高考物理力矩和力矩平衡专题训练
- 格式:doc
- 大小:550.00 KB
- 文档页数:4
有固定转动轴的物体的平衡1、如图所示是一种手控制动器,a 是一个转动着的轮子,b 是摩擦制动片,c 是杠杆,O 是其固定转动轴.手在A 点施加一个作用力F 时,b 将压紧轮子,使轮子制动.若使轮子制动所需的力矩是一定的,则下列说法正确的是( )A.轮a 逆时针转动时,所需的力F 较小B.轮a 顺时针转动时,所需的力F 较小C.无论逆时针还是顺时针转动,所需的力F 相同D.无法比较F 的大小2、如图所示,两个等重等长质料均匀直棒AC 和BC ,其各自一端分别通过转轴与墙壁绞结,其另一端相连于C 点,AC 棒与竖直墙夹角为45°,BC 棒水平放置,当两棒均处于平衡状态时,则BC 棒对AC 棒作用力方向可能处于哪一区域( )A.甲区域B.乙区域C.丙区域D.丁区域3、如图所示,AC 为竖直墙面,重为G 的AB 均匀横梁处于水平位置。
BC 为支撑横梁的轻杆,它与竖直方向的夹角为α,A 、B 、C 三处均用铰链连接,轻杆所受的力为( )A 、αcos GB 、αcos 2G C 、αcos G D 、αcos 2G4、如图所示,竖直杆AB 在绳AC 拉力作用下使整个装置处于平衡状态,若绳AC 加长,使点C 缓慢向左移动,杆AB 仍竖直,且处于平衡状态,那么绳AC的拉力T 和杆AB 所受的压力N 与原来相比,下列说法中正确的是( )A 、T 增大,N 减小B 、T 减小,N 增大C 、T 和N 均增大D 、T 和N 均减小5、如图所示,一根轻质木棒AO ,A 端用光滑铰链固定于墙上,在O 端下面吊一个重物,上面用细绳BO 系于顶板上,现将B 点逐渐向右移动,并使棒AOA .BO 绳上的拉力大小不变。
B .BO 绳上的拉力先变大后变小。
C .BO 绳上的拉力对轻杆的力矩先变大后变小。
D .BO 绳上的拉力对轻杆的力矩不变。
6、如图所示,重为G的圆盘与一轻杆相连,杆与盘恰相切,支于O点.现用力F 竖直向下拉杆的另一端,使该端缓慢向下转动,则杆转到竖直之前,拉力F 及其力矩M的变化情况是( )A.M变小,F 不变. B.M、F 均变小.C.M先变大再变小,F 始终变大. D.M变小,F 变大.7、如图所示,重为G的均匀棒,可绕上端O在竖直平面内转动.今在棒的下端用水平力F 拉,使棒缓慢转动,直至转到水平方向为止,则拉力F 和它的力矩M的变化情况是( )A.都增大. B.都减小.C.F 增大,M减小. D.F 减小,M增大.8、质量均匀的木板,对称地支承于P 和Q 上,一个物体在木板上从P 处运动到Q 处,则Q 处对板的作用力N 随x 变化的图线是( )9、如图所示,均匀木棒AB 的一端N 支在水平地面上,将另一端用水平拉力F 拉住,使木棒处于平衡状态,则地面对木棒AB 的作用力的方向为( )A 、总是竖直向上的,如F 1B 、总是偏向木棒的右侧,如F 2C 、总是沿着木棒的方向,如F 3D 、总是偏向木棒的左侧,如F 410、如图所示,足够长的均匀木棒AB的A端铰于墙上,悬线一端固定,另一端套在木棒上跟棒垂直,并使棒保持水平.如改变悬线的长度使套逐渐向右移动,但仍保持木棒水平,则悬线所受拉力大小将( )A.逐渐变小. B.先逐渐变大后又逐渐变小.C.逐渐变大. D.先逐渐变小后又逐渐变大.11、如图所示,均匀细杆AB 质量为M ,A 端装有转轴,B 端连接细线通过滑轮和质量为m 的重物C 相连,若杆AB 呈水平,细线与水平方向夹角为θ 时恰能保持平衡,则杆对轴A 有作用力大小下面表达式中正确的有( ) A .mg B .Mg 2 sin θC .M2-2Mm sin θ+m2 gD .Mg -mg sin θ12、如图所示,均匀板一端搁在光滑墙上,另一端搁在粗糙地面上,人站在板上,人和板均静止,则( )A.人对板的总作用力就是人所受的重力.B.除重力外板受到三个弹力和两个摩擦力作用.C.人站得越高,墙对板的弹力就越大.D.人站得越高,地面对板的弹力就越小.13、如图所示,一端可绕O 点自由转动的长木板上方放一个物块,手持木板的另一端,使木板从水平位置沿顺时针方向缓慢转动,转动过程中,手对木板的力始终竖直向上,则在物块相对于木板滑动前( )A .物块对木板的作用力减小B .手对木板的作用力不变C .手对木板的作用力增大D .手对木板的作用力的力矩不变14、如图丙所示,一质量分布均匀的梯子,重为G ,斜搁在光滑的竖直墙上,重为P 的人沿梯子从梯子的底端A 开始匀速向上走,人的重心离地的高度h 逐渐增大,整个过程梯子不滑动。
高考物理必考难点 力矩平衡条件及应用力矩平衡以其广泛的实用性,再次被考纲列为考查的内容,且以此知识点为素材的高考命题屡次再现于近几年高考上海卷及全国理综卷中.其难点分布于:(1)从实际背景中构建有固定转动轴的物理模型.(2)灵活恰当地选取固定转动轴.(3)将转动模型从相关系统(连结体)中隔离分析等.●难点磁场1.(★★★★)如图3-1所示,一根长为L 的轻杆OA ,可绕水平轴O 在竖直平面内自由转动,左端A 挂一质量为m 的物体,从杆上一点B 系一不可伸长的细绳,将绳跨过光滑的钉子C 与弹簧K 连接,弹簧右端固定,这时轻杆在水平位置保持平衡,弹簧处于伸长状态,已知OB =OC =32L ,弹簧伸长量恰等于BC ,由此可知,弹簧的劲度系数等于______.2.(★★★★★)(1997年上海,6)如图3-2所示是一种手控制动器,a 是一个转动着的轮子,b 是摩擦制动片,c 是杠杆,O 是其固定转动轴.手在A 点施加一个作用力F 时,b 将压紧轮子,使轮子制动.若使轮子制动所需的力矩是一定的,则下列说法正确的是A.轮a 逆时针转动时,所需的力F 较小B.轮a 顺时针转动时,所需的力F 较小C.无论逆时针还是顺时针转动,所需的力F 相同D.无法比较F 的大小●案例探究[例1](★★★★★)如图3-3所示,长为L 质量为m的均匀木棒,上端用绞链固定在物体上,另一端放在动摩擦因数为μ的小车平台上,小车置于光滑平面上,棒与平台的夹角为θ,当:(1)小车静止时,求棒的下端受小车的支持力;(2)小车向左运动时,求棒的下端受小车的支持力;(3)小车向右运动时,求棒的下端受小车的支持力. 命题意图:题目出示的物理情境,来考查考生受力分析能力及力矩平衡条件的应用能力.B 级要求.错解分析:对“车的不同运动状态使棒所受摩擦力大小方向的变化”理解分析不透,从而错列力矩平衡方程.解题方法与技巧:(1)取棒为研究对象.选绞链处为固定转动轴,除转动轴对棒的作用力外,棒的受力情况如图3-4所示,由力矩平衡条件知:F N 1Lc os θ=mg2L c os θF N 1=21mg图3-1 图3-2图3-3(2)小车向左运动,棒另外受到一个水平向左的摩擦力F 1作用,受力如图3-5所示,则有2N F Lc os θ=mg 2L cos θ+μ2N F L sin θ 所以2N F =)tan 1(2θμ-m g ,则2N F >1N F (3)小车向右运动时,棒受到向右的摩擦力F 2作用,受力如图3-6所示,有 3N F L cos θ+μ3N F L sin θ=mg2L cos θ 解得3N F =)tan 1(2θμ+mg 所以3N F <1N F 本题的关键点是取棒作为研究对象,由于车有不同的运动方向,故棒所受摩擦力的方向也不同,从而导致弹力的不同.[例2](★★★★★)(2002年上海卷)如图3-7所示,一自行车上连接脚踏板的连杆长R 1,由脚踏板带动半径为r 1的大齿盘,通过链条与半径为r 2的后轮齿盘连接,带动半径为R 2的后轮转动.图3—7(1)设自行车在水平路面上匀速行进时,受到的平均阻力为f ,人蹬脚踏板的平均作用力为F ,链条中的张力为T ,地面对后轮的静摩擦力为f s .通过观察,写出传动系统中有几个转动轴,分别写出对应的力矩平衡表达式;(2)设R 1=20 cm ,R 2=33 cm ,脚踏大齿盘与后轮齿盘的齿数分别为48和24,计算人蹬脚踏板的平均作用力与平均阻力之比;(3)自行车传动系统可简化为一个等效杠杆.以R 1为一力臂,在框中画出这一杠杆示意图,标出支点,力臂尺寸和作用力方向.图3—6命题意图:以生活中的自行车为背景,设立情景,考查运用力矩、力矩平衡条件解决实际问题的能力,尤其是构建物理模型的抽象、概括能力.B 级要求.错解分析:(1)尽管自行车是一种常见的交通工具,但多数考生缺少抽象概括的能力,无法构建传动系统简化的杠杆模型.(2)不能再现自行车的工作过程,无法将r 1/r 2之比与两个齿盘的齿数之比加以联系,导致中途解题受阻.解题方法与技巧:(1)自行车传动系统中的转动轴个数为2,设脚踏齿轮、后轮齿轮半径分别为r 1、r 2,链条中拉力为T .对脚踏齿盘中心的转动轴可列出:FR 1=Tr 1 对后轮的转动轴可列出:Tr 2=f s R 2(2)由FR 1=Tr 1,Tr 2=f s R 2 及f s =f (平均阻力) 可得24482121==r r R f FR s 所以1033202433481221=⨯⨯==R r R r f F =3.3 (3)如图3-8所示图3-8●锦囊妙计一、高考走势随着中学新课程方案推广与实施,“有固定转动轴物体的平衡”以其在现实生活中应用的广泛性,再次被列为高考命题考查的重要内容之一.近几年高考上海卷及2002年全国综合卷的命题实践充分证明了这一点.可以预言:以本知识点为背景的高考命题仍将再现.二、物体平衡条件实际上一个物体的平衡,应同时满足F 合=0和M 合=0.共点力作用下的物体如果满足 F 合=0,同时也就满足了M 合=0,达到了平衡状态;而转动的物体只满足M 合=0就不一定能达到平衡状态,还应同时满足F 合=0方可.三、有固定转动轴物体平衡问题解题步骤1.明确研究对象,即明确绕固定转动轴转动的是哪一个物体.2.分析研究对象所受力的大小和方向,并画出力的示意图.3.依题意选取转动轴,并找出各个力对转动轴的力臂,力矩的大小和方向.4.根据平衡条件(使物体顺时针方向转动的力矩之和等于使物体逆时针方向转动的力矩之和)列方程,并求解.●歼灭难点训练1.(★★★)(1992年全国,25)如图3-9所示 ,AO是质量为m 的均匀细杆,可绕O 轴在竖直平面内自由转动.细杆上的P 点与放在水平桌面上的圆柱体接触,圆柱体靠在竖直的挡板上而保持平衡.已知杆的倾角为θ,AP 长度是杆长的41,各处的摩擦都不计,则挡板对圆柱体的作用力等于____________.2.(★★★★)一根木料长5.65 m ,把它左端支在地上,竖直向上抬起它的右端时,用力480 N ,用相似的方法抬起它的左端时,用力650 N ,该木料重___________N.3.(★★★★)如图3-10所示,两个等重等长质料均匀直棒AC 和BC ,其各自一端分别通过转轴与墙壁绞结,其另一端相连于C 点,AC 棒与竖直墙夹角为45°,BC 棒水平放置,当两棒均处于平衡状态时,则BC 棒对AC 棒作用力方向可能处于哪一区域A.甲区域B.乙区域C.丙区域D.丁区域 4.(★★★★)如图3-11所示,长为l 的均匀横杆BC 重为100 N ,B 端用铰链与竖直的板MN 连接,在离B 点54l 处悬吊一重为50 N 的重物测出细绳AC 上的拉力为150 N ,现将板MN 在△ABC 所在平面内沿顺时针方向倾斜30°,这时AC绳对MN 板的拉力是多少?图3-9 图3-10图3-115.(★★★★★)如图3-12所示,均匀木板AB 长12 m ,重200 N ,在距A 端3 m 处有一固定转动轴O ,B 端被绳拴住,绳与AB 的夹角为30°,板AB 水平.已知绳能承受的最大拉力为200 N ,那么重为600 N 的人在该板上安全行走,离A 端的距离应在什么范围?6.(★★★★★)如图3-13所示,梯与墙之间的摩擦因数为μ1,梯与地之间的摩擦因数为μ2,梯子重心在中央,梯长为L .当梯子靠在墙上而不倾倒时,梯与地面的最小夹角θ由下式决定:tan θ=22121μμμ-,试证之.图13—3图3-12参考答案:[难点磁场]1.9mg /4L 2.A[歼灭难点训练]1.31mg sin2θ 2.1130 3.D 4.130 N 5.作出AB 板的受力图3′-1人在O 轴左端x 处,绳子拉直拉力为零.由力矩平衡可得:G 人×x -G ×CO =0x =人G CO G ⨯=6003200⨯=1 m.即离A 端2 m 处. 人在O 轴右端y 处,绳子的拉力T =200 N ,由力矩平衡得:T sin30°×BO -G 人y -G ×CO =0.y =6003200921200sin30人⨯-⨯⨯=⨯-⨯G CO G BO T =0.5 m 即离A 端3.5 m.所以人在板上安全行走距A 端的距离范围为2 m ≤x ≤3.5 m6.略图3′—1。
力矩和力矩平衡一. 内容黄金组.1.了解转动平衡的概念,理解力臂和力矩的概念。
2.理解有固定转动轴物体平衡的条件 3.会用力矩平衡条件分析问题和解决问题二. 要点大揭秘1. 转动平衡:有转动轴的物体在力的作用下,处于静止或匀速转动状态。
明确转轴很重要:大多数情况下物体的转轴是容易明确的,但在有的情况下则需要自己来确定转轴的位置。
如:一根长木棒置于水平地面上,它的两个端点为AB ,现给B 端加一个竖直向上的外力使杆刚好离开地面,求力F 的大小。
在这一问题中,过A 点垂直于杆的水平直线是杆的转轴。
象这样,在解决问题之前,首先要通过分析来确定转轴的问题很多,只有明确转轴,才能计算力矩,进而利用力矩平衡条件。
2. 力矩:力臂:转动轴到力的作用线的垂直距离。
力矩:力和力臂的乘积。
计算公式:M =FL 单位: Nm 效果:可以使物体转动(1)力对物体的转动效果力使物体转动的效果不仅跟力的大小有关,还跟力臂有关,即力对物体的转动效果决定于力矩。
①当臂等于零时,不论作用力多么大,对物体都不会产生转动作用。
②当作用力与转动轴平行时,不会对物体产生转动作用,计算力矩,关键是找力臂。
需注意力臂是转动轴到力的作用线的距离,而不是转动轴到力的作用点的距离。
(2)大小一定的力有最大力矩的条件: ①力作用在离转动轴最远的点上;②力的方向垂直于力作用点与转轴的连线。
(3)力矩的计算:①先求出力的力臂,再由定义求力矩M =FL如图中,力F 的力臂为L F =Lsin θ力矩M =F •L sin θ②先把力沿平行于杆和垂直于杆的两个方向分解,平行于杆的分力对杆无转动效果,力矩为零;平行于杆的分力的力矩为该分力的大小与杆长的乘积。
如图中,力F 的力矩就等于其分力F 1产生的力矩,M=F sin θ•L两种方法不同,但求出的结果是一样的,对具体的问题选择恰当的方法会简化解题过程。
3. 力矩平衡条件:力矩的代数和为零或所有使物体向顺时针方向转动的力矩之和等于所有使物体向逆时针方向转动的力矩之和。
2011-2019年高考物理真题专项汇编:力矩平衡★祝考试顺利★1.2016年上海卷15.如图,始终竖直向上的力F 作用在三角板A 端,使其绕B 点在竖直平面内缓慢地沿顺时针方向转动一小角度,力F 对B 点的力矩为M ,则转动过程中 (A)M 减小,F 增大 (B)M 减小,F 减小 (C)M 增大,F 增大 (D)M 增大,F 减小 【答案】A【解析】据题意,对三角板受力分析受到重力、支持力和拉力,由于缓慢转动,三角板近似平衡,所以有:G N F =+,在转动过程中,支持力减小而拉力F 在增加;力矩是力与力到作用点的距离的乘积,应用极端思维法,当三角板被竖直时,力与转动轴的距离为零,此时力矩为零,故此过程中力矩在减小,选项A 正确。
【又解】设三角板的重心为O ,AB=L 1, OB=L 2, ∠ABO =α, ∠CBO =β, 三角板绕B 点在竖直平面内缓慢地沿顺时针方向转动一小角度θ,如图示, 令θ+β=φ拉力F 的力矩为M F =F ∙A'B ∙cos(θ+β+α)= F ∙ L 1 ∙cos(φ+α)重力G 的力矩为M G =G ∙O'B ∙cos(θ+β)= G ∙L 2 ∙cos φ 根据力矩平衡有, F ∙ L 1 ∙cos(φ+α)= G ∙L 2 ∙cos φ)sin tan (cos )sin sin cos (cos cos )sin sin cos (cos cos )cos(cos 12121212αϕααϕαϕϕαϕαϕϕαϕϕ-=-=-=+=L GL L GL L GL L GL Fθ增大,则tan θ增大, G 、L 1、 L 2和 α均不变,所以F 增大;由M G = G ∙L 2 ∙cos φ,G 和L 2不变, θ增大,φ=θ+β增大,cos φ减小,力F 对B 点的力矩M 减小,选项A 正确。
2.2012年上海卷14.如图,竖直轻质悬线上端固定,下端与均质硬棒AB 中点连接,棒长为线长二倍。
力矩平衡条件的应用 同步练习11.(1)如右图所示,将重为G 的木棒一端用力F 缓慢拉起,O 为转轴,则在拉起的过程中,拉力FA.B.C.D.(2)如右图所示装置,均匀木棒AB 的A 端固定在铰链上,悬线的一端固定,另一端套在木棒上跟棒垂直,并使棒保持水平,若改变悬线长度使线套逐渐向右移动,但仍保持木棒水平,则悬线所受拉力(棒足够长)的变化A.B.C.逐渐增大D.(3)如图所示,原来平衡的不等臂天平,两盘A 、B 完全相同,将重为G 1的物体放在A 盘,重为G 2的物体放在B 盘,恰能平衡,若将G 1物体放在B盘,G 2物体放在A 盘,需在B 盘中放一重为W 的小砝码才能平衡,则G 1、G 2与WA.G 2=G 1+WB.22G =21G +G 1WC.G 1=G 2+WD. 21G =22G +G 2W2.(1)如图所示,均匀木杆重2G ,从O 点支起恰水平平衡,然后从OB 段中点A 截断,仍支于O 点水平平衡,应在右端A 点加一个方向______的最小力,大小为______.(2)如右图所示,把物体A 放在水平板OB 的正中央,用一不变的力F将板的B 端匀速地慢慢抬高(O 端不动),设A 相对平板静止,则A 对板的压力将______,A 与B 之间的摩擦力将______,F 对O 点的力矩将______.3.一均匀木板MN 长L =15 m ,重G 1=400 N,搁在相距D =8 m 的两个支架A 、B 上,MA =NB .重G 2=600 N 的人从A 点向B 点走去,如图所示.(1)人走过B(2)为使人走到N 点时木板不会翘起来,支架B 应放在离B 端多远处?1.(1)D (2)C (3)B2.(1)竖直向下,43G (2)减小 增大3.(1)2.73 m (2)3 m。
力矩的平衡条件同步测试一、单选题(共8题;共16分)1.如图所示,“┏”型均匀杆的总长为3L,在竖直平面内可绕光滑的水平轴O转动.若在右端A施加一个竖直向下的力F,使杆顺时针缓慢转动,则在杆AB从水平到转过45°的过程中,以下说法中正确的是()A. 力F的力矩变大B. 力F的力矩先变大后变小C. 力F的大小不变D. 力F的大小先变大后变小2.下图属于费力杠杆的是()A. 起子B. 道钉撬C. 筷子D. 钢丝钳3.如图所示为等刻度的轻质杠杆,A处挂一个重为2牛的物体,若要使杠杆在水平位置平衡,则在B处施加的力()A. 可能是0.5牛B. 一定是1牛C. 可能是2牛D. 一定是4牛4.如图,竖直轻质悬线上端固定,下端与均质硬棒AB中点连接,棒长为线长的二倍.棒的A端用铰链墙上,棒处于水平状态.改变悬线的长度,使线与棒的连接点逐渐右移,并保持棒仍处于水平状态.则悬线拉力()A. 逐渐减小B. 逐渐增大C. 先减小后增大D. 先增大后减小5.北京二十九届奥运会皮划艇比赛中,马鞍山运动员李臻(如图)一手支撑住浆柄的末端(视为支点),另一手用力划桨,此时的船桨()A. 是等臂杠杆B. 是费力杠杆C. 是省力杠杆D. 对水的力与水对船桨的力是平衡力6.如图所示,质量为m的均匀半圆形薄板可以绕光滑的水平轴A在竖直平面内转动,AB是它的直径,O是它的圆心.在B点作用一个竖直的力F使薄板平衡,此时AB恰处于水平位置,若保持力F始终竖直,在F作用下使薄板绕A点沿逆时针方向缓慢转动,直到AB到达竖直位置的过程中,力F对应的力矩为M,则它们大小变化情况是()A. M变小,F不变B. M、F均变大C. M先变大再变小,F始终变大D. M、F均先变大再变小7.如图所示,小圆环A吊着一质量为m2的物块并套在另一个竖起的大圆环上,有一细线拴在小圆环A上,另一端跨过固定在大圆环最高点B的一个小滑轮后吊着一个质量为m1的物体,如果不计一切摩擦,平衡时弦AB所对的圆心角为θ,则两物块的质量之比m1:m2为()A. B. C. cos D. sin8.如图所示,密度分布均匀的圆柱形棒的一端悬挂一个小铁块并一起浸入水中.平衡时棒浮出水面的长度是浸入水中长度的n倍.若水的密度为ρ,则棒的密度为()A. ρB. ρC. ρD. ρ二、填空题(共2题;共4分)9.如图所示,质量均匀分布的甲、乙两球的重力相等,均为150N,球半径和BD、BC的轻绳长均为R,今由轻绳AB连接悬挂在处于水平位置的杠杆OE上,悬挂点距支点O的距离为0.2m,杠杆为质量均匀分布的直棒,每米的重力为30N,则当所有物体处于静止时,绳AB的拉力为________N,杠杆的长度为________m 时,在E端所用力F为最小.10.如图所示,质量为m的均匀半圆形薄板可以绕光滑的水平轴A在竖直平面内转动,AB是它的直径,O 是它的圆心.在B点作用一个垂直于AB的力F使薄板平衡,此时AB恰处于水平位置,则F=________;保持力F始终垂直于AB,在F作用下使薄板绕A点沿逆时针方向缓慢转动,直到AB到达竖直位置的过程中,力F的大小变化情况是________.三、实验探究题(共1题;共4分)11.根据所学知识完成题目:(1)(多项选择题)在“研究有固定转动轴物体的平衡“的实验中,某同学采取了如下操作,其中能有效减小误差的操作是A. 将横杆严格放置水平B. 检查转轴是否严格水平C. 轻轻拨动力矩盘,观察其是否能自由转动并随遇平衡D. 根据图钉所在位置与圆心的距离来确定拉力的力臂(2)若要进一步减小误差,你认为还能采取的措施有________.(任举﹣项即可,不可与(1)小题的选项重复)四、解答题(共2题;共10分)12.如图所示,一飞轮半径为R,转轴在其圆心,为使其制动需要的力矩为M.P、Q为两根长为L的杆,下端铰于地面,上端用一弹簧相连,在杆上离下端a处各有一个宽度不计、厚度为b的制动闸,闸与飞轮间的滑动摩擦系数为μ,为能使飞轮制动,弹簧的弹力应为多大?13.如图(甲)所示,ABCO是固定在一起的T型支架,水平部分AC是质量为M=2kg、长度为L=1m的匀质薄板,OB是轻质硬杆,下端通过光滑铰链连接在水平地面上,支架可绕水平轴O在竖直面内自由转动,A 端搁在左侧的平台上.已知AB长度l1=0.75m,OB长度h=0.5m.现有一质量为m=2kg的物块(可视为质点)以v0=3m/s的水平初速度滑上AC板,物块与AC间动摩擦因数μ=0.5.问:T型支架是否会绕O轴翻转?某同学的解题思路如下:支架受力情况如图(乙),设支架即将翻转时物块位于B点右侧x处,根据力矩平衡方程:Mg(l1﹣)=F N•x,式中F N=mg,解得x=0.2m.此时物块离A端s1=l1+x=0.95m.然后算出物块以v0=3m/s的初速度在AC上最多能滑行的距离s2;…比较这两个距离:若s2≤s1,则T型支架不会绕O轴翻转;若s2>s1,则会绕O轴翻转.请判断该同学的解题思路是否正确.若正确,请按照该思路,将解题过程补充完整,并求出最后结果;若不正确,请指出该同学的错误之处,并用正确的方法算出结果.五、综合题(共1题;共2分)14.将于2016年建成的马鞍山长江大桥分左汊和右汊两座主桥如图1,为国内首座三塔两跨斜拉桥,创造了许多世界第一.斜拉桥是利用一组组钢索,把桥面重力传递到耸立在两侧的高塔上的桥梁,它不须建造桥墩.将大桥的结构进行简化,取其部分可抽象成图2所示的模型.图中A1B1、A2B2、…、A5B5是斜拉桥上5条互相平行的钢索,并且B1、B2、B3、B4、B5被固定在桥上(1)为了减小钢索承受的拉力,在可能的前提下,可以适当增加桥塔的高度.请分析原因:________ (2)为了保证每根钢索的拉力相同,B1、B2、B3、B4、B5各点间的间距________(选填“变小”或“变大”或“不变”)答案解析部分一、单选题1.【答案】B【解析】【解答】解:设杆转动α角,“┏”型均匀杆的总质量为m,力F的力矩等于BC段重力的力矩,根据力矩平衡条件,有:(mg)•x=F•Lcosα;(x为BC段的中点与O点连线的水平分量)由于x先变大后变小,故(mg)•x先变大后变小,F•Lcosα先变大后变小,故ACD错误,B正确;故选:B.【分析】BO段与AO段的重力的力矩恰好平衡,故拉力的力矩等于BC段重力的力矩,然后根据力矩平衡条件列式分析.2.【答案】C【解析】【解答】解:A、起子动力臂大于阻力臂,是省力杠杆,故A错误;B、道钉撬动力臂大于阻力臂,是省力杠杆,故B错误;C、筷子动力臂小于阻力臂,是费力杠杆,故C正确;D、钢丝钳动力臂大于阻力臂,是省力杠杆,故D错误;故选:C.【分析】结合图片和生活经验,先判断杠杆在使用过程中,动力臂和阻力臂的大小关系,再判断它是属于哪种类型的杠杆.3.【答案】C【解析】【解答】解:设杠杆每一格长度是L,当B处的作用力与杠杆垂直时,力臂最大,此时作用力最小,由杠杆平衡条件可得:F A L A=F B最小L B,即:2N×2L=F B最小×4L,则F B最小=1N,当作用在B处的力与杠杆不垂直时,力臂小于4L,作用力大于1N,因此要使杠杆平衡,作用在B处的力F≥1N,故ABD错误,C正确;故选C.【分析】根据杠杆平衡的条件和杠杆中最小力的问题进行分析,即动力乘以动力臂等于阻力乘以阻力臂,支点与力的作用点的连线为最长力臂.4.【答案】A【解析】【解答】解:棒子O端用水平轴铰接在墙上,棒处于水平状态,知悬线拉力的力矩和重力力矩平衡,重力力矩不变,当改变悬线的长度,使线与棒的连接点逐渐右移,0点到悬线的垂直距离不断增大,则拉力的力臂增大,所以拉力的大小先逐渐减小.故A正确,BCD错误.故选A.【分析】根据力矩平衡知,拉力的力矩与重力力矩平衡,根据拉力力臂的变化判断拉力的变化.5.【答案】B【解析】【解答】解:船桨在使用过程中,动力臂小于阻力臂,是费力杠杆.故选:B.【分析】结合图片和生活经验,判断杠杆在使用过程中,动力臂和阻力臂的大小关系,再判断它是属于哪种类型的杠杆.6.【答案】D【解析】【解答】解:以A点为支点,拉力F有力矩,重力也有力矩;保持力F始终竖直,在F作用下使薄板绕A点沿逆时针方向缓慢转动,直到AB到达竖直位置的过程中,重心与A点的水平距离先变大后变小,故重力的力矩先变大后变小;拉力的力矩是逐渐变小;设AB与竖直方向夹角为θ,根据力矩平衡条件,有:F•2Rsinθ=M故:F= ,故F先增加后减小;故选:D.【分析】以A点为支点,拉力F有力矩,重力也有力矩,找出重心后,根据力矩平衡条件列式分析即可.7.【答案】A【解析】【解答】解:如图对小环进行受力分析,如图所示,小环受上面绳子的拉力m1g,下面绳子的拉力m2g,以及圆环对它沿着OA向外的支持力,将两个绳子的拉力进行正交分解,它们在切线方向的分力应该相等:m1gsin =m2gcos(θ﹣90°)即:m1cos =m2sinθm1cos =2m2sin cos得:m1:m2=2sin故选:A.【分析】选取小圆环A为研究对象,画受力分析示意图,小圆环受三个力,两个绳子的拉力和大圆环的支持力,一定要知道大圆环的支持力只能是沿着半径的,由此两端绳子拉力分别在切线方向上的分力必然相等,然后由数学三角函数知识求解.8.【答案】C【解析】【解答】解:设棒的横截面积为S,水中棒的长度为L,则露出的长度为nL,整个棒的长度为(n+1)L,如图所示.由ρ= 可得:棒的质量为:m棒=ρ棒V棒=ρ棒S(n+1)L棒的重力为G棒=m棒g=ρ棒S(n+1)Lg棒受到的浮力F浮=ρgV排=ρgSL由三角形相似得:= = =n+1以C为支点,A为棒的重心,由力矩平衡条件得G棒•CE=F浮•CD代入解得ρ棒= ρ故选:C.【分析】根据棒的横截面积和水中棒的长度,得到整个棒的长度,根据ρ= 表示出棒的质量.根据G=mg 表示棒的重力.再根据力矩平衡条件列式,即可求解.二、填空题9.【答案】300;2【解析】【解答】解:对两球整体受力分析,受重力和拉力,故拉力等于重力,故绳子AB的拉力T=300N;对杠杆,设杆长为L,以O为支点,动力有拉力,阻力有杆的重力和细线AB的拉力,根据力矩平衡条件,有FL=T×AO+G0L×代入数据,有FL=300×0.2+15L2解得:F= (当,即L=2m时取等号)故答案为:300,2.【分析】以O为支点,动力有拉力,阻力有杆的重力和细线AB的拉力,根据力矩平衡条件列式后讨论即可.10.【答案】mg;先变大后变小【解析】【解答】解:以A点为支点,拉力F有力矩,重力也有力矩;根据力矩平衡条件,有:F•2R=mg•R,解得:F= mg;保持力F始终垂直于AB,在F作用下使薄板绕A点沿逆时针方向缓慢转动,直到AB到达竖直位置的过程中,重心与A点的水平距离先变大后变小,即重力的力矩先变大后变小;而拉力的力矩一直等于2R;根据力矩平衡条件,有:F•2R=mg•x由于x先变小后变大,故F先变大后变小;故答案为:mg,先变大后变小.【分析】以A点为支点,拉力F有力矩,重力也有力矩,根据力矩平衡条件列式求解即可.三、实验探究题11.【答案】(1)BC(2)弹簧测力计调零等【解析】【解答】解:(1)A、本实验与横杆MN是否平衡无关,没有必要检查横杆MN是否严格保持水平;故A错误;B、实验中转轴要水平,否则重力的影响不能忽略,故B正确;C、实验前要时重力、摩擦力的合力矩近似为零;即轻轻拨动力矩盘,观察其是否能自由转动并随遇平衡;故C正确;D、根据图钉所在位置与圆心的距离来确定拉力的力臂会增加误差;故D错误;故选:BC;(2)根据常规,使用弹簧秤前必须先调零;故答案为:(1)BC;(2)弹簧测力计调零等.【分析】实验原理是研究力矩盘平衡时四个拉力的力矩关系,就要尽可能减小其他力的影响,比如重力、摩擦力等影响.根据此要求分析选择:本实验与横杆MN是否水平无关;根据常规,使用弹簧秤前必须先调零.四、解答题12.【答案】解:设飞轮沿逆时针方向转动,由题图可知,轮子制动的过程中,受到的两侧的摩擦力的方向都与轮子边缘的质点运动的方向相反;对左侧的杆进行受力分析如图,摩擦力与拉力产生顺时针方向的力矩,支持力N1产生顺时针方向的力矩,根据力矩平衡得:μN1b+FL=N1a代入数据解得:同理对右侧的杆进行受力分析如图,摩擦力与支持力N2产生顺时针方向的力矩,拉力产生逆时针方向的力矩,根据力矩平衡得:μN2b+N2a=FL代入数据得:由题图可知,轮子制动的过程中,轮子制动的力矩的方向与轮子转动的方向相反,制动的力矩大小:联立解得:答:弹簧的弹力应是.【解析】【分析】分别对左右两侧的杆进行受力分析,结合力矩平衡即可求出左右两侧受到的摩擦力;对轮子进行受力分析,求出轮子受到的摩擦力的力矩的表达式,然后结合的摩擦力的表达式即可求出.13.【答案】解:该同学的思路不正确.该同学分析支架受力时,漏掉了物块对AC的摩擦力,力矩平衡方程有错.考虑物块对AC的摩擦力,力矩平衡方程为:式中F N=mg,F f=μF N=μmg得到:代入数据得x=0,即物块沿AC滑行s1=0.75m到达B点时,支架恰好翻转.物块在AC上滑行时,根据牛顿第二定律,得:﹣μmg=ma解得:a=﹣μg=﹣5m/s2物块在AC上最多能滑行的距离为:由于s2>s1,所以T型支架会翻转.答:该同学的思路不正确.该同学分析支架受力时,漏掉了物块对AC的摩擦力,力矩平衡方程有错.T型支架会绕O轴翻转.【解析】【分析】先仔细分析该同学的解题思路,先判断是否正确,再指出错误后,分析支架受力时,漏掉了物块对AC的摩擦力,力矩平衡方程有错,再根据正确的思路由力矩平衡方程列式进行完善求解即可.五、综合题14.【答案】(1)增加力臂(2)不变【解析】【解答】解:(1)由图可知,若增加塔桥的高度,即增加了支点O到F2的距离,即增大了动力臂L1,根据公式F1= ,可以得到,在阻力F1和阻力臂L1,不变的情况下,动力臂L2越大,动力越小即桥对钢索的拉力就越小.(2)根据杠杆平衡条件,及钢索相互平行,要使每根钢索的拉力相同,则各点间的间距均不变.故答案为:(1)增加力臂;(2)不变.【分析】(1)通过图示的模型结合杠杆的定义,即可确定它用到的相关知识.通过桥高度的变化,结合图示模型分析出杠杆五要素中哪个量发生了变化,然后再利用杠杆平衡条件分析出原因.(2)根据杠杆平衡条件,即可求解.。
高考物理练习题库4(力矩 有固定转动轴物体的平衡)1.如图所示,轻杆BC 的C 端铰接于墙,B 点用绳子拉紧,在BC 中点O挂重物G .当以C 为转轴时,绳子拉力的力臂是( ).【0.5】(A )OB (B )BC (C )AC (D )CE答案:D2.关于力矩,下列说法中正确的是( ).【1】(A )力对物体的转动作用决定于力矩的大小和方向(B )力矩等于零时,力对物体不产生转动作用(C )力矩等于零时,力对物体也可以产生转动作用(D )力矩的单位是“牛·米”,也可以写成“焦”答案:AB3.有固定转动轴物体的平衡条件是______.【0.5】答案:力矩的代数和为零4.有大小为F 1=4N 和F 2=3N 的两个力,其作用点距轴O 的距离分别为L 1=30cm 和L 2=40cm ,则这两个力对转轴O 的力矩M 1和M 2的大小关系为( ).【1.5】(A )因为F 1>F 2,所以M 1>M 2 (B )因为F 1<F 2,所以M 1<M 2(C )因为F 1L 1=F 2L 2,所以M 1=M 2 (D )无法判断M 1和M 2的大小答案:D5.火车车轮的边缘和制动片之间的摩擦力是5000N .如果车轮的半径是0.45m ,求摩擦力的力矩.【2】答案:2.25×103N ·m6.如图所示是一根弯成直角的杆,它可绕O 点转动.杆的OA 段长30cm ,AB 段长40cm .现用F =10N 的力作用在杆上,要使力F 对轴O 逆时针方向的力矩最大,F 应怎样作用在杆上?画出示意图,并求出力F 的最大力矩.【2.5】答案:图略,5N ·m7.如图所示是单臂斜拉桥的示意图,均匀桥板aO 重为G ,三根平行钢索与桥面成30°角,间距ab =bc =cd =dO .若每根钢索受力相同,左侧桥墩对桥板无作用力,则每根钢索的拉力大小是( ).【3】(A )G (B )6G 3 (C )3G (D )32G 答案:D8.右图为人手臂骨骼与肌肉的生理结构示意图,手上托着重为G 的物体.(1)在虚线框中画出前臂受力的示意图(手、手腕、尺骨和挠骨看成一个整体,所受重力不计,图中O 点看作固定转动轴,O 点受力可以不画).(2)根据图中标尺估算出二头肌此时的收缩力约为___________.(2000年上海高考试题)【5】答案:(1)图略(2)8G9.如图所示,直杆OA 可绕O 轴转动,图中虚线与杆平行.杆的A 端分别受到F 1、F 2、F 3、F4四个力的作用,它们与OA 杆在同一竖直平面内,则它们对O点的力矩M 1、M 2、M 3、M 4的大小关系是( ).【4】(A )M 1=M 2>M 3=M 4(B )M 1>M 2>M 3>M 4 (C )M 1>M 2=M 3>M 4(D )M 1<M 2<M 3<M 4 答案:C10.如图所示的杆秤,O 为提纽,A 为刻度的起点,B 为秤钩,P 为秤砣.关于杆秤的性能,下列说法中正确的是( ).【4】(A )不称物时,秤砣移至A 处,杆秤平衡(B )不称物时,秤砣移至B 处,杆秤平衡(C )称物时,OP 的距离与被测物的质量成正比(D )称物时,AP 的距离与被测物的质量成正比答案:AD11.如图所示,A 、B 是两个完全相同的长方形木块,长为l ,叠放在一起,放在水平桌面上,端面与桌边平行.A 木块放在B 上,右端有4l 伸出,为保证两木块不翻倒,木块B 伸出桌边的长度不能超过().【4】(A )2l (B )83l (C )4l (D )8l 12.如图所示,ABC 为质量均匀的等边直角曲尺,质量为2M ,C 端由铰链与墙相连,摩擦不计.当BC 处于水平静止状态时,施加在A 端的最小作用力的大小为______,方向是______.【4】答案:Mg 423,垂直于CA 的连线斜向上 13.如图所示,将粗细均匀、直径相同的均匀棒A 和B 粘合在一起,并在粘合处用绳悬挂起来,恰好处于水平位置而平衡,如果A 的密度是B 的2倍,那么A 的重力大小是B 的______倍.【5】答案:214.如图所示,一个质量为m 、半径为R 的球,用长为R 的绳悬挂在L 形的直角支架上,支架的重力不计,AB 长为2R ,BC 长为R 32,为使支架不会在水平桌面上绕B 点翻倒,应在A 端至少加多大的力?【6】答案:2mg 15.如图所示,重为600N 的均匀木板搁在相距为2.0m 的两堵竖直墙之间,一个重为800N 的人站在离左墙0.5m 处,求左、右两堵墙对木板的支持力大小.【7】答案:900N ,500N16.棒AB 的一端A 固定于地面,可绕A 点无摩擦地转动,B 端靠在物C 上,物C 靠在光滑的竖直墙上,如图所示.若在C 物上再放上一个小物体,整个装置仍保持平衡,则B 端与C 物之间的弹力大小将( ).【4】(A )变大 (B )变小 (C )不变 (D )无法确定答案:A17.如图所示,质量为m 的运动员站在质量为m 的均匀长板AB 的中点,板位于水平地面上,可绕通过A 点的水平轴无摩擦转动.板的B 端系有轻绳,轻绳的另一端绕过两个定滑轮后,握在运动员的手中.当运动员用力拉绳子时,滑轮两侧的绳子都保持在竖直方向,则要使板的B 端离开地面,运动员作用于绳的最小拉力是______.【5】答案:32mg18.如图所示,半径是0.1m 、重为N 310的均匀小球,放在光滑的竖直墙和长为1m 的光滑木板(不计重力)OA 之间,小板可绕轴O 转动,木板和竖直墙的夹角θ=60°,求墙对球的弹力和水平绳对木板的拉力.【5】答案:10N ,6.92N19.如图所示,均匀杆AB 每米重为30N ,将A 端支起,在离A 端0.2m的C 处挂一重300N 的物体,在B 端施一竖直向上的拉力F ,使杆保持水平方向平衡,问杆长为多少时,所需的拉力F 最小?最小值为多大?【6】答案:2m ,60N20.右图所示是用电动砂轮打磨工件的装置,砂轮的转轴通过图中O 点垂直于纸面,AB 是一长度l =0.60m 、质量m 1=0.50kg 的均匀刚性细杆,可绕过A 端的固定轴在竖直面(图中纸面)内无摩擦地转动,工件C 固定在AB 杆上,其质量m 2=1.5kg ,工件的重心、工件与砂轮的接触点P以及O 点都在过AB 中点的竖直线上,P 到AB 杆的垂直距离d =0.1m ,AB 杆始终处于水平位置,砂轮与工件之间的动摩擦因数μ=0.6.(1)当砂轮静止时,要使工件对砂轮的压力F 0=100N ,则施于B 端竖直向下的力F B 应是多大?(2)当砂轮逆时针转动时,要使工件对砂轮的压力仍为F 0=100N ,则施于B 端竖直向下的力F B ′应是多大?(2000年天津、江西高考试题)p .9【9】答案:(1)40N (2)30N21.两个所受重力大小分别为G A 和G B 的小球A 和B ,用细杆连接起来,放置在光滑的半球形碗内.小球A 、B 与碗的球心O 在同一竖直平面内,如图所示.若碗的半径为R ,细杆的长度为R 2,G A >G B ,则连接两小球的AB 细杆静止时与竖直方向的夹角为多大?【10】答案:4G G arctan A B π+ 22.如图所示,一根重为G 的均匀硬杆AB ,杆的A 端被细绳吊起,在杆的另一端B 作用一水平力F ,把杆拉向右边,整个系统平衡后,细线、杆与竖直方向的夹角分别为α、β求证:tanβ=2tanα.【15】答案:略23.半径为R 、质量为M 1的均匀圆球与一质量为M 2的重物分别用细绳AD 和ACE 悬挂于同一点A ,并处于平衡状态,如图所示.已知悬点A 到球心O 的距离为L ,不考虑绳的质量和绳与球的摩擦,试求悬挂圆球的绳AD 与竖直方向AB 间的夹角θ.(第十届全国中学生物理竞赛预赛试题)【15】答案:LM M (R M arcsin 212)+=θ 24.在一些重型机械和起重设备上,常用双块式电磁制动器,它的简化示意图如图所示,O 1和O 2为固定铰链.在电源接通时,A 杆被往下压,通过铰链C 1、C 2、C 3使弹簧S 被拉伸,制动块B 1、B 2与转动轮D 脱离接触,机械得以正常运转.当电源被切断后,A 杆不再有向下的压力(A 杆及图中所有连杆及制动块所受重力皆忽略不计),于是弹簧回缩,使制动块产生制动效果.此时O 1C 1和O 2C 2处于竖直位置.已知欲使正在匀速转动的D 轮减速从而实现制动,至少需要M =1100N ·m 的制动力矩,制动块与转动轮之间的摩擦因数μ=0.40,弹簧不发生形变时的长度为L =0.300m ,转动轮直径d =0.400m ,图示尺寸a =0.065m ,h 1=0.245m ,h 2=0.340m ,问选用的弹簧的劲度系数k 最小要多大?(第十三届全国中学生物理竞赛预赛试题)【15】答案:k =1.24×104N /m25.如图所示,在竖直墙上有两根相距为2a 的水平木桩A 和B ,有一细棒置于A 上、B 下与水平方向成θ角,细棒与木桩之间的静摩擦因数为μ,求要使细棒静止,其重心与木桩A 之间距离应满足的条件.【25】答案:重心到木桩之间距离⎪⎩⎪⎨⎧<≥-≥时,当时当μθμθμθμαtan 0tan ),tan (x。
精锐教育学科教师辅导教案学员编号:年级:高三课时数: 3学员姓名:辅导科目:物理学科教师:授课类型C力矩平衡综合专题星级★★★★★★★★★★授课日期及时段教学内容i.基础引入<建议用时5分钟!>批注:部分知识点由学生填空完成,5分钟左右完成。
:静力学平衡的综合问题是高中物理力学部分的重点之一,也是高考必考的重要考点,尤其喜欢考察学生受力分析的能力,整体隔离等方法的应用。
力学平衡综合问题:1、物体的平衡物体的平衡有两种情况:一是质点静止或做匀速直线运动状态,物体的加速度为0 ;缓慢运动也可看做平衡状态。
二是物体不转动或匀速转动(此时的物体不能看作质点)。
2、共点力作用下物体的平衡共点力的平衡条件:在共点力作用下物体的平衡条件是合外力为零。
解题方法:处理平衡问题的基本方法;平行四边形法(合成法、分解法)。
相似三角形法、直角三角形法、正弦定理及余弦定理法;当物体在多个共点力作用下平衡时,往往采用正交分解法。
3、有固定转动轴的物体的平衡条件F (1)有固定转动轴的物体的平衡是指物体静止,或绕转轴匀速转动;(2)有固定转动轴物体的平衡条件是合力矩为零,即∑Fx=0,也就是顺时针力矩之和等于逆时针力矩之和。
4、平衡条件的选择(1)有固定转轴的物体一般用力矩平衡条件求解。
(2)一般物体处于平衡状态时,既满足共点力平衡条件又符合力矩平衡条件。
5、整体法和隔离法的选取(1)涉及多个物体时,若不涉及相互作用力,优先考虑整体法。
(2)涉及两物体相互作用力时用隔离法。
ii.例题讲解<建议用时20分钟!>:静力学部分的综合问题在高考中出现的情况较多,因为它既可以考察学生分析问题的能力,又可以和其他知识点进行结合考察学生知识的联系和综合的能力。
寻找足迹:力矩平衡综合问题的相关考题题型一:共点力和力矩平衡的整体隔离法例1.(★★★★)如图所示,球重为G ,半径为R ,木块重为W 、厚为h ,放置在竖直墙边,当对木块施以水平推力F 后,球刚好对水平地面压力为零,不计一切摩擦,求:(1)力F 的大小,(2)木块对地面的压力大小。
《力矩平衡》考试时间:120分钟 考试总分:100分遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。
1、 如图所示,棒AB 的B 端支在地上,另一端A 受水平力F 作用,棒平衡,则地面对棒B 端作用力的方向为:()[ef5aa7e84284609b125f2962464e701b.jpg]( )A.总是偏向棒的左边,如F<sub>1</sub>B.总是偏向棒的右边,如F<sub>3</sub>C.总是沿棒的方向如F<sub>2</sub>D.总是垂直于地面向上如F<sub>4</sub>2、<p> 下列各图中,所有接触面都是光滑的,所有物体都处于静止状态.P 、Q 两个物体之间不存在弹力的是()</p>( ) A.[5f13cdac889d4af01f5440095dd08de1.jpg] B.[8cceec01567ea0788f48d55aff93440f.jpg] C.[cdce133b53634ba8385ca3fa5429725c.jpg] D.[222b159c0fdabdcff083e4f258070032.jpg]3、 如图(1)所示,斜拉桥的塔柱两侧有许多钢索,它们的一端都系在塔柱上.对于每组对称钢索,它们的上端可以看成系在一起,即两根钢索对塔柱的姓名:________________ 班级:________________ 学号:________________--------------------密----------------------------------封 ----------------------------------------------线-------------------------拉力F1、F2作用在同一点.它们合起来对塔柱的作用效果应该让塔柱好像受到一个竖直向下的力F一样,如图(2)所示.这样,塔柱便能稳固地伫立在桥墩上,不会因钢索的牵拉而发生倾斜,甚至倒下.如果斜拉桥塔柱两侧的钢索不能呈对称分布如图(3)所示,要保持塔柱所受的合力竖直向下,那么钢索AC、AB的拉力FAC、FAB应满足()[8767fb3466ac187d4ea50a19a4bcf0e8.jpg]()A.[85c4682622ab7b1ad4a1ef18cff61185.jpg]B.[c8e974a923dc902a308f020cb9b9a971.jpg]C.[2223cf896193a84e3479cf5a0a7eadea.jpg]D.[2e62c9767644e79f3ab8209a30e4e5d7.jpg]4、如图所示,AB为一轻质杠杆,O为支点,BO=2AO,AB两端分别悬挂实心铜球和实心铁球,杠杆在水平位置平衡,若将两球同时浸没在某液体中,液体的密度小于铜和铁的密度,则()[a3aa24981235795b811915656fb787d7.jpg]()A.杠杆仍能保持平衡B.铜球一端下降C.铁球一端下降D.液体密度未知,故无法判断哪端下降5、如图所示,重为G的均匀棒,可绕上端O在竖直平面内转动。
高三物理力矩平衡试题1.一块木板可绕过O点的光滑水平轴在竖直平面内转动,木板上放有一木块,木板右端受到始终与木板垂直的力F,从图中位置A缓慢转到位置B,木块相对木板不发生滑动。
则在此过程中,力F和F的力矩MF大小的变化情况是()A.F始终保持不变,MF先变小后变大B.F始终保持不变,MF先变大后变小C.F先变大后变小,MF先变小后变大D.F先变大后变小,MF先变大后变小【答案】D【解析】以木块和木板整体为研究对象,以O点为转动轴,分析其除O点受力情况:总重力、拉力F.设总重力为G,其力臂长为L1,F的力臂长为L2.因木板从图中位置A缓慢转到位置B,故力矩平衡,由力矩平衡条件得GL1=FL2,由几何知识知,L1先变大后变小又由于G、L2不变,则F先变大后变小.故A、B不正确;F的力矩MF =FL2=GL1,L1先变大后变小,可见MF先变大后变小.故选B.【考点】本题考查了力矩平衡条件2.如图所示,一个轻质直角形薄板ABC,AB=0.80m,AC="0.60" m,在A点固定一垂直于薄板平面的光滑转动轴,在薄板上D点固定一个质量为m=0.40kg的小球,现用测力计竖直向上拉住B点,使AB水平,如图(a),测得拉力F1=2.0N;再用测力计竖直向上拉住C点,使AC水平,如图(b),测得拉力F2=2.0N(g取10m/s2,sin37°=0.6,cos37°=0.8)。
求:(1)小球和转动轴的距离AD;(2)在如图(a)情况下,将小球移动到BC边上距离A点最近处,然后撤去力F1,薄板转动过程中,AB边能转过的最大角度;(3)在第(2)问条件下,薄板转动过程中,B点能达到的最大速度。
【答案】(1)0.5m (2)74°(3)2.32m/s【解析】(1)设小球D距AC为x,距AB为y。
根据力矩平衡得:所以(2)设AD连线与AC边的夹角为θ,由几何关系可知。
根据机械能守恒定律得AD边转过的最大角度是2θ,所以AB边转过的最大角度是2θ=74°(3)根据机械能守恒定律,小球运动到最低点时,重力势能最小,动能最大在转动过程中,薄板上各点角速度相同,所以【考点】本题考查了力矩平衡机械能守恒定律3.如图,竖直轻质悬线上端固定,下端与均质硬直棒OB的三分之一处A点连接,悬线长度也为OB的三分之一,棒的O端用水平轴铰接在墙上,棒处于水平状态。
力矩平衡练习题力矩平衡是物理学中重要的概念和计算方法之一。
它可以帮助我们理解物体的平衡条件,并在力学、工程学等领域中起到重要的应用。
在本篇文章中,我将为大家介绍几个力矩平衡的练习题,帮助大家更好地理解和应用这一概念。
练习题一:在一根水平杆上,有两个质量相等的物体A和B分别距离支点的距离为2m和3m。
要使得该杆保持平衡,物体A和物体B的质量之比是多少?解析:根据力矩平衡条件,可以得到以下公式:MA = MB其中,MA表示物体A对支点的力矩,MB表示物体B对支点的力矩。
由于力矩的计算公式是M = F × d,其中F表示力的大小,d表示力臂的长度。
假设物体A的质量为mA,物体B的质量为mB,地球重力加速度为g,则可以得到以下公式:mA × g × 2 = mB × g × 3化简上述公式可得:mA/mB = 3/2因此,物体A和物体B的质量之比为3/2。
练习题二:一个平衡木的重量是50N,杆长为6m,重心距离其中一端的距离是4m。
在平衡木的中心距离另一端多远的位置处放置一个物体,使平衡木继续保持平衡,这个物体的质量是多少?解析:设放置物体的质量为m,物体离平衡木中心的距离为x。
根据力矩平衡条件,可以得到以下公式:50N × 4m = m × g × x化简上述公式可得:m = 200N / (g × x)其中,g表示地球的重力加速度,取9.8m/s²。
根据上述公式,当物体离平衡木中心的距离为4m时,物体的质量为200N / (9.8m/s² × 4m) = 5.1kg。
因此,当物体质量为5.1kg时,放置在平衡木中心距离另一端4m 的位置处,平衡木可以继续保持平衡。
练习题三:一个均匀的梁上有三个质量相等的物体,分别位于梁的两端和中间位置,它们的质量都为m。
某一物体位于梁的中间位置时,整个梁保持平衡。
力矩的平衡【基本概念】1、力臂:从_____到_________的垂直距离叫力臂。
2、力矩:力(F )和力臂(L )的乘积(M )。
即:M=F·L力矩是描述___________的物理量,物体_________发生变化,才肯定受力矩的作用。
力矩的单位:在国际单位制中, 力矩的单位是_______,注意不能写成焦耳(焦耳是能量单位) 。
3、当物体绕固定轴转动时,力矩只有两种可能的方向,所以可用正负号来表示。
一般规定:使物体沿________方向转动的力矩为正;使物体沿________方向转动的力矩为负。
4、有固定转动轴物体的平衡条件:作用于有固定轴的转动物体上的________为零,或_______________为零。
即:______【巩固练习】一、选择题1. 如图所示,T 字形轻质支架abO 可绕过O 点的水平轴在竖直平面内自由转动,支架受到图示方向的F1、F 2和F 3的作用,则关于O 点 ( )A.F 1和F 3的力矩同方向.B.F 2和F 3的力矩同方向.C.若三个力矩不平衡,为使它平衡,在a 点施力可使力最小.D.为使加在a 点的2N 的力产生最大力矩可使此力方向与ab 杆垂直.2. 如图所示,一均匀杆AB ,能绕过A 端的水平轴在竖直平面内转动.在杆的另一端B 用一始终竖直向上的力拉杆,当杆沿逆时针缓慢转过一个小角度时,拉力F 的大小及拉力的力矩M 的大小与原来相比是( )A.F 变大,M 变大.B.F 变大,M 不变.C.F 不变,M 变大.D.F 不变,M 不变.3. .如图所示,均匀直杆AB 的A 端装有垂直于纸面的水平转动轴,B 端搁在小车上,杆与车的水平上表面间滑动摩擦系数为μ,小车静止时,杆对车的压力大小为N 1.当小车水平向左运动时,杆对车的压力大小为N 2,则 ( )A.N 1=N 2.B.N 1<N 2.C.N 1>N 2.D.无法确定.4. 如图所示,长为lm 的轻杆OA 可绕过O 点的水平轴自由转动,在A 端挂一个质量为M 的物体.现将长也为lm 的轻绳系在杆上的某点B ,另一端系于墙上.为使杆保持水平,选取适当的B 点位置,能使绳子拉力最小,此时绳子拉力的大小与B 点到O 点的距离分别是( )A .Mg ,m 3.B .Mg ,m 23.C .2Mg ,m 2.D .2Mg ,m 22. 5. 如图所示为一根均匀的杆秤,O 为其零点,A 为一提纽,若将秤杆尾部截去一小段,在称某一物体时读数为m ,设该物体的实际质量为M ,则( )A.M <m.B.M >m.C.M =m.D.无法确定.6. 如图所示是一种手控制动器,a是一个转动着的轮子,b是摩擦制动片,c是杠杆,O是其固定转动轴,手在A点施加一个作用力F时,b将压紧轮子,使轮子制动.若使轮子制动所需的力矩是一定的,则下列说法正确的是( )A.轮a逆时针转动时,所需的力F较小.B.轮a顺时针转动时,所需的力F较小.C.无论a逆时针还是顺时针转动,所需的力F相同.D.无法比较F的大小.7. 图所示为四种悬挂镜框的方案,设墙壁光滑,镜框重心位置在镜框的正中间,指出图中可能实现的方案是( )8. 如图所示,一质量为m的金属球与一细杆连接在一起,细杆的另一端用铰链铰于墙上较低位置,球下面垫一木板,木板放在光滑水平地面上,球与板间的滑动摩擦系数为μ,下面说法中正确的有( )A.用水平力将木板向右匀速拉出时,拉力F=μmg.B.用水平力将木板向右匀速拉出时,拉力F<μmg.C.用水平力将木板向左匀速拉出时,拉力F>μmg.D.用水平力将木板向左匀速拉出时,拉力F<μmg.9. 如图所示,均匀光滑直棒一端铰于地面,另一端搁在一个立方体上,杆与水平面间的夹角α为30°左右.现将立方体缓慢向左推,则棒对立方体的压力大小将( )A.逐渐增大.B.逐渐减小.C.先增大后减小.D.先减小后增大.10. 如图所示,物体放在粗糙平板上,平板一端铰接于地上,另一端加一竖直向上的力,使板的倾角θ缓慢增大,但物体与木板间仍无相对滑动,则下列量中逐渐增大的有( )A.板对物体的静摩擦力.B.物体对板的正压力.C.拉力F.D.拉力F的力矩.11. 如图所示,两根均匀直棒AB、BC,用光滑的铰链铰于B处,两杆的另外一端都用光滑铰链铰于墙上,棒BC呈水平状态,a、b、c、d等箭头表示力的方向,则BC棒对AB棒的作用力的方向可能是( )A.a.B.b.C.C.D.d.12. 如图所示,直杆OA可绕过O点的水平轴自由转动,图中虚线与杆平行,杆的另一端A点受到四个力F1、F2、F3、F4的作用,力的作用线与OA杆在同一竖直平面内,它们对转轴O的力矩分别为M1、M2、M3、M44,则它们间的大小关系是( )A.M1=M2>M3=M4.B.M2>M1=M3>M4.C.M4>M2>M3>M1.D.M2>M1>M3>M4.13. 如图所示,用长为R 2的细直杆连结的两个小球A 、B ,它们的质量分别为m 和2m ,置于光滑的、半径为R 的半球面碗内.达到平衡时,半球面的球心与B 球的连线和竖直方向间的夹角的正切为( )A .1.B .21.C .31.D .41. 14. 如图所示,在静止的小车上固定一个天平杆架,当杆的一端用细线挂一个物体时,杆的另一端用一轻绳系于小车底板上,轻绳恰竖直,杆恰水平.在小车向右作匀加速直线运动的过程中,轻绳的拉力与原来相比将( )A.增大.B.不变.C.变小.D.无法判断.二、填空题1. 如图所示,在半径为R 的轮边缘最高点A 处用力F 使轮滚上台阶,轮与台阶的接触点为P ,要使力F 最小,则力F 的方向应是 ,在使轮滚动过程中,力F 的力矩是_________(填“顺时针”或“逆时针”)的.若轮的质量为M ,台阶高为2R h =,则F 的大小至少为 .2. 如图所示,OAB 为均匀直角尺,重为2G ,且OA =AB ,直角尺可绕过O 点的水平轴在竖直平面内自由转动.为使杆的OA 部分保持水平,则在B 端施加的最小作用力应为 ;若施力于A 端,则最小作用力为 .3. 如图所示,将粗细均匀直径相同的两根棒A 和B 粘合在一起,并在粘合处悬挂起来,恰好处于水平平衡.如果A 棒的密度是B棒的2倍,那么A 棒的重力是B 棒的重力的 倍.4. 如图所示,杆CO 长为0.5m ,C 端铰于墙上,O 端用轻绳OE 系于墙上,并在O 端下面挂一个光滑轻滑轮,滑轮下用轻绳跨过滑轮悬挂两个物体,物体A 重2N ,物体B 重5N ,物体B 放在地面上,两绳都恰竖直,整个装置处于静止状态,则绳OD 对杆的拉力对E 点的力矩为 .5. 如图所示,力矩盘转轴在其圆心O 点,重心在G 点(恰在O 点的正下方),半径OA 恰水平.现在A 点加一竖直向下的拉力使盘缓慢转动,直到A 点到达最低点前,在此过程中,竖直向下的拉力的大小将 ,该拉力的力矩大小将 .(填“增大”、“不变”或“减小”)6. 如图所示,用两块长都为L 的砖块叠放在桌面边缘,为使砖块突出桌面边缘的距离最大且不翻倒,则上面的第一块砖突出下面的第二块砖的距离为 ,下面第二块砖突出桌面边缘的距离为 .7. 一根粗细不均匀的木棒,长为4m,当支点在距其粗端1.4m时,木棒恰好水平平衡.如果在其细端挂一个重为80N的物体,就必须将支点向其细端移动0.4m,木棒才能平衡.则棒重为.8. 如图所示,一支杆秤有两个提纽,已知OA=7cm,OB=5cm,秤锤质量为2kg,秤杆重不计.使用0处提纽时,秤的最大称量为10kg,则可知使用B处提纽时,秤的最大称量为.9. .如图所示,均匀棒AB的A端铰于地面,B端靠在长方体物体C上,C被压在光滑竖直墙面上.若在C上再放一物体,整个装置仍平衡,则B端与C物体间的弹力大小将比原来_________(填“变大”、“不变”或“变小”).三、计算题1. 如图所示,力矩盘因偏心,在距轴心水平距离6cm的A处挂10g钩码后盘转过30°静止在如图位置.若在A点处挂30g钩码,则圆盘与最初相比要转过多大角度才能平衡?2. 如图所示,ABO为直角轻杆,O为水平转轴,在B点用细绳吊一个重为G=12N的小球并靠在BO杆上.已知AB=30cm,BO=40cm,细绳BC长L=20cm,小球半径,=10cm,在杆的A端加外力F,使OB杆在竖直方向保持静止.问:(1)力F竖直向下时大小为多少?(2)力F的最小值是多少?3. 如图所示,重200N的均匀杆OA,可绕过O点的水平轴自由转动,杆斜靠在竖直墙上,杆与水平面间的夹角θ=60°,墙与杆间夹有一张纸,纸的重及纸与墙间的摩擦力不计,纸与杆间的滑动摩擦系数μ=0.2.问要多大的竖直向上的力才能将纸向上匀速抽出?。
答案第1页,总2页桐高高二科创班物理一课一练力矩平衡练习题3姓名__________班级__________1、如图所示,质量不计的杆O 1B 和O 2A 长度均为L ,O 1和O 2为光滑固定转轴,A 处有一凸起物搁在O 1B 中点,B 处用绳子系在O 2A 的中点,此时两短杆结合成一根长杆,今在O 1B 杆上C 点(C 为AB 中点)悬挂重为G 的物体,则在A 处受到的支承力大小为 ;B 处受绳拉力大小为 。
2、一薄壁圆柱形烧杯,半径为r ,质量为m ,重心位于中心线上,离杯底的距离为H ,今将水慢慢注入杯中,问烧杯连同杯内的水共同重心最低时水面离杯底的距离等于多少?(设水的密度为ρ)3、有5个外形完全一样的均匀金属棒首尾相接焊在一起,从左至右其密度分别为ρ、⒈1ρ、⒈2ρ、⒈3ρ、⒈4ρ,设每根棒长均为l ,求其质心位置,若为n 段,密度仍如上递增,质心位置又在什么地方?4、为保证市场的公平交易,我国已有不少地区禁止在市场中使用杆秤。
杆秤确实容易为不法商贩坑骗顾客提供可乘之机。
请看下例。
秤砣质量为1千克,秤杆和秤盘总质量为0.5千克,定盘星到提纽的距离为2厘米,秤盘到提纽的距离为10厘米(图9)。
若有人换了一个质量为0.8千克的秤驼,售出2.5千克的物品,物品的实际质量是多少?lP图1A B C O 2 O 15、如图所示,三个完全相同的圆柱体叠放在水平桌面上。
将C柱体放上去之前,A、B两柱体接触,但无挤压。
假设桌面与柱体之间的动摩擦因数为μ0,柱体与柱体之间的动摩擦因数为μ。
若系统处于平衡状态,μ0和μ必须满足什么条件?AB C6、如图所示,一个装满水的容器底部有一个半径为r的圆洞,洞由一个质量为m、半径为R(>r)的球堵住.容器中的水慢慢减少,当达到一个确定值h。
时,球从圆洞处升起,求h。
7.如图所示,半径为R的匀质球浮在密度分别为ρ1和ρ2的分层液体界面处.设ρ1=ρ0,匀质球的密度求当球保持静止时,球心0与分层液体界面间的距离.8.如图所示的柱形容器,在距侧壁底部10 cm处有一阀门K,容器内装有水,水与阀门齐平.(1)打开阀门K,将一密度为0.6×103kg/m3的柱形实心木块缓缓放入杯中,待木块静止时,木块有10 cm的高度露出水面,而且溢出杯外的水的质量为50 g,求木块的质量.(2)若水与阀门K齐平时,关上阀门后,再将该实心木块竖直缓缓放入杯中(无水溢出),求木块所受浮力.(已知木块底面积与容器底面积之比为1:4,g 取9.8 m/s2)9.入流水之中.已知A点离水面高度h=5 cm,悬绳OA与竖直方向的夹角θ= /4,AB棒在水中除水外不触及其他物体,求AB棒的密度.第2页,总2页。
力矩的平衡问题I 高考最新热门题1 (典型例题)有人设计了一种新型伸缩拉杆秤.结构如图2-3-l ,秤杆的一端固定一配重物并悬一挂钩,秤杆外面套有内外两个套筒,套筒左端开槽使其可以不受秤纽阻碍而移动到挂钩所在位置(设开槽后套筒的重心仍在其长度中点位置),秤杆与内层套筒上刻有质量刻度.空载(挂钩上不挂物体,且套筒未拉出)时,用手提起秤纽,杆秤恰好平衡.当物体挂在挂钩上时,往外移动内外套筒可使杆秤平衡,从内外套筒左端的位置可以读得两个读数,将这两个读数相加,即可得到待测物体的质量.已知秤杆和两个套筒的长度均为16cm ,套筒可移出的最大距离为15cm ,秤纽到挂钩的距离为2cm ,两个套筒的质量均为0.1 Lg .取重力加速度g=10m/s 2.求:(1)当杆秤空载平衡时,秤杆、配重物及挂钩所受重力相对秤纽的合力矩;(2)当在秤钩上挂一物体时,将内套筒向右移动5cm ,外套筒相对内套筒向右移动8cm ,杆秤达到平衡,物体的质量多大?(3)若外层套筒不慎丢失,在称某一物体时,内层套筒的左端在读数为1千克处杆秤恰好平衡,则该物体实际质量多大?命题目的与解题技巧:本题是一道联系实际的问题,考查了力矩平衡条件、分析综合能力以及运用已学知识处理新情景中所提出的问题的迁移能力和创新意识。
此题解题方法是,注意分析物体的受力,和力矩情况,利用力矩平衡的条件即可求解.【解析 1 】 (1)套筒不拉出时杆秤恰好于衡,此时两套筒的重力相对秤纽的力矩与所求的合力矩相等,设套筒长度为L ,合力矩M=2mg=2×O.1 ×10×(0.08-0.02) N ·m=0.12 N ·m(2)力矩平衡m 1gd=mgx 1+mg(x 1+x 2) 所以m 1=kg kg m dx x 9.01.002.008.005.02221=⨯+⨯=+ (3)正常称1 kg 重物时,左边的重物使得逆时针转动的力矩增加了m 2gd .为了平衡,内外两个套筒可一起向外拉出x ′由于套筒向外拉出使得顺时针转动的力矩增大了2mgx ′由力矩的平衡得:m 2gd=2mgx ′ m m d m m x 1.002.01.02122=⨯⨯== 外层套筒丢失后称物,此时内套筒左端离秤纽距离为x ′— d=0.08 m力矩平衡 m 2gd+M=mg(x ′-d+2L ) 所以 m2kg gdM L d x d m 2.06.0)08.008.0(02.01.0)2'(=-+⨯=-+-= 2 (典型例题)下图2-3-2是正在治疗的骨折病人腿 部示意图.假定腿和石膏的总质量为15ke ,其重心A 距支点O 的距离为35cm ,悬挂处B 距支点O 的距离为阻5cm ,则悬挂物的质量为____________kg.(保留两位小数)**6.5 kg 指导:O 点为固定转动轴,F A =M A g ,L A =0.35m ,F B =mg 定滑轮的性质:L B =0.805 m .据平衡条件:FA ·LA=FB ·LB=mgL B ,代入数据得m=6.5kg3 (典型例题)如图2-3-3所示,一自行车上连接踏脚板的连杆长R 1,由踏脚板带动半径为r 1的大齿盘,通过链条与半径为r 2的后轮齿盘连接,带动半径为穴:的后轮转动。
第三节 力矩、力矩平衡
一.选择题:
1.如图所示,用与木棒垂直的力作用于A 端,使木棒缓慢拉起,木棒只能绕O 端转动,拉力F 的大小及F 的力矩大小变化是:( )
A .力变小,力矩变小
B .力变大,力矩变大
C .力不变,力矩变小
D .力变小,力矩不变
2.如图,要使圆柱本滚上台阶,则在圆柱体最高点作用的力最省力的是:( )
A .1F
B .2F
C .3F
D .4F
3.均匀木棒的质量是m ,可绕固定轴O 点转动,另一端放在木块上,木块的质量为
M ,木块放在光滑桌面上,如果木块在一个水平推力F 作用下仍保持静止,则木棒所受力矩的个数和原来相比( )
A .由1个变为2个
B .由2个变为3个
C .和原来一样
D .以上说法均不正确
4.如图,匀质球被一轻质细绳斜拉着靠在墙上保持静止,则关于墙对球的摩擦力的正确说
法:( )
A .没有摩擦力
B .有向上的摩擦力
C .有向下的摩擦力
D .不能确定
二.计算题:
5.如图甲,杆AB 的一端用铰链固定在墙上,另一端放在长方形木块上,不计铰链处的摩擦。
静止时,木块对杆的弹力N=10牛。
若将木块向左拉出时,木块对杆的弹力变为N 1=9牛。
将木块向右拉出时,木块对杆的弹力N 2为多大?
第三节力矩、力矩平衡
一、选择题:
1、A
2、C
3、B
4、B
二、计算题:
45
5、N
4。
高一物理力矩平衡试题1.如图甲所示,滑轮质量、摩擦均不计,质量为2kg的物体在F作用下由静止开始向上做匀加速运动,其速度随时间的变化关系如图乙所示,由此可知(g取10m/s2)A.物体加速度大小为2m/s2B.F的大小为21NC.4s末F的功率大小为42WD.4s内F做功的平均功率为42W【答案】C【解析】据题意,物体做匀加速运动,从图像可知物体的加速度为:a=Δv/Δt=0.5m/s2,所以A选项错误;对物体受力分析,物体受到重力G和细绳的拉力T,物体做匀加速运动处于超重状态,则拉力T=G+ma=21N,据动滑轮原理,拉力F=T/2=10.5N,所以B选项错误;4s末物体的速度为v=at=2m/s,物体上升的距离为L=at2/2=4m,据动滑轮原理,滑轮上升L而细绳已经上升2L,同理相同时间内细绳的速度是滑轮的两倍,则此时细绳的速度为v’=4m/s,则拉力此时的功率为P=Fv’=42w,而F做功的平均功率为P’=F2L/t=21w,所以C选项正确而D选项错误。
【考点】本题考查牛顿第二定律的应用、瞬时功率和平均功率的理解和动滑轮原理的理解。
2.如图所示,轻杆BC的C点用光滑铰链与墙壁固定,杆的B点通过水平细绳AB使杆与竖直墙壁保持30°的夹角.若在B点悬挂一个定滑轮(不计重力),某人用它匀速地提起重物.已知重物的质量m=30 kg,人的质量M=50 kg,g取10 m/s2.试求:(1)此时地面对人的支持力的大小;(2)轻杆BC和绳AB所受力的大小.【答案】(1)200 N(2)400 N200 N【解析】(1)因匀速提起重物,则F=mg.且绳对人的拉力为mg,所以地面对人的支持力T=Mg-mg=(50-30)×10 N=200 N,方向竖直向上.为:FN(2)定滑轮对B点的拉力方向竖直向下,大小为2mg,杆对B点的弹力方向沿杆的方向,由共点力平衡条件得:=2mgtan30°=2×30×10× N=200 NFAB== N=400 N.FBC【考点】杠杆的平衡条件;力作用的相互性;重力的计算;定滑轮及其工作特点.点评:本题主要考查物体间力的作用是相互的,平衡力,并且通过数学三角函数解题,充分体现学科间的整合.3.如图所示,质量为m、边长为l的等边三角形ABC导线框,在A处用轻质细线竖直悬挂于质量也为m、长度为L的水平均匀硬杆一端,硬杆另一端通过轻质弹簧连接地面,离杆左端L/3处有一光滑固定转轴O。
山西省人教版物理高二选修2-2 1.4力矩的平衡条件同步练习姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)现用两根绳子AO和BO悬挂一质量为10N的小球,AO绳的A点固定在竖直放置的圆环的环上,O 点为圆环的圆心,AO绳与竖直方向的夹角为, BO绳的B点可在环上滑动,已知每根绳子所能承受的最大拉力均为12N,则在B点沿环顺时针缓慢滑到N的过程中()A . 两根绳均不断B . 两根绳同时断C . AO绳先断D . BO绳先断2. (2分)如图是用来粉刷墙壁的涂料滚的示意图.使用时,用撑竿推着涂料滚沿墙壁上下滚动,把涂料均匀地粉刷到墙壁上.撑竿的重量和墙壁的摩擦均不计,而且撑竿足够长.粉刷工人站在离墙壁某一距离处缓缓上推涂料滚,使撑杆与墙壁间的夹角越来越小.该过程中撑竿对涂料滚的推力为F1 ,涂料滚对墙壁的压力为F2 ,下列说法正确的是()A . F1增大,F2减小B . F1减小,F2增大C . F1、F2均增大D . F1、F2均减小3. (2分) (2018高一上·南昌月考) 如图所示,形状和质量完全相同的两个圆柱体a、b靠在一起,表面光滑,重力为G,其中b的下半部刚好固定在水平面MN的下方,上边露出另一半,a静止在平面上.现过a的轴心施加一水平作用力F,可缓慢的将a拉离平面一直滑到b的顶端,对该过程分析,则应有()A . 拉力F先增大后减小,最大值是GB . 开始时拉力F最大为2G,以后逐渐减小为0C . a、b的压力开始最大为2G,而后逐渐减小到GD . a、b间的压力由0逐渐增大,最大为G4. (2分) (2018高三上·烟台期末) 如图所示,水平桌面上固定一个竖直挡板,现将一个球体A与截面为直角三角形的物块B叠放在一起,用水平外力F缓缓向左推动B,使A缓慢升高,设备接触面均光滑,则该过程中()A . A和B均受三个力作用B . B对桌面的压力越来越大C . A对B的压力越来越大D . A对墙面的压力大小保持不变5. (2分)如图所示,将一个球挂在墙上P点处,若把悬绳PQ变长一些,则足球对悬绳的拉力T和对墙面的压力N的变化情况是()A . T、N都减小B . T、N都增大C . T减小,N增大D . T增大、N减小6. (2分) (2019高二下·承德月考) 如图所示,质量为M的斜面体A放在粗糙水平面上,用轻绳拴住质量为m的小球B置于斜面上,轻绳与斜面平行且另一端固定在竖直墙面上,不计小球与斜面间的摩擦,斜面体与墙不接触,整个系统处于静止状态。
力矩和力矩平衡
一. 内容黄金组.
1.了解转动平衡的概念,理解力臂和力矩的概念。
2.理解有固定转动轴物体平衡的条件 3.会用力矩平衡条件分析问题和解决问题
二. 要点大揭秘
1. 转动平衡:有转动轴的物体在力的作用下,处于静止或匀速转动状态。
明确转轴很重要:
大多数情况下物体的转轴是容易明确的,但在有的情况下则需要自己来确定转轴的位置。
如:一根长木棒置于水平地面上,它的两个端点为AB ,现给B 端加一个竖直向上的外力使杆刚好离开地面,求力F 的大小。
在这一问题中,过A 点垂直于杆的水平直线是杆的转轴。
象这样,在解决问题之前,首先要通过分析来确定转轴的问题很多,只有明确转轴,才能计算力矩,进而利用力矩平衡条件。
2. 力矩:
力臂:转动轴到力的作用线的垂直距离。
力矩:力和力臂的乘积。
计算公式:M =FL 单位: Nm 效果:可以使物体转动
(1)力对物体的转动效果
力使物体转动的效果不仅跟力的大小有关,还跟力臂有关,即力对物体的转动效果决定于力
矩。
①当臂等于零时,不论作用力多么大,对物体都不会产生转动作用。
②当作用力与转动轴平行时,不会对物体产生转动作用,计算力矩,关键是找力臂。
需注意力臂是转动轴到力的作用线的距离,而不是转动轴到力的作用点的距离。
(2)大小一定的力有最大力矩的条件: ①力作用在离转动轴最远的点上;
②力的方向垂直于力作用点与转轴的连线。
(3)力矩的计算:
①先求出力的力臂,再由定义求力矩M =FL
如图中,力F 的力臂为L F =Lsin θ
力矩M =F •L sin θ
②先把力沿平行于杆和垂直于杆的两个方向分解,平
行于杆的分力对杆无转动效果,力矩为零;平行于杆的分力的力矩为该分力的大小与杆长的乘积。
如图中,力F 的力矩就等于其分力F 1产生的力矩,M
=F sin θ•L
两种方法不同,但求出的结果是一样的,对具体的问题选择恰当的方法会简化解题过程。
3. 力矩平衡条件:
力矩的代数和为零或所有使物体向顺时针方向转动的力矩之和等于所有使物体向逆时针方向转动的力矩之和。
F
F
2
∑M=0或∑M
顺=∑M
逆
4.解决实际问题的步骤;
(a)确定研究对象——哪个物体;
(b)分析状态及受力——画示意图;
(c)列出力矩平衡方程:
∑M=0或∑M顺=∑M逆;
(d)解出字母表达式,代入数据;
(e)作必要的讨论,写出明确的答案。
5.正确理解力矩的概念
力矩是改变转动物体的运动状态的物理量,门、窗等转动物体从静止状态变为转动状态或从转动状态变为静止状态时,必须受到力的作用。
但是,我们若将力作用在门、窗的转轴上,则无
论施加多大的力都不会改变其运动状态,可见转动物体的运动状态和变化不仅与力的大小有关,
还受力的方向、力的作用点的影响。
力的作用点离转轴越远,力的方向与转轴所在平面越趋于垂
直,力使转动物体运动状态变化得就越明显。
物理学中力的作用点和力的作用方向对转动物体运
动状态变化的影响,用力矩这个物理量综合表示,因此,力矩被定义为力与力臂的乘积。
力矩概
括了影响转动物体运动状态变化的所有规律,力矩是改变转动物体运动状态的物理量。
力矩是矢量,在中学物理中,作用在物体上的力都在同一平面内,各力对转轴的力矩只能使物体顺时针转动或逆时针转动,这样,求几个力矩的合力就简化为代数运算。
三.好题解给你
(1)如图所示,要使圆柱体绕A点滚上台阶,试通过作图来判断在圆柱体上的最
高点所施加的最小力的方向_____________
(2)匀质杆AO可绕O轴转动,今用水平力使它缓缓抬起的过程中,如图所示,
重力对O轴的力臂变化是_____________,重力对O轴的力矩变化情况是_____________,中果已知抬起过程中水平拉力力矩的大小应等于重力的力矩,则水平拉力F的变化情况是_____________。
2.基础题
(1) 下列关于力矩的叙述中正确的是(C杆状物体在一对作用线
过转轴的平衡力作用下也可平衡)
A.使物体保持静止状态的原因
B.是物体转动的原因
C.是物体转动状态改变的原因
D.杆状物体的平衡只能是在力矩作用下的力矩平衡
四.如图所示,ON杆可以在竖直平面内绕O点自由转动,若在N端分别沿图示方向施力F1、F2、F3,杆均能静止在图示位置上.则三力的
大小关系是(D)
A.F1=F2=F3
B.F1>F2>F3
C.F2>F1>F3
F1
D .F 1>F 3>F 2
(1) 一段粗细不均匀的木棍如图2所示,支在某点恰好平衡,若在该处将木棍截成两段,则所分成两段的重必定是( B 因为粗段的力臂小) A .相等
B .细段轻、粗段重
C .细段重,粗段轻
D .不能确定
2. 应用题
(1) 如图,把物体A 放在水平板OB 的正中央,用一不变的力F 将板的B 端匀速地慢慢抬高(O 端不动),设A 相对平板静止,则A 对板的压力将______,A 与B 之间的摩擦力将______,F 对O 点的力矩将______.
(2) 一根均匀的木棒长1m ,在棒的左端挂一个质量为6kg 的物体, 然后在距棒左端0.2m 处将棒支起,棒恰平衡,则棒的质量是______
(3) 一块均匀木板MN 长L =15m ,重G 1=400N ,搁在相距D =8m 的两个支架A 、B 上,MA =NA ,重G 2=600N 的人从A 点向B 点走去,如图所示。
求:①人走过B 点多远木板会翘起来?②为使人走到N 点时木板不翘起来,支架B 应放在离N 多远处? 应用题参考答案:
(1)减小,增大,减小 (2)4kg
(3)2.67m 、3m 分析和解:当木板刚翘起来时,板的重力对B 点产生的力矩和人的重力对B 点产
生的力矩使板平衡,设人走过B 端L 时木板会翘起来,则有B L ⨯=⨯6004400 可解得L B =2.67m, 同理,可设当人走到N 端木板刚要翘起来时,B 支架和N 端的距离为L BN 则有BN BN L L ⨯=-⨯600)5.7(400
可得L BN =3m 3. 提高题
(1) 如图,均匀杆OA 质量为m ,O 端用铰链悬起,A 端放在木板B 上,杆与板间的动摩擦因数为3
1=
μ,木板在拉力F 的作用下向右作匀
速运动,杆与竖直方向夹角为30°,则杆对木板的压力
N=__
mg 4
1
____. (2) 如图所示,厚薄均匀的BC 板长L 为0.5m,板的一端B 与墙用铰链连接,在C 端用一水平的细绳连接,绳的另一端固定在墙上的A 点,已知AB 和BC 的夹角为60º,在板上放一重球,球重G 1=20N ,半径为5cm ,板重G 2=8N ,求水平绳的拉力F (不计摩擦)(2)14.8N
(1) 如图所示,均匀木棒AB 的一端N 支在水平地面上,将另一端用水平拉力F 拉住,使木棒处于平衡状态,则地面对木棒AB 的作用力的方向为
A 、总是竖直向上的,如F 1
B 、总是偏向木棒的右侧,如F 2
C 、总是沿着木棒的方向,如F 3
D 、总是偏向木棒的左侧,如F 4。
、
(2) 用秤称物如图,物重4kg ,平衡时OA ∶OB=1∶4.设秤杆、秤盘等重量不计,手的拉力必须是______kg .
(3) 如图一均匀木板长12m ,重200N ,距A 端3m 处有一固定转轴O ,另一端B 用细绳悬吊着,使木板成水平状态.若细绳能承受的最大拉力为200N ,细绳与木板的夹角为30°,欲使一个体重为600N 的人在板上能安全行走,此人在板上行走的范围是多大?(从转轴左侧1m 到转轴右侧0.5m 之间)
(4) 有一质量为m=50kg 的杆,竖立在水平地面上,杆与地面间的最大静摩擦因数为μ=0.3,杆的上端被固定在地面上的绳索拉住,绳与杆的夹角θ=30°。
①若以水平力F 作用于杆上,作用点到地面的距离h 为杆长L 的5
2
,要使杆不滑到,则力F 最大不能超过多少? ②若将作用点移到L h 5
4
=
处,情况又如何? 分析:如下图所示,根据题述,由杆的平衡条件∑F x =0,∑F y =0,建立方程有
F-Tsin θ-f=0, N-Tcos θ-mg=0。
据力矩平衡条件建立方程有 F (L-h )-fL=0。
因静摩擦力f ≤f m ,所以,f ≤μN 。
解方程组得
①当h=
5
2
L 时,得F 的最大值为
代入已知数据解得 F=385N 。
②当L h 5
4
=
时, 对于任何大小的F 的值,杆都不发生滑动。