离散数学第三章练习题
- 格式:pdf
- 大小:80.40 KB
- 文档页数:3
第二部分集合、矩阵、关系和函数集合论是处理集合,函数和关系的数学理论。
集合包括最基本的数学概念,例如集合,元素和成员关系。
在大多数现代数学公式中,集合论提供了一种描述数学对象的语言。
集合可用来表示数及其运算,还可表示和处理非数值计算,如数据间关系的描述等。
集合论,逻辑和一阶逻辑构成了数学公理化的基础。
同时,函数和关系是基于集合的映射,它们是满足某些属性的特殊集合。
接下来,我们将在两个单独的章节中介绍它们。
集和矩阵将在第3章中介绍,而关系和函数将在第4章中介绍。
第三章集合和矩阵3.1 集合3.1.1 集合概念集合没有确定的概念。
一般地,我们把研究的对象统称为元素;把一些元素组成的总体叫做集合,也简称集。
通常用大写英文字母表示集合。
例如,N代表是自然数集合,Z代表是整数集合,R代表是实数集合。
用小写英文字母表示集合内元素。
若元素a是集合A的一个元素,则表示为a A∈,读作元素a属于集合A;若元素a不是集合A的一个元素,则表示为a A∉,读作a不属于集合A。
集合分为有限集合和无限集合两种,下面给出定义。
表示集合方法有列举法和描述法两种方式,下面分别介绍。
1. 列举法当集合是有限集合时,可以列出集合的所有元素,用逗号隔开各元素,并用花括号把所有元素括起来。
这种表述方式为列举法。
例如:S1={a, b, c, d, e, f},S2={a, b, b, c, d, e, f},S3={ d, e, a, b, c, f}上述三个集合S1、S2和S3是相同集合,尽管有重复元素。
且集合元素之间没有次序关系。
一个集合可以作为另个集合的元素。
例如,S1={a, b,{ c, d, e, f }}集合S1包含元素a, b和{ c, d, e, f }。
因为{ c, d, e, f }是集合S1中的元素,故可记为:{}∈。
,,,c d e f A以上给出的集合实例都是有限集合。
当集合是无限集合时,无法列出集合的所有元素,可先列出一部分元素,若剩余元素与已给出元素存在一定规律,那剩余元素的一般形式很明显可用省略号表示。
a t a t i m e an dA l lt h i ng si nt h ei r be i ng ar eg oo df o r so me t hi n 3-5.1 列出所有从X={a,b,c}到Y={s}的关系。
解:Z 1={<a,s>}Z 2={<b,s>} Z 3={<c,s>}Z 4={<a,s>,<b,s>} Z 5={<a,s>,<c,s>} Z 6={<b,s>,<c,s>}Z 7={<a,s>,<b,s>,<c,s>}3-5.2 在一个有n 个元素的集合上,可以有多少种不同的关系。
解 因为在X 中的任何二元关系都是X ×X 的子集,而X ×X=X 2中共有n 2个元素,取0个到n 2个元素,共可组成22n 个子集,即22|)(|n X X =⨯℘。
3-5.3 设A ={6:00,6:30,7:30,…, 9:30,10:30}表示在晚上每隔半小时的九个时刻的集合,设B={3,12,15,17}表示本地四个电视频道的集合,设R 1和R 2是从A 到B 的两个二元关系,对于二无关系R 1,R 2,R 1∪R 2,R 1∩R 2,R 1⊕R 2和R 1-R 2可分别得出怎样的解释。
解:A ×B 表示在晚上九个时刻和四个电视频道所组成的电视节目表。
R 1和R 2分别是A ×B 的两个子集,例如R 1表示音乐节目播出的时间表,R 2是戏曲节日的播出时间表,则R 1∪R 2表示音乐或戏曲节目的播出时间表,R 1∩R 2表示音乐和戏曲一起播出的时间表,R 1⊕R 2表示音乐节目表以及戏曲节目表,但不是音乐和戏曲一起的节日表,R 1-R 2表示不是戏曲时间的音乐节目时间麦。
3-5.4 设L 表示关系“小于或等于”,D 表示‘整除”关系,L 和D 刀均定义于解:L={<1,2>,<1,3>,<1,6>,<2,3>,<2,6>, <3,6>,<1,1>,<2,2>,<3,3>,<6,6>}D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>} L ∩D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>}3-5.5对下列每一式,给出A 上的二元关系,试给出关系图:a){<x,y>|0≤x ∧y ≤3},这里A={1,2,3,4};b){<x,y>|2≤x,y ≤7且x 除尽y ,这里A ={n|n ∈N ∧n ≤10}c) {<x,y>|0≤x-y<3},这里A={0,1,2,3,4};d){<x,y>|x,y 是互质的},这里A={2,3,4,5,6}解:a) R={<0,0>,<0,1>,<0,2>,<0,3>, <1,0>,<1,1>,<1,2>,<1,3>, <2,0>,<2,1>,<2,2>,<2,3>, <3,0>,<3,1>,<3,2>,<3,3>,} 其关系图b) R={<2,0>,<2,2>,<2,4>,<2,6>,<3,0>,<3,3>,<3,6>, <4,0>,<4,4>, <5,0>,<5,5>,i m e an dA l lt h in gs in th ei r be i ng ar eg oo df o rsa)若R1和R2是自反的,则R1○R2也是自反的;b)若R1和R2是反自反的,则R1○R2也是反自反的;c)若R1和R2是对称的,则R1○R2也是对称的;d)若R1和R2是传递的,则R1○R2也是传递的。
习题3.11.(1) {0,1,2,3,4,5,6,7,8,9}(2) {aa , ab , ba , bb }(3) {-1,1}(4) {11,13,17,19,23,29}(5) {1,2,3, (79)(6) {2}2. 用描述法表示下列集合:(1) 不超过200的自然数的集合;{|N 200}x x x ∈∧≤(2) 被5除余1的正整数的集合;+{|I (N 51)}x x y y x y ∈∧∃∈∧=+(3) 函数y =sin x 的值域;{|R 11}y y y ∈∧-≤≤(4) 72的质因子的集合;{|N |72(N 2|)}x x x y y y x y x ∈∧∧∀∈∧≤<→/(5) 不等式031>-x 的解集; {|R 3}x x x ∈∧>(6) 函数2312+-=x x y 的定义域集. {|R 12}x x x x ∈∧≠∧≠3. 用归纳定义法描述下列集合:(1) 允许有前0的十进制无符号整数的集合;① {0,1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x x x x x x x x x x x A ⊆(2) 不允许有前0的十进制无符号整数的集合;① {1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x A ⊆(3) 不允许有前0的二进制无符号偶数的集合;① 1A ∈② 如果x A ∈,则{0,1}x x A ⊆(4) 5的正整数倍的集合.① 5A ∈② 如果x A ∈,则5x A +∈4. 判断下列命题中,哪些是真的,哪些是假的(A 是任意集合):(1) ;A ∈∅(2) ;A ⊆∅ (3) };{A A ∈ (4) ;A A ⊆ (5) ;A A ∈ (6) };{A A = (7) }.{∅=∅答:(2),(3),(4)为真,(1),(5),(6),(7)为假。
第三章习题一解答一、求下列集合的幂集1、{杨,李,石}解:P({杨,李,石}) ={Φ, {石},{李,石},{杨},{杨,石},{杨,李},{杨,李,石}}2、{{1,2},{2,1,1},{2,1,1,2}}解:原集合={{1,2},{2,1},{2,1}}={{1,2}},只含一个元素,故其幂集只有2 个元素: P={Φ,{1,2}}二、利用包含排斥原理,求解以下各题。
1、对60 人调查,25 读《每周新闻》,26 读《时代》,26 人读《财富》,9 人读《每周新闻》和《财富》,11 读《每周新闻》和《时代》,8 人读《时代》与《财富》,还有 8 人什么都不读,请计算:(1) 阅读全部三种杂志的人数。
(2) 分别求只阅读每周新闻、时代、财富杂志的人数。
解:记A={《每周新闻》的读者},B={《时代》的读者},C={《财富》的读者}。
由于8 人什么都不读,故只有 52 人读杂志,即 |A ∪B ∪C|=52。
已知|A|=25,|B|=26,|C|=26|A ∩C|=9,|A ∩B|=11,|B ∩C|=8(1)由包含排斥原理可知|A ∪B ∪C|=|A|+|B|+|C|-|A ∩C|-|A ∩B|-|B ∩C|+| A ∩B ∩C|,故 52=25+26+26-9-11-8+| A ∩B ∩C|,即有| A ∩B ∩C|=3,所以同时读三种杂志的人为3 人。
(2)注意到 |S ∩T| = |S|-|S ∩T|,故只读《每周新闻》的人数为:|)()(||||)(||||)(|||C A B A A C B A A C B A C B A ⋂⋃⋂-=⋃⋂-=⋃⋂=⋂⋂ =|A|-|A ∩B|-|A ∩C|+| A ∩B ∩C|=25-9-11+3=8;只读《时代》人数为:=⋂⋂||C A B |B|-|B ∩A|-|B ∩C|+| A ∩B ∩C|=26-11-8+3=10 ; 只读《财富》的人为:=⋂⋂||B A C |C|-|C ∩A|-|C ∩B|+| A ∩B ∩C|=26-9-8+3=12。
《离散数学》第三部分----代数结构一、选择或填空1、设A={2,4,6},A上的二元运算*定义为:a*b=max{a,b},则在独异点<A,*>中,单位元是( ),零元是( )。
答:2,62、设A={3,6,9},A上的二元运算*定义为:a*b=min{a,b},则在独异点<A,*>中,单位元是( ),零元是( );答:9,33、设〈G,*〉是一个群,则(1) 若a,b,x∈G,a*x=b,则x=( );(2) 若a,b,x∈G,a*x=a*b,则x=( )。
答:(1)a*-1 b (2)b4、设a是12阶群的生成元,则a2是( )阶元素,a3是( )阶元素。
答:6,45、代数系统<G,*>是一个群,则G的等幂元是( )。
答:单位元6、设a是10阶群的生成元,则a4是( )阶元素,a3是( )阶元素。
答:5,107、群<G,*>的等幂元是( ),有( )个。
答:单位元,18、素数阶群一定是( )群, 它的生成元是( )。
答:循环群,任一非单位元9、设〈G,*〉是一个群,a,b,c∈G,则(1) 若c*a=b,则c=( );(2) 若c*a=b*a,则c=( )。
答:(1)b1-*a(2) b10、<H,,*>是<G,,*>的子群的充分必要条件是( )。
答:<H,,*>是群或∀ a,b ∈G,a*b∈H,a-1∈H 或∀ a,b ∈G,a*b-1∈H 11、群<A,*>的等幂元有( )个,是( ),零元有( )个。
答:1,单位元,012、在一个群〈G,*〉中,若G中的元素a的阶是k,则a-1的阶是( )。
答:k13、在自然数集N上,下列哪种运算是可结合的?()(1) a*b=a-b (2) a*b=max{a,b} (3) a*b=a+2b (4) a*b=|a-b| 答:(2)14、任意一个具有2个或以上元的半群,它()。
第三章习题一解答一、求下列集合的幂集1、{杨,李,石}解:P({杨,李,石}) ={Φ, {石},{李,石},{杨},{杨,石},{杨,李},{杨,李,石}}2、{{1,2},{2,1,1},{2,1,1,2}}解:原集合={{1,2},{2,1},{2,1}}={{1,2}},只含一个元素,故其幂集只有2 个元素: P={Φ,{1,2}}二、利用包含排斥原理,求解以下各题。
1、对60 人调查,25 读《每周新闻》,26 读《时代》,26 人读《财富》,9 人读《每周新闻》和《财富》,11 读《每周新闻》和《时代》,8 人读《时代》与《财富》,还有 8 人什么都不读,请计算:(1) 阅读全部三种杂志的人数。
(2) 分别求只阅读每周新闻、时代、财富杂志的人数。
解:记A={《每周新闻》的读者},B={《时代》的读者},C={《财富》的读者}。
由于8 人什么都不读,故只有 52 人读杂志,即 |A ∪B ∪C|=52。
已知|A|=25,|B|=26,|C|=26|A ∩C|=9,|A ∩B|=11,|B ∩C|=8(1)由包含排斥原理可知|A ∪B ∪C|=|A|+|B|+|C|-|A ∩C|-|A ∩B|-|B ∩C|+| A ∩B ∩C|,故 52=25+26+26-9-11-8+| A ∩B ∩C|,即有| A ∩B ∩C|=3,所以同时读三种杂志的人为3 人。
(2)注意到 |S ∩T| = |S|-|S ∩T|,故只读《每周新闻》的人数为:|)()(||||)(||||)(|||C A B A A C B A A C B A C B A ⋂⋃⋂-=⋃⋂-=⋃⋂=⋂⋂ =|A|-|A ∩B|-|A ∩C|+| A ∩B ∩C|=25-9-11+3=8;只读《时代》人数为:=⋂⋂||C A B |B|-|B ∩A|-|B ∩C|+| A ∩B ∩C|=26-11-8+3=10 ; 只读《财富》的人为:=⋂⋂||B A C |C|-|C ∩A|-|C ∩B|+| A ∩B ∩C|=26-9-8+3=12。
离散数学第三章习题详细答案3.9解:符号化:p:a是奇数.q:a是偶数.r:a能被2整除前提:(p→¬r),(q→r)结论:(q→¬p)证明:方法2(等值演算法)(p→¬r)∧(q→r)→(q→¬p)⇔(¬p∨¬r)∧(¬q∨r)→(¬q∨¬p)⇔(p∧r)∨(q∧¬r)∨¬q∨¬p⇔((p∧r)∨¬p)∨((q∧¬r)∨¬q)⇔(r∨¬p)∨(¬r∨¬q)⇔¬p∨(r∨¬r)∨¬q⇔1即为成佛该式为重言式,则原结论恰当。
方法3(主析取范式法)(p→¬r)∧(q→r)→(q→¬p)⇔(¬p∨¬r)∧(¬q∨r)→(¬q∨¬p)⇔(p∧r)∨(q∧¬r)∨¬q∨¬p⇔m0+m1+m2+m3+m4+m5+m6+m7所述该式为重言式,则结论推理小说恰当。
3.10.解:符号化:p:a就是负数.q:b就是负数.r:a、b之四维负前提:r→(p∧¬q)∨(¬p∧q)结论:¬r→(¬p∧¬q)方法1(真值法)证明:方法2(主析取范式法)证明:(r→(p∧¬q)∨(¬p∧q))→(¬r→(¬p∧¬q))⇔¬(¬r∨(p∧¬q)∨(¬p∧q))∨(r∨(¬p∧¬q))⇔r∨(¬p∧¬q)⇔m0+m2+m4+m6+m7只不含5个极小项,课件完整不是重言式,因此推理小说不恰当3.11.填充下面推理证明中没有写出的推理规则。
解:③:①②谓词三段论⑤:③④谓词三段论⑦:⑤⑥假言推理小说3.12.填充下面推理证明中没有写出的推理规则。
第3章作业
班级学号姓名成绩
8.一个小猪储钱罐有100个相同的5角和80个1元的硬币,从中选出8个硬币有多少种方式。
11.设x1,x2,x3是非负整数,不等式x1+x2+x3 11有多少种解。
13.使用MISSISSIPPI中的所有字母可以构成多少个不同的串?使用ABRACADABR中的所有字母可以构成多少个不同的串?
15.把一副标准的52张扑克牌发给5个人,每人得7张,有多少种不同的方式,把一副标准的52张扑克牌平均发给4个人,有多少种不同的方式?
16.有多少种不同的方式把5个不同的物体放到3个不同的盒子里?有多少种不同的方式把5个相同的物体放到3个不同的盒子里?
17找出按照字典顺序跟在下面每个排列后面的下一个更大的全排列。
(1)1432(2)54123(3)12453(4)45231(5)6714235(6)31528764
18.按照字典顺序排列下述{1,2,3,4,5,6}的排列:234561,231456,165432,156423,543216,541236,231465, 314562,432561,654321,654312,435612。
20.使用算法3.3.2列出集合{1,2,3,4}的所有子集。
21.使用算法3.3.3列出集合{1,2,3,4,5}的所有3-组合。
38.一个碗里有10个红球和10个蓝球。
一位女士不看球而随机地选取。
(1)她必须选多少个球才能保证至少有3个球是同色的?
(2)她必须选多少个球才能保证至少有3个球是蓝色的?
39.一个计算机网络有6台计算机组成,每台计算机至少连接1台其他计算机。
证明,网络中至少有2台计算机直接连接相同数目的其他计算机。
43.求A∪B∪C中的元素数,如果每个集合有100个元素,并且
(1)这些集合是两两不相交的。
(2)每对集合存在50个公共元素,并且没有元素在所有这3个集合里。
(3)每对集合存在50个公共元素,并且有25个元素在所有这3个集合里。
(4)这些集合是相等的。
44.一个学校有2504个计算机科学专业的学生,其中1876人选修了Pascal,999人选修了FORTRAN,345人选修了C,876人选修了Pascal和FORTRAN,231人选修了FORTRAM和C,290人选修了Pascal和C。
如果189个学生选了Pascal、FORTRAN和C,那么2504个学生中有多少学生没有选这3门程序设计语言课中的任何1种。
45.有多少8位二进制串不包含6个连续的0。