8.25.16.解:原式=9.17.解:原式=-13 36 .18.解:原式=-319.解:由图知b<a<0,∴a-b>0,a+b<0.故|a-b|=a-b,(a+b)2=-(a+b)=-a-b∴原式=a-b-a-b=-2b.20.解:∵ 3<11<4∴8<5+11<9,1<5-11<2∴ x=11-3,y=4-11∴ x+y=11-3+y+4-11=1.21.解:∵<<∴4<17<5∴1<17﹣3<2∴a=1,b=17﹣4∴(﹣a)3+(b+4)2=(﹣1)3+(17﹣4+4)2=﹣1+17=16∴(﹣a)3+(b+4)2的平方根是:±4.22.解:(1)∵50÷6=8……2,∴第50个数是-1.(2)∵2027÷6=337……5,1+(-1)+2+(-2)+3= 3 ∴从第1个数开始的前2027个数的和是 3.(3)∵12+(-1)2+(2)2+(-2)2+(3)2+(-3)2=12520÷12=43……4且12+(-1)2+(2)2=4.∴43×6+3=261,即共有261个数的平方相加。
第1节 实数、平方根【基本知识】1、 有理数 包括有限小数和循环小数,有理数都可以表示为分数形式;2、 无限不循环小数,成为 无理数 ;3、平方根:(1)定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。
(2)性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)算术平方根:正数a 的正的平方根叫做a 。
(4)一个非负数x 有两个平方根a 和b ,则a+b = 0(5)运算:2a = ||a 2)(a = a ;2)(a -= a类型1A :【求下列各数的平方根】(1)324 (2)9624 (3)3.61 (4)971 (5)289【答案】(1)18± (2)21± (3)9.1± (4)34± (5)17±类型1B :【求下列各数的算术平方根】(1)64 (2)2)3(- (3)49151(4) 21(3)- 【答案】(1)8 (2)3 (3)78 (4)31类型2:【已知平方数或平方根,求数】(1)平方等于256的数是 16±(2)若3是x 的一个平方根,则x = 9(3)若一个正数的平方根为12-a 和a -4,则a = -3 ,这个正数为 49 .(4)一个数的平方等于9,则这个数是 3±(5)一个负数的平方等于100,则这个负数是 10-(6)已知2a -1的平方根是3±,3a+b -1的平方根是4±,则a = ,b = 2 5类型3:【开平方,求下列各式中x 的值】(1)09252=-x (2)x 2-144 = 0 (3)(2x )2 = 16【解】 (1)53±=x (2)12±=x (3)2±=x(4)32-=x (5)32=x (6)225360x -=【解】(4)无实根 (5)3±=x (6)56±=x(7)9x 2-1= 0 (8)16)1(2=+x (9)(21x )2 = 1【解】(7)31±=x (8)35或-=x (9)2±=x类型4:【计算】(1)= 3= 5= 7(2) =-2)4( 4 =2)182( 91 =2)5( 5(3)94±=32±-169.= -1.3102-=101(4)81±= 9± 16-= -4 259= 53(5)44.1= 1.2 36-= -6 4925± =75±(6)2)25(-= 25 2)4(-= 4类型5:【化简】(1)已知|x -4|+y x +2= 0,那么x =_______4_,y =________-8(2)=________π-4,)2x ≤=________x -2类型6:【根式的意义】1、如果1-x +x -9有意义,那么代数式|x -1|+2)9(-x 的值为 8.类型6:【平方数与平方根相关训练】(1)21++a 的最小值是 ________2,此时a 的取值是 ________-1(2)如果一个正数的两个平方根为1a +和27a -,则这个正数是 9(3)若2+x = 2,则2x + 5的平方根是 3±(4)若14+a 有意义,则a 能取的最小整数为 0类型7:【能力提升训练】(1)已知501.6=x ,650.12 = 422630,则x = 42.263(2)已知2+x =3,则2)2(+x 等于 81(3)已知12++-b a =0,则a +b 的值是 1(4)一个自然数的算术平方根是x(5)一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个正偶数的算术平方根是 22+m(6)自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =,有一铁球从19.6米高的建筑物上自由下落,到达地面需要 2 秒(7)若一个数a 的平方根等于它本身,数b 的算术平方根也等于它本身,则a b +的平方根 为 0或1±类型8:【比较实数大小】1、平方法:(1; (2)534< 11; (3) 2、求差法:215- < 13、求商法:23平方根 (作业)一、写出下列各数的平方根:(1)2)6(- (2)2)36(- (3)8116(4)16 (5)2)7(-【解】(1)6± (2)6± (3)94±(4)2± (5)7± 二、已知平方数或平方根,求数:(1)一个数的平方为719,这个数为 34±(2)一个数x 的平方根为9±,则x = 81(3)若一个正数的平方根是12-a 和2+-a ,则a = -1 ,这个正数是 9三、开平方,求下列各式中x 的值:(1)2732=x (2)2516902x -= (3)()12892-=x【解】(1)3±=x (2)513± (3)1816或-=x(4)(x +5)2 = 144 (5)009.02=-x【解】(4)177-=或x (5)3.0±=x(6)(x +1)2=36 (7)27(x +1)3=64【解】(6)75-=或x (7)31=x四、化简:1、若x <2,化简|3|)2(2x x -+-的正确结果是 x 25-2、当21≤a 时,化简|12|4412-++-a a a = a 42-3、已知实数a 、b 在数轴上表示的点如上图,b a ++2)1(+-b a = 12-b化简五、平方数与平方根相关训练:(1)若2m -10与3m 是同一个数的平方根,则m 的值是 2(2)使3+-x 有意义的x 的取值范围是 3≤x。
八年级数学实数测试题(含答案)一、 (每 5 分,共 40 分。
每 只有一个正确答案, 将正确答案的代号填在下面的表格中)1. 下列 数31, π, 3.14159,8 ,327 , 12 中无理数有()7A. 2 个B. 3个C. 4 个 D. 5 个2. 下列运算正确的是()A. 93 B.3 3 C.93 D.3293. 下列各 数中互 相反数的是()A. - 2 与 ( 2) 2B. -2 与 3 8C. - 2 与 1D.2与 224. 数 a,b 在数 上的位置如 所示, 下列 正确的是()A. a b 0B. a b 0C.abD .a1 a1bb5. 有如下命 :① 数没有立方根;②一个 数的立方根不是正数就是 数;③一个正数或数的立方根与 个数同号;④如果一个数的立方根是 个数本身,那么 个数是 1 或 0。
其中的是()A .①②③B .①②④C .②③④D .①③④ 6. 若 a 数, 下列式子中一定是 数的是()A . a 2B . (a 1)2C .a 2D . ( a 1)7. 若a 2a , 数 a 在数 上的 点一定在()A .原点左B .原点右C .原点或原点左D .原点或原点右8. 你 察、思考下列 算 程: 2,所以2因 11 =121 121 =11 ; 因 111 =12321,所以 12321111;⋯⋯,由此猜想12345678987654321 = ( )A . 111111B .1111111C .11111111D . 1111111111二、解答1.( 15 分)将下列各数填入相的集合内。
11, 32 , -4 , 0, - . .- 0.4 , 3 8 ,- ,0.23, 3.1412 4①有理数集合{⋯}②无理数集合{⋯}③ 数集合{⋯}三.算: (15 分 )(1) 2 +3 2 —52(2) 6 (1-6) 6(3) |3 2 | + | 3 2 | +( 2) 2四、解方程:1. ( 15 分)已知a、b互相反数,c、d互倒数,求 a 2 b 2 - cd 的 .a 2b 22.(15分)已知a、 b 足2a 10 b50 ,解关于 x 的方程 a 4 x b 2a 12参考答案一、1. B 2 . C 3 . A 4 . A 5 . B 6 . D 7 . C 8 . D二、解答11 ,- . .. 解:有理数集合 : {- 4 ,0, 3 8 ,0.23,3.14⋯}12无理数集合 :{ 3 2 ,- 0.4 ,- ⋯ }数集合 :{- 11,-44 ,- 0.4 ,- ⋯ }12 4三.解:( 1)- 2 (2) = 5 (3) 4 2四.解:由 a+ b=0, cd=1得a2 b2 0 原式= 0- 1 =- 1. 23.解:x 113。
八年级实数测试题及答案一、选择题(每题3分,共30分)1. 下列各数中,是实数的是()A. \( \sqrt{-1} \)B. \( \pi \)C. \( \frac{1}{0} \)D. \( \sqrt{2} \)答案:B2. 计算 \( \sqrt{4} \) 的值是()A. 2B. -2C. 4D. -4答案:A3. 一个数的相反数是-5,这个数是()A. 5B. -5C. 0D. 10答案:A4. 绝对值等于5的数是()A. 5C. 5或-5D. 以上都不对答案:C5. 一个数的平方等于9,则这个数是()A. 3B. -3C. 3或-3D. 以上都不对答案:C6. 下列运算中,正确的是()A. \( 3^2 = 9 \)B. \( (-3)^2 = -9 \)C. \( (-3)^3 = 9 \)D. \( (-3)^3 = -27 \)答案:D7. 计算 \( \sqrt{25} \) 的值是()A. 5B. -5C. 5或-5D. 25答案:A8. 一个数的立方等于-8,则这个数是()B. -2C. 2或-2D. -2答案:D9. 计算 \( \sqrt[3]{8} \) 的值是()A. 2B. -2C. 2或-2D. 8答案:A10. 一个数的平方根是2,则这个数是()A. 4B. -4C. 4或-4D. 2答案:A二、填空题(每题4分,共20分)1. 一个数的绝对值是3,则这个数是______。
答案:±32. 一个数的立方根是-2,则这个数是______。
答案:-83. 计算 \( \sqrt[3]{27} \) 的值是______。
答案:34. 一个数的平方根是-2,则这个数是______。
答案:45. 一个数的相反数是-3,则这个数是______。
答案:3三、解答题(每题10分,共50分)1. 计算 \( \sqrt{36} \) 的值。
答案:62. 计算 \( \sqrt[3]{64} \) 的值。
初二数学实数考试题及答案一、选择题(每题2分,共20分)1. 以下哪个数不是实数?A. πB. -3C. √2D. i2. 计算下列哪个表达式的结果是实数?A. (-2)^2B. √(-1)C. 1/0D. √(-9)3. 若a > 0,b < 0,下列哪个不等式是正确的?A. a + b > 0B. a - b < 0C. a + b < 0D. a - b > 04. 绝对值的定义是:A. |x| = x,当x > 0B. |x| = -x,当x < 0C. |x| = 0,当x = 0D. 所有以上5. 下列哪个数是无理数?A. 1/3B. 0.33333(无限循环)C. √3D. 22/76. 两个数的和是正数,它们的积是负数,那么这两个数:A. 都是正数B. 都是负数C. 一个是正数,一个是负数D. 无法确定7. 一个数的相反数是:A. 它自己B. 它的绝对值C. 它的倒数D. 它的绝对值的负数8. 计算√(64)的结果是:A. 8B. -8C. 8iD. 1/89. 下列哪个数是实数?A. 1 + 2iB. √(-4)C. 3.1415926D. -3/210. 如果a是实数,那么a的平方:A. 总是正数B. 总是负数C. 总是非负数D. 可以是任何实数答案:1-5 D A D C C 6-10 C D A A C二、填空题(每题2分,共20分)1. 圆周率π是一个________数。
2. 两个相反数的和是________。
3. 绝对值不大于2的所有整数有________。
4. 如果一个数的绝对值是5,那么这个数是________或________。
5. 无理数是指不能表示为两个整数的比的数,例如________。
6. 一个数的平方根是它本身的数有________和0。
7. 一个数的立方根是它本身的数有________、-1和0。
8. 一个数的相反数是它自己的数是________。
(直打版)八年级数学_实数习题精选(含答案)(word版可编辑修改)(直打版)八年级数学_实数习题精选(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)八年级数学_实数习题精选(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)八年级数学_实数习题精选(含答案)(word版可编辑修改)的全部内容。
12实数单元测试题一、填空题:(本题共10小题,每小题2分,共20分) 1、()26-的算术平方根是__________.2、ππ-+-43= _____________.3.在数轴上,到2距离为5的点表示的数是 .4、实数a,b ,c 在数轴上的对应点如图所示化简c b c b a a ---++2=________________。
5x 的取值范围是 。
6、若2)2(1-+-n m =0,则m =________,n =_________。
7、若 a a -=2,则a______0. 8.观察下列各式:===请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________________。
9、 观察思考下列计算过程:∵ 112=121,∴ 121=11;同样:∵ 1112=12321,∴ 12321=111;…由此猜想:76543211234567898=10.若n 为自然数,那么221(1)(1)n n +-+-=二、 选择题:(本题共10小题,每11、代数式12+x ,x ,y ,2)1(-m ,3A 、1个B 、2个C 、3个12、若73-x 有意义,则x 的取值范围是A 、x >37-B 、x ≥ 37- C 、x >13、若x,y 都是实数,且2112-+-xx A 、0 B 、 21C 、214。
初二数学之实数基础练习一.选择题(共8小题)1.(2016春•固镇县期末)二次根式的值是()A.﹣2 B.2或﹣2 C.4 D.22.(2016秋•巴中校级期中)的平方根是()A.± B.±C.D.3.(2016•海沧区模拟)如图数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与11﹣2最接近的点是()A.A B.B C.C D.D4.(2016春•德州校级期中)下列说法中正确的是()A.9的平方根是3 B.的算术平方根是±2C.的算术平方根是4 D.的平方根是±25.(2016春•伽师县校级期中)的平方根为()A.±8 B.±4 C.±2 D.46.(2016春•龙口市期中)按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.3+B.15+C.3+3D.15+77.(2016春•盐亭县校级月考)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣8.(2015秋•天水期末)若2m﹣4与3m﹣1是同一个正数的平方根,则m为()A.﹣3 B.1 C.﹣1 D.﹣3或1二.填空题(共4小题)9.(2016•乐山模拟)有理数9的算术平方根是______.10.(2015•淮北模拟)计算:的平方根=______.11.(2015春•丹江口市期末)若一个正数的两个平方根是2a﹣1和﹣a+2,则a=______,这个正数是______.12.(2015秋•邵阳县校级期末)若2a﹣4与3a﹣1是同一个数的平方根,则a的值为______.三.解答题(共2小题)13.(2015•浦东新区三模)计算:20150﹣()+﹣|2﹣3|14.(2015春•潘集区期中)已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.初二数学之实数基础练习参考答案与试题解析一.选择题(共8小题)1.(2016春•固镇县期末)二次根式的值是()A.﹣2 B.2或﹣2 C.4 D.2【分析】根据算术平方根的意义,可得答案.【解答】解:=2,故D正确,故选:D.【点评】本题考查了二次根式的性质,=a(a≥0).2.(2016秋•巴中校级期中)的平方根是()A.± B.±C.D.【分析】首先根据算术平方根的性质化简,再根据平方根的定义即可求出结果.【解答】解:∵,∴的平方根是±,∴的平方根是±.故选A.【点评】此题主要考查了平方根的定义和性质,解决本题的关键是先求得值.3.(2016•海沧区模拟)如图数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与11﹣2最接近的点是()A.A B.B C.C D.D【分析】由于,所以,所以,因为点B表示的数是﹣1.5,在﹣2~﹣1之间,所以点B最接近.【解答】解:∵,∴,∴,∵点B表示的数是﹣1.5,在﹣2~﹣1之间,∴点B最接近,故选:B.【点评】此题主要考查了估算无理数的大小,可以直接估算所以无理数的值,也可以利用“夹逼法”来估算.4.(2016春•德州校级期中)下列说法中正确的是()A.9的平方根是3 B.的算术平方根是±2C.的算术平方根是4 D.的平方根是±2【分析】根据平方根,算术平方根的定义对各选项分析判断后利用排除法求解.【解答】解:A、9的平方根是±3,故本选项错误;B、∵=4,∴的算术平方根是2,故本选项错误;C、的算术平方根是2,故本选项错误;D、∵=4,∴的平方根是±2,故本选项正确.故选D.【点评】本题考查了算术平方根,平方根的定义,要注意先求出的值,这也是本题最容易出错的地方.5.(2016春•伽师县校级期中)的平方根为()A.±8 B.±4 C.±2 D.4【分析】首先根据立方根的定义化简,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴的平方根是±2.故选C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.(2016春•龙口市期中)按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.3+B.15+C.3+3D.15+7【分析】按所示的程序将n=输入,结果为3+,小于15;再把3+作为n再输入,得15+7,15+7>15,则就是输出结果.【解答】解:当n=时,n(n+1)=(+1)=3+<15,当n=3+时,n(n+1)=(3+)(4+)=15+7>15,故选D【点评】本题以一种新的运算程序考查了实数的运算,要注意两方面:①新的运算程序要准确;②实数运算要准确.7.(2016春•盐亭县校级月考)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣【分析】由x得出x<0,再利用二次根式的性质来化简求解.【解答】解:由x可知x<0,所以x=﹣=﹣,故选:C.【点评】本题主要考查了二次根式的性质与化简,解题的关键是求出x<0.8.(2015秋•天水期末)若2m﹣4与3m﹣1是同一个正数的平方根,则m为()A.﹣3 B.1 C.﹣1 D.﹣3或1【分析】由于一个正数的平方根有两个,且互为相反数,可得到2m﹣4与3m﹣1互为相反数,2m﹣4与3m﹣1也可以是同一个数.【解答】解:∵2m﹣4与3m﹣1是同一个正数的平方根,∴2m﹣4+3m﹣1=0,或2m﹣4=3m﹣1,解得:m=1或﹣3.故选D.【点评】本题主要考查了平方根的概念,解题时注意要求是一个正数的平方根.二.填空题(共4小题)9.(2016•乐山模拟)有理数9的算术平方根是3.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.【解答】解:∵32=9,∴9算术平方根为3.故答案为:3.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.10.(2015•淮北模拟)计算:的平方根=±2.【分析】先求出的值,再根据平方根的定义解答.【解答】解:∵=8,∴的平方根为,±即±2.故答案为:±2.【点评】本题考查了平方根与算术平方根的定义,是基础概念题,熟记概念是解题的关键,要注意先求出的值,再进行解答.11.(2015春•丹江口市期末)若一个正数的两个平方根是2a﹣1和﹣a+2,则a=﹣1,这个正数是9.【分析】由于一个正数的平方根有两个,且它们互为相反数,由此即可列出方程求解.【解答】解:依题意得,2a﹣1+(﹣a+2)=0,解得:a=﹣1.则这个数是(2a﹣1)2=(﹣3)2=9.故答案为:﹣1,9【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.12.(2015秋•邵阳县校级期末)若2a﹣4与3a﹣1是同一个数的平方根,则a的值为1或﹣3.【分析】由于一个正数有两个平方根,它们互为相反数,由此即可列出关于a的方程,解方程即可解决问题.【解答】解:依题意可知:2a﹣4+(3a﹣1)=0,或2a﹣4=3a﹣1,解得:a=1或a﹣3.故答案为:1或﹣3.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三.解答题(共2小题)13.(2015•浦东新区三模)计算:20150﹣()+﹣|2﹣3|【分析】分别进行零指数幂、二次根式的化简、分数指数幂、绝对值的化简等运算,然后合并.【解答】解:原式=1﹣+2+2﹣(3﹣2)=3.【点评】本题考查了二次根式的混合运算,涉及了零指数幂、二次根式的化简、分数指数幂、绝对值的化简等等知识掌握运算法则是解答本题关键.14.(2015春•潘集区期中)已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.【分析】根据平方根的定义求出a的值,再根据立方根的定义求出b的值,最后计算2(a+b)的值,即可解答.【解答】解:由已知得,2a﹣1=9解得:a=5,又3a+b+9=27∴b=3,2(a+b)=2×(3+5)=16,∴2(a+b)的平方根是:±=±4.【点评】本题考查了平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.。
实数单元测试题 姓名(本题共10小题,每小题3分,共30分)2仁-6 的算术平方根是 __________________2、 3— 兀 +4— 兀= __________ 。
3、 2的平方根是 ___________ 。
4、 实数a , b , c 在数轴上的对应点如图所示化简 a + a + b - b —c = __5、若m n 互为相反数,则 m — J5 + n = 。
6、 右 J m —1 +(n —2) = 0,贝U m=__________________________________________, n = _________________________________________7、若 = -a ,■则 a _____ o8、J 2 —1的相反数是 __________9、3 匸8 = __________ , - V8 = _____________10、绝对值小于 n 的整数有______________________________________________二、选择题:(本题共10小题,每小题3分,共30分)11、代数式X 2 +1,V x ,y , (m —1)2, Vx 3中一定是正数的有( A 1个B 、2个C 、3个D 、4个 12、若3x - 7有意义, 则 x 的取值范围是()) 77 7 r 7 A x >B 、x > - -一C 、x >D 、x > 3 3 3 313、若x ,y 都是实数,且..2x -1 J -2x ^4,则xy 的值(1A 0B 、 2C 、2 D、不能确定 14、下列说法中,错误的是 ()。
A 4的算术平方根是2B 、 .81的平方根是土 3C 、8的立方根是土 2D 、立方根等于—1的实数是—1 15、64的立方根是()。
A 、土 4B 、4C 、一4D 、16-Q ------------ O ------------- 0 b c 03厂2 v a 16、已知 (a -3)2 +|b -4 =0,则一生的值是()b17、计算 3。
初二实数章节练习题及答案实数是数学中一个重要的概念,它包括有理数和无理数两部分。
在初二的实数章节中,我们需要掌握有理数和无理数的性质、加减乘除法则以及实数的比较等内容。
为了帮助同学们更好地复习和巩固这一章节的知识,我整理了一些实数练习题,并附上了详细的答案和解析。
练习题一:有理数的四则运算1. 计算:(-2/3) + (5/6) - (3/4)答案:首先要找到一个公共分母,分母可以取6和4的最小公倍数12。
将分数进行通分得到:(-8/12) + (10/12) - (9/12) = -7/12解析:要进行有理数的加减运算,首先需要找到一个公共分母,然后进行通分,最后根据相同的分母进行运算。
2. 计算:(7/8) × (-4/9)答案:(-28/72) = -7/18解析:有理数的乘法是将分数的分子相乘得到新的分子,分母相乘得到新的分母,然后再进行约分。
3. 计算:(-15/4) ÷ (3/5)答案:(-75/12) = -25/4解析:有理数的除法可以转化为乘法,即将除法转换为乘法的倒数,然后进行乘法运算。
练习题二:实数的比较1. 判断下列各组数的大小关系:0.5, -2.7, -2, -2.05答案:从小到大的顺序是:-2.7, -2.05, -2, 0.5解析:实数的大小比较可以通过数轴上的位置来判断,数越靠右边越大,数越靠左边越小。
2. 将下列各数填入括号内使不等关系成立:(-3) < ( ) < (-2)答案:(-3) < (-2.5) < (-2)解析:在两个给定的数之间插入一个数时,可以通过取中间值或者使用小数来使不等关系成立。
练习题三:无理数的性质1. 判断下列说法是否正确,并给出理由:(1) 根号2是一个无理数。
(2) π是一个无理数。
答案:(1) 正确,根号2是一个无理数。
根号2不能表示为两个整数的比值,因此它是无理数。
(2) 正确,π是一个无理数。
初二数学实数练习题及答案一、填空题(共10题,每题2分,共20分)1. 将1/4写成小数形式是_______。
答案:0.252. 0.1%写成分数形式是_______。
答案:1/10003. (-7) × (-3) = _______。
答案:214. 分数-2/3的绝对值是_______。
答案:2/35. 2/3 ÷ 4/5 = _______。
答案:5/66. 将1.36写成百分数形式是_______%。
答案:136%7. (-3.5) + 4.2 = _______。
答案:0.78. -√16的值是_______。
答案:-49. 0.4的倒数是_______。
答案:2.510. 56 ÷ (-7) = _______。
答案:-8二、选择题(共10题,每题3分,共30分)1. ( ) -4 < ( ) -3(A)√2 (B)-1 (C)1 (D)2答案:(A)√22. 下列数中,不能表示成有理数形式的是()。
(A)1.5 (B)π (C)√4 (D)-3答案:(B)π3. -(-x)的值等于()。
(A)-(-x) (B)x (C)-x (D)0答案:(B)x4. -3的立方根是()。
(A)-3 (B)-1 (C)1 (D)3答案:(B)-15. -√64的值是()。
(A)-8 (B)8 (C)-4 (D)4答案:(B)86. 1 3/4的倒数是()。
(A)1 (B)4/7 (C)7/4 (D)1/7答案:(C)7/47. 0.005写成科学计数法是()。
(A)5 × 10^-5 (B)5 × 10^-4 (C)5 × 10^-3 (D)5 × 10^-2答案:(C)5 × 10^-38. 36 ÷ 0.12 = ()。
(A)3 (B)30 (C)300 (D)3000答案:(C)3009. 1.8 + (-0.5) = ()。