线段,射线,直线练习题
- 格式:doc
- 大小:566.50 KB
- 文档页数:3
人教版四年级上册3.1 线段、直线、射线练习卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.一条_____长200米.()A.直线B.射线C.线段D.垂线2.在4时整的时候,钟面上时针与分针组成的角是()度.A.100°B.120°C.150°3.下面说法正确的有()①线段比射线短,射线比直线短。
①把写有1至9各数的九张卡片打乱后反扣在桌上,从中任意摸出一张,卡片上的数小于5算小强赢,否则算小林赢。
这个游戏规则不公平。
①如果被除数末尾有2个0,那么商的末尾至少有1个0。
①四(1)25名男生平均身高151厘米,那么不可能有男生的身高低于151厘米。
A.1句B.2句C.3句二、填空题4.图中有( )个角,( )个直角,( )个锐角,( )个钝角。
5.下面的图形中哪些是线段?在其下面的()里画“○”。
()()()()()()()()6.下图中有______条线段。
7.线段是直直的,有( )个端点,长度( )(填能或不能)度量.三、判断题8.长方形和正方形的四个角都是直角。
( )9.放风筝时的风筝线可以看成是一条直线。
( )10.把半圆等分成180份,每份所对的角就是1°的角._____ (判断对错)11.小刚画了一条6厘米长的直线。
( )12.两个直角就是一个平角。
()13.将圆平均分成360份,将其中1份所对的角作为度量角的单位,它的大小就是1度,记作1°。
根据这一原理人们制作了度量角的工具——量角器。
( ) 14.一条直线长10米.( )15.线段能测量长短,直线和射线不能测量长短。
( )四、作图题16.下面有五个点,每两点之间画一条线段,可以画多少条线段?先画一画,再填一填.( )条17.我会画。
画一条比1分米短1厘米的线段。
18.画一条比3厘米长15毫米的线段,并标出长度。
直线、射线、线段同步练习一、选择题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是A. 线段可以比较大小B. 线段有两个端点C. 两点之间线段最短D. 过两点有且只有一条直线【答案】C【解析】解:把一条弯曲的公路改成直道,可以缩短路程,其道理是两点之间线段最短,2.平面内四条直线最少有a个交点,最多有b个交点,则等于A. 6B. 4C. 2D. 0【答案】A【解答】解:交点个数最多时,,最少有0个.所以,,所以.故选A.3.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为A. 两点之间,线段最短B. 两点确定一条直线C. 过一点,有无数条直线D. 连接两点之间的线段叫做两点间的距离【答案】B【解析】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.4.线段,C为直线AB上的点,且,M、N分别是AC、BC的中点,则MN的长度是A. 6cmB. 5cm或7cmC. 5cmD. 5cm或6cm【答案】C【解析】解:是线段AC的中点,,是线段BC的中点,.以下分2种情况讨论,如图1,当C在线段AB上时,;;如图2,当C在线段AB的延长线上时,;;综上所述,MN的长为5cm.5.如图,从A到B有,,三条路线,最短的路线是,其理由是A. 因为它最直B. 两点确定一条直线C. 两点间的距离的概念D. 两点之间,线段最短【答案】D【解析】解:从A到B有,,三条路线,最短的路线是,其理由是:两点之间,线段最短,6.如图,已知线段,M是AB中点,点N在AB上,,那么线段MN的长为A. 5cmB. 4cmC. 3cmD. 2cm【答案】C【解析】解:因为,M是AB中点,所以,又因为,所以.7.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是A. 两点之间,线段最短B. 两点确定一条直线C. 两点之间,直线最短D. 两点确定一条线段【答案】A【解析】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.8.如图,有四个图形和每一个图形相应的一句描述,所有图形都画在同一个平面上.线段AB与射线MN不相交;点C在线段AB上;直线a和直线b不相交;延长射线AB,则会通过点C,其中正确的语句的个数有.A. 0个B. 1个C. 2个D. 3个【答案】B【解析】解:线段AB与射线MN不相交,根据图象可得出此选项正确;根据图象点C不在线段AB上,故此选项错误;根据图象可得出直线a和直线b会相交,故此选项错误;根据图象可得出应为延长线段AB,到点C,故此选项错误,故正确的语句的个数是1个.9.数轴上A,B,C三点所表示的数分别为a,b,c,且C在AB上.若,,则下列b,c的关系式,正确的是A. B. C. D.【答案】A解:如图:在AB上,,,又,,.故选A.10.已知线段,C为AB的中点,D是AB上一点,,则线段BD的长为A. 1cmB. 5cmC. 1cm或5cmD. 4cm 【答案】C详解解:线段,C为AB的中点,.当点D在C点左侧,如图1所示时,;当点D在C点右侧,如图2所示时,.线段BD的长为1cm或5cm.故选C.11.如图:长度为12cm的线段AB的中点为M,点C将线段MB分成了MC::2,则线段AC的长为A. 2cmB. 4cmC. 6cmD. 8cm 【答案】D【解析】解:线段AB的中点为M,设,则,,解得即..12.一辆客车往返于A,B两地之间,中途有三个停靠站,那么在A、B两地之间最多需要印制不同的车票有A. 10种B. 15种C. 18种D. 20种【答案】D解:根据线段的定义:可知图中共有线段有AC,AD,AE,AB,CD、CE、CB、DE、DB、EB共10条,因车票需要考虑方向性,如,“”与“”票价相同,但车票不同,故需要准备20种车票.故选D.13.已知线段AB,C是直线AB上的一点,,,点M是线段AC的中点,则线段AM的长为A. 2cmB. 4cmC. 2cm或6cmD. 4cm或6cm【答案】C【解答】解:如图,当点C在线段AB上时,由线段的和差,得,点M是AC的中点,;点C在线段BC的延长线上,由线段的和差,得,点M是AC的中点,;综上可得:AM长为2cm或6cm.故选C.14.如图,图中的线段共有条.A. 5B. 6C. 7D. 8【答案】B【解答】解:图中线段有AB、AD、AC、BD、DC、BC共6条线段.故选B.二、填空题(本大题共4小题,共12.0分)15.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是______.【答案】两点之间线段最短【解析】解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,16.火车往返于AB两个城市,中途经过4各站点共6个站点,不同的车站来往需要不同的车票,共有不同的车票______种.【答案】30【解析】解:如图:,车票:AC、CD、DE、EF、FB、AD、AE、AF、AB、CE、CF、CB、DF、DB、EB,BE、BD、FD、BC、FC、EC、BA、FA、EA、DA、BF、FE、ED、DC、CA.火车往返于A、B两个城市,中途经过4个站点共6个站点,不同的车站来往需要不同的车票,共有30种不同的车票.17.已知点O在直线AB上,且线段OA的长度为4 cm,线段OB的长度为6 cm,E、F分别为线段OA、OB的中点,则线段EF的长度为____cm.【答案】1或5【解答】解:当A,B在点O两侧时,如图,;当A,B在点O同侧时,如图,.故答案为1或5.18.如图所示,图中共有_________条直线,_________条射线,_________条线段.【答案】2,13,6.【解答】解:根据直线的定义及图形可得:图中共有2条直线,射线有13条,有6条线段,故答案为2,13,6.三、解答题19.如图,C是线段AB上一点,M是AC的中点,N是BC的中点.若,,求MN的长度;若,求MN的长度.【答案】解:是BC的中点,M是AC的中点,,,;是AC的中点,N是BC的中点,,.20.如图,平面上有四个点A、B、C、D,根据下列语句画图:画直线AB;作射线BC;画线段CD连接AD,并将线段AD反向延长至E,使;找到一点F,使点F到A、B、C、D四点的距离之和最短.【答案】解:直线AB、射线BC、线段CD如图所示;点E如图所示;连接AC、BD交于点F,点F即为所求.21.如图,已知三点A、B、C,请用尺规作图完成保留作图痕迹画直线AB;画射线AC;连接BC并延长BC到E,使得.【答案】解:画直线AB如图:;画射线AC如图;如图:CE即为所求.。
4.2 直线、射线、线段第1课时直线、射线、线段【课前预习】1.直线的性质:经过两点有条直线,并且只有条直线.即两点确定条直线.2.当两条不同的直线有一个公共点时,我们就称这两条直线,这个公共点叫做它们的.线段射线直线图例端点个端点个端点个端点字母表示的位置个端点个端点和射线上任一点直线上任意点读法线段AB,线段BA,线段a射线(端点字母放前面)直线AB,直线BA,直线l延伸方向没有延伸向方无限延伸向方无限延伸【当堂演练】1.手电筒射出的光线,给我们的形象是()A.直线B.射线C.点D.折线2.如图,能相交的图形是()3.如图,图中线段和射线的条数分别为()A.一条,两条B.两条,三条C.三条,六条D.四条,三条4.如图,下列语句表达错误的是()A.直线l经过点A、点BB.点A、点B在直线l上C.点C在直线l外D.直线AB和直线l不是同一条直线5.下列说法正确的是()A.直线AB和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB和直线a不可能是同一条直线6.经过一点可以画条直线,经过两点可以画条直线.7.如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,喜羊羊同学认为是两点确定一条直线,懒羊羊同学认为是两点之间线段最短.你认为同学的说法是正确的.8.如图,已知A,B,C,D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.(1)画线段AB;(2)画直线AC;(3)过点D画AC的垂线,垂足为E;(4)在直线AC上找一点P,使得PB+PD最小.【课后巩固】一、选择题1.如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间线段最短D.经过两点有且仅有一条直线2.下列叙述不正确的是()A.点O不在直线AC上B.图中共有5条线段C.射线AB与射线BC是指同一条射线D.直线AB与直线CA是指同一条直线3.下列有关作图的叙述中正确的是()A.延长射线OAB.延长直线ABC.画直线AB=3 cmD.以上都不对4.在碧波荡漾的湖面上,有三只美丽的天鹅正在水中嬉戏,这三只天鹅可以确定的直线有()A.3条B.0条或1条C.1条或3条D.0条5.平面上不重合的两个点确定一条直线,不同的三个点最多可确定3条直线,若平面上不同的n个点最多可确定28条直线,则n的值是()A.6B.7C.8D.9二、填空题6.如图,线段AB上有C,D两点,则图中共有线段条,分别是___________________.7.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.三、解答题8.在如图的“金鱼”中,含有哪些可以用图中字母表示的线段、射线和直线?试写出来.9.如图,已知平面内有四个点A,B,C,D,根据下列语句画图:(1)画直线AB;(2)画射线DC;(3)直线AD,BC相交于点E;(4)连接AC,BD相交于点F.10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”应写在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2 017”在哪条射线上?第2课时比较线段的长短【课前预习】1.在数学中,我们常限定用和作图,这就是尺规作图.2.比较线段的长短的方法:(1)直接观察法;(2);(3).3.把一条线段分成的两条线段的点叫做线段的中点.4.线段的性质:两点的所有连线中,线段.简单说成:两点之间,线段.连接两点间的线段的长度,叫做这两点的.【当堂演练】1.如图,小张和小李同时以相同的速度从A村庄到B村庄办事,不过小张是从A村庄直接到B村庄,小李则从A村庄经过C村庄到B村庄,则()A.小张先到B.小李先到C.他们同时到D.不能确定谁先到2.如图,下列各式中错误的是()A.AB=AD+DBB.CB=AB-ACC.CB-DB=CDD.CB-DB=AC3.A,B,C三点在同一条直线上,M,N分别为AB,BC的中点,且AB=60,BC=40,则MN的长为()A.30B.30或10C.50D.50或104.两根木条,一根长6 cm,一根长8 cm,将它们的一端重合,放在同一条直线上,此时两根木条的中点间的距离是cm.5.某公司员工分别住在A,B,C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示.该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,停靠点的位置应设在区.6.如图,已知线段a,b,用圆规和直尺作线段,使它等于2a-2b.7.已知A,B,C三点在同一直线上,若线段AB=60,其中点为M;线段BC=20,其中点为N,求MN的长.【课后巩固】一、选择题1.如图,若B 是AC 的中点,C 是AD 的中点,则下列说法错误的是( )A.AB =BCB.AC =CDC.AB =12CDD.AB =13AD2.已知线段AB ,延长AB 到C ,使BC =2AB ,又延长BA 到D ,使DA =12AB ,那么( )A.BD =34BCB.DC =52ABC.DA =12BCD.BD =43AB3.如图,一根长12 cm 的木棒,棒上有两个刻度,把它作为尺子,量一次要量出一个长度,能量出的长度有( )A.7个B.6个C.5个D.4个 二、填空题4.如图,点C 分AB 为2∶3,点D 分AB 为1∶4,若AB 为5 cm ,则AC = cm ,BD = cm ,CD = cm.5.已知线段AB =8 cm ,C 是AB 上任意一点,其中M 是BC 的中点,N 是AC 的中点,则AN +BM = cm.6.在数轴上,点A 表示-16,线段AB 在数轴上,点B 表示数 时,使得线段AB =2 017.三、解答题7.当一条铁路铺设到崇山峻岭之中,往往是开凿隧道,而不是从山的旁边绕过去,你知道这是什么原因吗?请你用所学的数学知识解释一下.8.如图,已知线段a ,b ,c ,用圆规和直尺作线段,使它等于2a +b -c.9.如图,已知线段AB=8 cm,延长AB到点C,使AC=15 cm,D是AB的中点,E是AC 的中点,求DE.10.已知:A,B,C三点在同一直线上,点M,N分别是线段AC,BC的中点.(1)如图,点C是线段AB上一点,①当AC=8 cm,CB=6 cm时,则线段MN的长度为cm;②当AB=a cm时,求线段MN的长度,并用一句简洁的话描述你的发现;(2)若C为线段AB延长线上的一点,则第(1)题第②小题中的结论是否仍然成立?请你画出图形,并说明理由.。
人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案一、单选题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线2.M、N两点的距离是20厘米,有一点P,如果PM+PN=30厘米,那么下面结论正确的是 ( ) A.点P必在线段MN上B.点P必在直线MN外C.点P必在直线MN上D.点P可能在直线MN上,也可能在直线 MN外3.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm4.如图,在数轴上,点A、B分别表示a、b,且,若,则点A表示的数为()A.B.0 C.3 D.5.杭衢高铁线上,要保证衢州、金华、义乌、诸暨、杭州每两个城市之间都有高铁可乘,需要印制不同的火车票()A.20种B.15种C.10种D.5种6.如图,点A、B在数轴上所表示的数分别是2和5,若点C与A、B在同一条数轴上且AC-AB=m(m >0),则点C所表示的数为()A.B.C.或D.或7.已知数轴上的三点A,B,C所对应的数a,b,c满足,和,那么线段AB与BC的大小关系是()A.B.C.D.不能确定8.数轴上,点对应的数是,点对应的数是,点对应的数是0.动点、从、同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是()A.B.C.D.二、填空题9.一条直线上有n个不同的点,则该直线上共有线段条.10.已知线段AB=3cm,点C在直线AB上,AC= AB,则BC的长为.11.数轴上,如果点 A所表示的数是 ,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是.12.如图,点C,D为线段AB上两点,AC+BD=a,若AD+BC= AB,用含a代数式表示CD的长为.13.体育课上,小聪、小明、小智、小慧分别在点O处进行了一次铅球试投,若铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是三、解答题14.已知,点A、B、C在同一直线上,且,点、分别是线段、的中点,求线段的长.15.如图,C,D两点将线段AB分成2:3:4三部分,E为线段AB的中点,AD=10cm.求:(1)线段AB的长;(2)线段DE的长.16.如图,点C在线段AB上,点M,N分别是AC,BC的中点.(1)若AC=24cm,CB=16cm,求线段MN的长.(2)若C为线段AB上任一点,且满足AC+BC=x(cm),其他条件不变,你能猜想MN的长度吗?请说明理由.(3)若点C在线段AB的延长线上,且满足AC﹣BC=y(cm),点M,N分别为AC,BC的中点,请画出图形,并求MN的长度.17.我们知道,若有理数、表示在数轴上得到点、且,则点点与点之间的距离为,现已知数轴上三点A、B、C,其中A表示的数为,B表示的数为3,C与A的距离等于m,C与B的距离等于n,请解答下列问题:(1)若点C在数轴上表示的数为,求的值(2)若,请你写出点C表示的数。
3.1线段、直线、射线同步练习一、选择题1.对下图中的射线描述正确的是()。
A.射线A B.射线AB C.射线BA2.冬冬家到学校最近的路是第()条.A.①B.①C.①3.丫丫画了一条长20厘米的()。
A.直线B.射线C.线段D.以上答案均错4.一条()长3米。
A.线段B.射线C.直线5.“有始有终”常常被用来形容一个人做事能够坚持到底,在数学上可以用这个成语来形容()。
A.射线B.直线C.线段6.把4厘米长的线段向两端各延长10厘米,得到一条()。
A.直线B.射线C.线段7.下图中共有()条线段。
A.8B.10C.5D.48.如图所画的线哪一条是射线?下面四个选项中正确的是()。
A.AB B.AC C.BA D.BC二、填空题9.线段有( )个端点,过一点可以画( )条直线。
10.如果把6厘米长的线段向两端各延长10厘米,得到的是一条( );如果把这条线段向一端无限延伸,得到的是一条( )。
11.直线( )端点,线段有( )端点,( )线和( )线都是无限长.12.射线有个端点,没有端点,线段有个端点.13.图中有( )组互相垂直的线段。
三、判断题14.一条射线长48米。
( )15.一条5米的直线比一条3米的射线长。
( )16.1条直线长6米.( )17.因为线段有两个端点,射线有一个端点,直线没有端点,所以线段比射线短,射线比直线短。
( )18.一条射线长20.5米.( )四、解答题19.把下列线进行分类,找出各类线之间有什么相同和不同之处?20.下图中一共有多少条射线?多少条线段?。
人教版版四年级上册数学线段直线射线练习题(附答案)一、单选题1.一条()长300米.A. 射线B. 直线C. 线段2.经过平面上的任意两点,可以画()条直线。
A. 1B. 2C. 无数D. 不确定3.把线段的一端无限延长,就得到一条()。
A. 垂线B. 射线C. 线段D. 直线4.下面图形中有条线段.()A. 3B. 6C. 10D. 155.下图中共有()线段。
A. 4条B. 5条C. 6条D. 8条二、判断题6.直线比射线长,射线比线段长.()7.一条直线长25厘米。
()8.一条直线长10分米.()9.线段有两个端点,是直线的一部分。
()三、填空题10.三角形由________条线段围成,长方形由________条线段围成。
11.在横线上填“经过”或“不经过”。
线段AB经过点C吗?________12.正方形是由________条线段围成的,三角形是由________条线段围成的.13.下图是由________条线段组成的,有________个直角。
14.手电筒发出的光是一条________。
四、解答题15.用两种不同的方法数出框中一共有()条线段,并在图中画出你数线段的方法。
16.画一条比4厘米短5毫米的线段,并给这条线段标上长度。
五、作图题17.过AB两点画一条直线,并量出线段AB的长度。
线段AB长()毫米。
答案一、单选题1. C2. A3. B4. C5. C二、判断题6. 错误7. 错误8. 错误9. 正确三、填空题10. 3;4 11. 不经过12. 4;3 13. 9;614. 射线四、解答题15. 解:,5+4+3+2+1=15(条)答:数出框中一共有15条线段。
16.五、作图题17.量得线段AB的长度是2厘米,即线段AB长20毫米。
射线、直线、线段练习题一、选择题1. 下列说法正确的是:A. 射线有一个端点,无限长B. 直线有两个端点,有限长C. 线段有一个端点,有限长D. 射线与直线长度相等2. 在下列图形中,哪个是线段?A. 两条平行线B. 一个端点,向一方无限延伸C. 两个端点,有限长D. 一个端点,向两边无限延伸A. 两个端点,有限长B. 一个端点,向一方无限延伸C. 两个端点,无限长D. 无端点,无限长二、填空题1. 线段是由两个______和它们之间的______组成的。
2. 射线有一个______,向一方______延伸。
3. 直线无______,______延伸。
三、判断题1. 射线的长度大于线段的长度。
()2. 直线比射线更长。
()3. 线段有两个端点,有限长。
()四、连线题请将下列射线、直线、线段的定义与相应的图形连线:1. 直线:______2. 射线:______3. 线段:______五、作图题1. 画出一条线段,长度为5厘米。
2. 画出一条射线,从一个端点出发,经过点A。
3. 画出一条直线,使它与线段AB平行。
六、简答题1. 请简要说明射线、直线和线段的特点。
2. 如何用直尺和三角板画出一条指定长度的线段?3. 在日常生活中,你能找到哪些射线、直线和线段的例子?请分别列举。
七、应用题1. 在平面直角坐标系中,点A(2,3)和点B(5,3)是线段AB的两个端点,求线段AB的长度。
2. 已知射线OC从点O(0,0)出发,经过点C(4,0),求射线OC上距离点O 6个单位长度的点D的坐标。
3. 在直角坐标系中,直线l经过点P(1,2)和点Q(4,6),请写出直线l的方程。
八、拓展题1. 如果一条射线逆时针旋转90度,它变成了什么?2. 在平面上,两条直线相交,形成的四个角中,有几个角是相等的?3. 有一根无限长的直线,你在上面任意取两点,这两点之间的是什么?九、探究题1. 如何证明两条平行线之间的距离处处相等?2. 在同一平面内,如果两条直线不相交,那么它们一定是平行的吗?3. 请设计一个实验,证明线段的长度是可以通过测量得到的。
4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7 D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点( )A.20个B.10个C.7个D.5个5.下列说法错误的是( )A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是()A . CD =AD-ACB . CD =AB -BDC . CD =AB D . CD=AB 2141318.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短 10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个11.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB 和射线BA 是同一条射线;⑤若AC=BC ,则点C 是线段AB 的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有( )A . 2个B . 3个C . 4个D . 5个二、填空题12.点C 在线段AB 上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。
四年级同步个性化分层作业3.1直线、线段和射线的认识一.选择题(共10小题)1.(2023秋•巴州区校级月考)如图中,有()条线段。
A.1B.3C.6D.02.(2023秋•衡水期末)文文画了一个房子(如图),房子是由一些三角形和四边形组成的,这些图形都是由一条条()组成的。
A.直线B.射线C.线段3.(2024春•泰安期末)把()的一端无限延长就得到一条射线.A.直线B.线段C.射线4.(2024•潍坊)中华武术是中国的传统文化之一,是独具民族风貌的武术文化体系。
“枪挑一条线,棍扫一大片”,从数学的角度解释为()A.点动成线,线动成面。
B.线动成面,面动成体。
C.点动成线,面动成体。
D.点动成面,面动成线。
5.(2024•宝山区)已知点C在线段AB上,下列条件中不能判断点C为线段AB中点的是()A.AC+BC=AB B.AC=BC C.AB=2AC D.6.(2024春•莱阳市期中)下列说法中,正确的有()个。
①平角就是一条直线。
②用一个放大10倍的放大镜看一个70°的角,看到的角仍然是70°。
③要将一根木条固定在墙上,至少需要2枚钉子。
④3时半,时针和分针组成一个直角。
A.2B.3C.47.(2024春•宁阳县期中)小丽在练习本上画了一条长为8厘米的()A.线段B.射线C.直线8.(2023秋•大田县期末)下面三个图形中是线段的是()A.B.C.9.(2023秋•沐川县期末)把一条5厘米长的线段向两端各延长10厘米,得到一条()A.直线B.线段C.射线D.不确定10.(2023秋•金乡县期末)过一点A可以画()条直线。
A.1B.2C.无数条四年级同步个性化分层作业3.1直线、线段和射线的认识参考答案与试题解析一.选择题(共10小题)1.(2023秋•巴州区校级月考)如图中,有()条线段。
A.1B.3C.6D.0【专题】数据分析观念.【答案】B【分析】直线上点和线段数量的关系为:如果直线AB上有n个点,则有n(n﹣1)÷2条线段;本图直线中共有3个点,所以图中线段共有:3×(3﹣1)÷2=3(条)。
4.2 直线、射线、线段 【基础训练】 一、单选题1.如图,4,7CB cm DB cm ==,点D 为AC 的中点,则AB 的长为( )A .9cmB .10cmC .11cmD .12cm【答案】B 【分析】由图形可知,AB 等于各线段的和,即分别求出AD ,DC .然后相加即可得出AB 的长度. 【详解】解:由题意知,CB =4cm ,DB =7cm ,所以DC =3cm ,又点D 为AC 的中点,所以AD =DC =3cm ,故AB =AD +DB =10cm .故选:B . 【点睛】 本题主要考查学生灵活运用线段的和、差、倍、分转化线段之间的数量关系的能力.2.在开会前,工作人员进行会场布置在主席台上由两人拉着一条绳子然后以“准绳”为基准摆放茶杯这样做的理由是( )A.两点之间线段最短B.两点确定一条直线C.两点之间,直线最短D.过一点可以作无数条直线【答案】B【分析】根据直线的性质:两点确定一条直线可得答案.【详解】解:由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线,故选:B.【点睛】此题主要考查了直线的性质,关键是掌握两点确定一条直线.3.A,B两点间的距离是指()A.过A,B两点间的直线B.连接A,B两点间的线段C.直线AB的长D.连接A,B两点间的线段的长度【答案】D【分析】根据两点间的距离定义即可求解.【详解】解:A,B两点间的距离是指连接A,B两点间的线段的长度,故选:D.【点睛】本题考查了两点间的距离的定义.4.日常生活中,手电筒发射出来的光线,类似于几何中的()A.折线B.直线C.射线D.线段【答案】C【分析】根据直线,射线和线段的区别即可得出答案.【详解】手电筒可近似看成一个点,所以手电筒发射出来的光线相当于一个从一个端点出发的一条射线,故选:C.【点睛】本题主要考查射线,掌握直线,射线和线段的区别是关键.5.下列说法中,错误的是()A.射线AB和射线BA是同一条射段B.经过两点只能作一条直线C.经过一点可以作无数条直线D.两点之间,线段最短【答案】A【分析】直接利用线段的性质以及直线的性质分别分析得出答案.【详解】解:A、射线AB和射线BA不是同一条射线,故此选项错误,符合题意;B、经过两点只能作一条直线,正确,不合题意;C、经过一点可以作无数条直线,正确,不合题意;D、两点之间,线段最短,正确,不合题意;故选:A.【点睛】此题主要考查了线段的性质以及直线的性质,正确把握相关性质是解题关键.6.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点之间直线最短C.两点确定一条直线D.以上说法都不对【答案】C【分析】根据题意可知应用的是两点确定一条直线,从而可得出答案.【详解】把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是两点确定一条直线,故选:C.【点睛】本题主要考查数学知识的实际应用,掌握基本的数学事实是解题的关键.7.如图,AB=CD,那么AC与BD的大小关系是()A.AC<BD B.AC=BD C.AC>BD D.不能确定【答案】B【分析】由题意可知AB=CD,根据等式的基本性质,两边都减去BC,等式仍然成立.【详解】根据题意和图示可知AB=CD,而BC为AB和CD共有线段,故AC=BD,故选:B.【点睛】注意根据等式的性质进行变形,读懂题意是解题的关键.8.如图,从A地到B地有四条路线,由上到下依次记为路线①、①、①、①,则从A地到B地的最短路线是路线().A.①B.①C.①D.①【答案】C【分析】结合题意,根据两点之间线段最短的性质分析,即可得到答案.【详解】根据题意得,从A地到B地的最短路线是路线①故选:C.【点睛】本题考查了最短路径的知识;解题的关键是熟练掌握两点之间线段最短的性质,从而完成求解.9.下列说法错误的是()A.0既不是正数也不是负数B.经过两点有一条直线,并且只有一条直线C.两点之间,线段最短D.射线AB与射线BA是同一条射线【答案】D【分析】据有理数的知识和基本图形的相关知识逐一分析,先出符合题意的选项.【详解】对于A,0既不是正数也不是负数,说法正确,不符合题意;对于B,经过两点有一条直线,并且只有一条直线,说法正确,不符合题意;对于C,两点之间,线段最短,说法正确,不符合题意;对于D,射线AB与射线BA的端点不同,延伸方向不同,故“射线AB与射线BA是同一条射线”这一说法错误,符合题意.故选:D.【点睛】此题考查有理数的分类和基本几何图形的相关知识,理解相关知识点是关键.10.下列四个生活,生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设;①把弯曲的公路改直,就能缩短路程;①用两个钉子就可以把木条固定在墙上;①植树时,只要定出两棵树的位置,就能确定同一行树所在的直线.其中可用公理“两点之间,线段最短”来解释的现象是()A.①①B.①①C.①①D.①①【答案】A【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断后利用排除法求解.【详解】①从A地到B地架设电线,总是尽可能沿着线段AB架设,就能缩短路程是利用了“两点之间线段最短”,故正确;①把弯曲的公路改直,就能缩短路程是利用了“两点之间线段最短”,故正确;①用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;①植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”.故错误;故选:A.【点睛】本题考查了线段的性质以及直线的性质,熟记性质公理是解题的关键,是基础题.11.下列说法正确的是()A.直线AB与直线BA不是同一条直线B.射线AB与射线BA是同一条射线C.延长线段AB和延长线段BA的含义一样D.经过两点有一条直线,并且只有一条直线【答案】D【分析】根据直线、射线、线段的意义和表示方法进行判断即可.【详解】解:A.直线AB与直线BA是同一条直线,因此A不正确,故A不符合题意;B.射线AB与射线BA不是同一条射线,因此B不正确,故B不符合题意;C.延长线段AB和延长线段BA的含义不一样,因此C不正确,故C不符合题意;D.经过两点有一条直线,并且只有一条直线是正确的,故D符合题意;故选:D.【点睛】本题考查直线、射线、线段的意义,理解直线、射线、线段的意义是正确判断的前提,掌握直线的性质是正确判断的关键.12.在墙上要钉牢一根木条,至少要钉两颗钉子.能解释这一实际应用的数学知识是()A.两点之间线段最短B.两点确定一条直线C.直线比线段长D.两条直线相交,只有一个交点【答案】B【分析】根据直线的性质:两点确定一条直线进行解答即可.【详解】解:在墙上要钉牢一根木条,至少要钉两颗钉子,能解释这一实际应用的数学知识是两点确定一条直线,A C D不符合题意,B符合题意,故,,故选:.B【点睛】本题考查的是直线的性质,掌握两点确定一条直线的实际应用是解题的关键.13.如图,某同学用剪刀治直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这现象的数学知识是()A.两点之间,直线最短B.两点之间,线段最短C.两点确定一条直线D.经过一点有无数条直线【答案】B【分析】根据线段的性质,可得答案.【详解】解:由于两点之间线段最短,所以剩下树叶的周长比原树叶的周长小.故选:B.【点睛】本题考查的是线段的性质,利用线段的性质是解题关键.14.下列语句正确的有()(1)线段AB就是A、B两点间的距离;AB=;(2)画射线10cm(3)A,B两点之间的所有连线中,线段AB最短;=,那么B是AC的中点.(4)如果AB BCA.1个B.2个C.3个D.4个【答案】A【分析】根据两点间的距离,射线的定义与性质,线段的中点的定义,对各小题分析判断即可得解.【详解】解:因为线段AB的长度是A、B两点间的距离,所以(1)错误;因为射线没有长度,所以(2)错误;因为两点之间,线段最短.即A,B两点之间的所有连线中,最短的是A,B两点间的距离,所以(3)正确;因为点A、B、C不一定共线,所以(4)错误.综上所述,正确的有1个.故选:A.【点睛】本题考查的是线段、射线的定义与性质,线段的中点,两点间的距离,要求学生准确把握概念与性质是解决本题的关键.15.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对下图展开了讨论,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段【答案】B【分析】根据直线的表示方法可判定A ,利用射线的表示方法可判定B ,C ,利用线段表示方法可判定D . 【详解】解:A . 根据直线MN 与直线NM 表示方法是同一条直线,故选项A 正确;B . 射线PM 与射线MN 是端点不同,不是同一条射线,故选项B 说法不正确;C . 射线PM 与射线PN 是同一条射线,端点相同,方向相同,故选项C 正确;D . 根据线段MN 与线段NM 表示方法是同一条线段,故选项D 正确.故选择:B . 【点睛】 本题考查直线,射线,线段的定义与表示方法,掌握直线,射线,线段的表示方法是解题关键. 16.下列说法正确的是( )A .两点之间直线最短B .平面内的三点可以在一条直线上C .延长射线AB 到点C ,使得BC AB =D .作直线5OB =厘米【答案】B 【分析】 根据线段的性质和直线的性质,以及射线的定义分别判定可得. 【详解】A. 两点之间线段最短,错误,故A 不合题意;B. 平面内的三点可以在一条直线上,表述正确,故B 符合题意;C. 延长线段AB 到点C ,使得BC =AB ,表述错误,故C 不符合题意;D. 作直线OB =5厘米,错误,直线没有长度,故D 不符合题意.故选:B .【点睛】考查了线段的性质,直线的性质,以及射线的定义,熟记概念内容,理解题意是解题的关键.17.把一条弯曲的道路改成直道,可以减少路程,其理由是()A.过两点有且只有一条直线B.两点之间线段最短C.垂线段最短D.两点间线段的长度叫两点间的距离【答案】B【分析】根据数学常识,连接两点的所有线中,线段最短,即两点之间线段最短.【详解】解:把一条弯曲的道路改成直道,可以减少路程,其理由是两点之间线段最短故选B.【点睛】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.18.下列说法正确的是()A.两点之间的所有连线中,直线最短B.一个角的余角一定比这个角大C.同角(或等角)的补角相等D.经过两点有无数条直线【答案】C【分析】根据“两点之间,线段最短“;互余的两个角的和为90°;补角的性质以及两点确定一条直线逐一判断即可.【详解】A、两点之间的所有连线中,线段最短,故原说法错误,故本选项不合题意;B、一个角的余角不一定比这个角大,如60°角的余角是30°,故原说法错误,故本选项不合题意;C、同角(或等角)的补角相等,说法正确,故本选项符合题意;D、经过两点有且只有一条直线,故原说法错误,故本选项不合题意;故选:C.【点睛】本题主要考查了“两点之间,线段最短“,两点确定一条直线以及补角的定义与性质,熟记相关定义是解答本题的关键.19.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C.两点确定一条直线D.过三点能作且只能做一条直线【答案】C【分析】根据射线,直线的性质以及线段的性质解答.【详解】解:A、射线本身是向一端无限延伸的,不能延长,故A不合题意;B、若AM=BM,此时点M可能在线段AB的垂直平分线上,故B不合题意;C、两点确定一条直线,说法正确,故C符合题意;D、只有三点共线时才能做一条直线,故D不合题意,故选:C.【点睛】 本题考查直线、射线的性质,是基础考点,难度较易,掌握相关知识是解题关键.20.如图,已知直线上顺次三个点A 、B 、C ,已知10cm AB =,4cm BC =.D 是AC 的中点,M 是AB 的中点,那么MD =( )cm .A .4B .3C .2D .1【答案】C 【分析】由10AB =cm ,4BC =cm .于是得到14AC AB BC =+=cm ,根据线段中点的定义由D 是AC 的中点,得到AD ,根据线段的和差得到MD AD AM =-,于是得到结论. 【详解】解:①10AB =cm ,4BC =cm ,14AC AB BC ∴=+=cm , D 是AC 的中点, 172AD AC ∴==cm ; M 是AB 的中点,152AM AB ∴==cm , 2D M AD AM ∴=-=cm .故选:C .【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.21.如图所示,下列说法正确的个数是( )①射线AB 和射线BA 是同一条射线;①图中有两条射线;①直线AB 和直线BA 是同一条直线;①线段AB 和线段BA 是同一条线段.A .4B .3C .2D .1【答案】C 【分析】 根据射线、直线、线段的表示方法判断即可. 【详解】解:①射线AB 和射线BA 不是同一条射线,端点不同,故①错误;①图中有四条射线,故①错误;①直线AB 和直线BA 是同一条直线,故①正确;①线段AB 和线段BA 是同一条线段,故①正确;故选:C . 【点睛】 本题考查了射线、直线、线段的表示方法,解题关键是注意它们的联系和区别.22.下列说法,其中正确的个数有( )(1)绝对值越小的数离原点越近;(2)多项式2235x x -+是二次三项式;(3)连接两点之间的线段是两点之间的距离;(4)三条直线两两相交有3个交点.A .4个B .3个C .2个D .1个 【答案】C【分析】 根据绝对值的定义、多项式、两点间的距离、相交线的定义即可得出结论. 【详解】解:(1)绝对值越小的数离原点越近,此说法正确;(2)多项式2235x x -+是二次三项式,此说法正确;(3)连接两点之间的线段的长度是两点之间的距离,此说法错误;(4)三条直线两两相交有1个或3个交点,此说法错误.故选C . 【点睛】 本题考查了两点间的距离、绝对值、多项式、相交线的定义,熟练掌握各定义是解题的关键.23.下列说法正确的是( )A .延长直线AB 到点CB .射线是直线的一部分C .画一条长2cm 的射线D .比较射线、线段、直线的长短,直线最长【答案】B 【分析】利用直线定义可判断A ,利用射线定义判断B ,利用射线的性质判断C ,利用直线与射线性质判断D 即可. 【详解】解:A. 延长直线AB 到点C ,直线向两方无限延伸,不能延长,故A 选项不正确;B. 射线是直线的一部分,故B 选项正确;C. 画一条长2cm 的射线,射线向一方无限延伸,射线不能度量,故C 选项不正确 ;D. 比较射线、线段、直线的长短,直线最长,射线向一方无限延伸,直线向两方无限延伸不能比较长短,故D选项不正确.故选择:B.【点睛】本题考查直线的定义与性质,射线的定义与性质,线段定义,掌握直线的定义与性质,射线的定义与性质,线段定义是解题关键.24.观察图形,下列说法正确的个数是()①直线BA和直线AB是同一条直线;①射线AC和射线AD是同一条射线;①线段AC和线段CA是同一条线段;①三条直线两两相交时,一定有三个交点.A.1B.2C.3D.4【答案】C【分析】根据直线的表示方法对①进行判断;根据射线的表示方法对①进行判断;根据线段的性质对①进行判断;通过分类讨论对①进行判断.【详解】解:①直线没有方向,直线BA和直线AB是同一条直线,故①说法正确;①射线AC和射线AD是同一条射线,故①说法正确;①线段AC 和线段CA 是同一条线段,故①说法正确;①三条直线两两相交时,一定有三个交点,还可能有一个,故①说法不正确.共3个说法正确.故选:C . 【点睛】 本题考查了直线、射线、线段的含义,解题的关键在于结合图形进行分析.25.如图,已知C 为线段AD 上一点,点B 为CD 的中点,且9,2AD BD ==.若点E 在直线AD 上,且1EA =,则BE 的长为( )A .4B .6或8C .6D .8【答案】B 【分析】由于E 在直线AD 上位置不明定,可分E 在线段DA 的延长线和线段AD 上两种情况求解. 【详解】解:若E 在线段DA 的延长线,如图1,①EA =1,AD =9,①ED =EA +AD =1+9=10,①BD =2,①BE =ED -BD =10-2=8;若E 线段AD 上,如图2,EA =1,AD =9,①ED =AD -EA =9-1=8,①BD =2,①BE =ED -BD =8-2=6,综上所述,BE 的长为8或6.故选:B . 【点睛】 本题考查的是线段的中点、线段的和差计算,对题目进行分类讨论是解题的关键.26.已知点P 是CD 中点,则下列等式中:①PC PD =;①12PC CD =;①2CD PD =;①PC PD CD +=;正确的个数是( )A .1个B .2个C .3个D .4个 【答案】D【分析】根据线段中点的性质进行判断即可.【详解】解:①P 是CD 中点,①12PC PD CD ==,2CD PD =,PC PD CD +=, 因此①①①①都正确,故选:D.【点睛】本题考查了与线段中点有关的各线段之间的熟练关系,熟悉线段中点的含义是解题的关键.27.已知点C为线段AB上一点,AC=2BC,若线段AB的长为6cm,则线段AC的长为()A.6cm B.4cm C.3cm D.2cm【答案】B【分析】根据AC=2BC,可知AC=23AB,代入求值即可.【详解】解:①点C为线段AB上一点,AB=6cm,AC=2BC,①AC=23AB=4cm;故选:B.【点睛】本题考查了线段的计算,解题关键是准确理解题意,熟练的进行计算.28.2019年11月1日,隆生大桥正式通车,缓解了东江大桥与中信大桥的交通压力,其特点是“直”,明显缩短了江北与水口的距离,其主要依据是()A.两点确定一条直线B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两点之间,线段最短【答案】D【分析】直接利用线段的性质分析得出答案.【详解】解:隆生大桥正式通车,最大的特点是“直”,明显缩短了江北与水口的距离,其主要依据是:两点之间,线段最短.故选:D.【点睛】此题主要考查了线段的性质,正确理解题意是解题关键.29.下列叙述正确的是()A.线段AB可表示为线段BA B.直线可以比较长短C.射线AB可表示为射线BA D.直线a,b相交于点m【答案】A【分析】分别根据直线、射线以及线段的定义判断得出即可.【详解】解:A、线段AB可表示为线段BA,此选项正确;B、直线不可以比较长短,此选项错误;C、射线AB的端点是A,射线BA的端点是B,故不是同一射线,此选项错误;D、点用大写字母表示的,此选项错误,故选:A【点睛】此题主要考查了直线、射线以及线段的定义,正确区分它们的定义是解题关键.30.已知线段AB长为5,点C为线段AB上一点,点D为线段AB延长线上一点,若12BC BD AC==,则线段AC的长为()A.53B.103C.153D.203【答案】B【分析】利用线段的和差和等量关系用AC表示AB,根据5AB=即可得出AC.【详解】解:如图所示:①12BC BD AC==,①1322AB AC BC AC AC AC =+=+=,①5 AB=,①22105333 AC AB==⨯=,故选:B.【点睛】本题考查线段的和差.能结合题意正确构造出线段图是解题关键. 二、填空题31.如图,已知点B 在线段AC 上,9AB =,6BC =,P 、Q 分别为线段AB 、BC 上两点,13BP AB =,13CQ BC =,则线段PQ 的长为_______.【答案】7【分析】根据已知条件算出BP 和CQ ,从而算出BQ ,再利用P A =BP +BQ 得到结果.【详解】解:①AB =9,BP =13AB , ①BP =3,①BC =6,CQ =13BC , ①CQ =2,①BQ =BC -CQ =6-2=4,①PQ =BP +BQ =3+4=7,故答案为:7.【点睛】本题考查了两点间距离,线段的和差,熟练掌握线段上两点间距离的求法,灵活运用线段的和差倍分关系解题是关键.32.如图,线段AB =10,BC =6,点D 上线段AC 的中点,则线段AD 的长为 __.【答案】8【分析】根据线段AB=10,BC=6,可以求得线段AC的长,再根据点D是线段AC的中点,从而可以求得线段AD的长.【详解】解:①线段AB=10,BC=6,①AC=AB+BC=16,①点D是线段AC的中点,①AD=12AC=11682⨯=,故答案为:8.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.33.如图:点C为线段AB上的一点,M、N分别为AC、BC的中点,AB=40,则MN=_____.【答案】20【分析】由题意易得11,22MC AC CN CB==,进而可得111222MN MC CN AC CB AB=+=+=,进而问题可求解.【详解】解:①M 、N 分别为AC 、BC 的中点, ①11,22MC AC CN CB ==, ①AB =40, ①11120222MN MC CN AC CB AB =+=+==; 故答案为20.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.34.如图,C 是线段AB 上的一点,且13,5AB CB ==,M 、N 分别是AB 、CB 的中点,则线段MN 的长是_____________.【答案】4【分析】根据中点定义可得到AM =BM =12AB ,CN =BN =12CB ,再根据图形可得NM =BM -BN ,即可得到答案. 【详解】解:①M 是AB 的中点,①AM =BM =12AB =6.5, ①N 是CB 的中点,①CN =BN =12CB =2.5, ①MN =BM -BN =6.5-2.5=4.故答案为:4.【点睛】此题主要考查了求两点间的距离,解题的关键是根据条件理清线段之间的关系.35.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=7cm,BC=3cm,则AD的长为_____cm.【答案】11【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【详解】解:①MN=MB+BC+CN,MN=7cm,BC=3cm,①MB+CN=7﹣3=4cm,①M是AB的中点,N是CD的中点,①AB=2MB,CD=2CN,①AD=AB+BC+CD=2(MB+CN)+BC=2×4+3=11cm.故答案为:11.【点睛】本题考查了两点间的距离;利用中点性质转化线段间的关系是解题关键.三、解答题36.已知:如图,点,C D在线段AB上,点D是AB中点,1,123AC AB AB==.求线段CD长【答案】2 【分析】根据中点的定义以及题意,分别求出线段AD 与线段AC 的长度,即可得出结论. 【详解】①D 为线段AB 的中点,①AD =12AB =12×12=6, ①AC =13AB , ①AC =13×12=4, ①CD =AD -AC =6-4=2.【点睛】本题考查线段中点相关的计算,理解中点的定义,掌握线段中的计算法则是解题关键.37.如图,已知C 、D 两点将线段AB 分成2①3①4三段,点E 是线段BD 的中点,点F 是线段CD 上一点,且2CF DF =,12cm EF =,求线段AB 的长.【答案】36【分析】设线段AC 、CD 、DB 的长度分别为2x ,3x ,4x ,根据题意可用x 表示出DF 、DE 的长,再根据12EF =,即可求出x ,最后即可求出AB 的长.【详解】解:根据题意可设线段AC 、CD 、DB 的长度分别为2x ,3x ,4x ,①2CF DF =, ①133DF x x =⨯=, ①12DE BD =, ①1422DE x x =⨯=. ①EF DF DE =+,①212x x +=,解得:4x =.①24344436AC D DB A C B =⨯+⨯+⨯==++.【点睛】本题考查线段的n 等分点和中点的有关计算.根据题意找出线段之间的数量关系是解答本题的关键. 38.(1)如图,已知线段AB ,请用尺规按下列要求作图:①延长线段AB 到C ,使BC=AB ;①延长线段BA 到D ,使AD=AC .(2)在(1)所作的图中,若点E 是线段BD 的中点,AB=2cm ,求线段AE 的长.【答案】(1)①见解析;①见解析;(2)1cm【分析】(1)①根据题意画出图形即可;①根据题意画出图形即可;(2)首先根据图形求出AC 的长度,进而得出AD 的长度,然后利用中点求出DE 的长度,最后利用AE AD CE =-求解即可. 【详解】(1)①如图,①如图,(2)如图,2cm,AB BC AB ==,4cm AC AB BC ∴=+=,4cm AD AC ∴==,6cm DB AD AB ∴=+=.①点E 是线段BD 的中点, 13cm 2DE DB ∴==, 1cm AE AD CE ∴=-=.【点睛】本题主要考查线段的和与差,掌握线段之间的关系是关键.39.如图,点C 在线段AB 上,AC =6cm ,MB =10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;【答案】(1)7cm ;(2)6.5cm . 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长. 【详解】解:(1)①AC=6cm ,点M 是AC 的中点, ①132MC AC cm ==, ①1037BC M B M C cm . (2)①N 是BC 的中点, ①1 3.52CNBC cm ①3 3.5 6.5M N M C CN cm .【点睛】本题考查了两点间的距离,熟悉相关性质是解题的关键.40.如图,线段6cm AC =,线段15cm BC =,点M 是AC 的中点,在线段CB 上取一点N ,使得:1:2CN NB =,求MN 的长.【答案】8cm【分析】因为点M 是AC 的中点,则有12MC AM AC ==,又因为:1:2CN NB =,则有13CN BC =,故MN MC NC =+可求.【详解】解:M 是AC 的中点,6AC =cm ,132MC AC ∴==cm , 又因为:1:2CN NB =,15BC =,153NC BC ∴==cm . 8MN MC NC ∴=+=cm ,MN ∴的长为8cm .【点睛】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,本题点M 是AC 的中点,则有12MC AM AC ==,还利用了两条线段成比例求解. 41.(1)如图,用没有刻度直尺和圆规画图:①点C 是线段AB 处一点,画射线CB ,画直线AC ;①延长线段AB 到E ,使3AE AB =;(2)在(1)的条件下,如果2AB cm =,O 是线段AE 的中点,求线段OB 的长.【答案】(1)①见解析;①见解析;(2)1cm(1)①根据射线和直线的定义作图即可,①作直线AB ,以AB 为半径作圆,圆与直线AB 交点作圆心,即可得;(2)根据延长线的定义以及线段的和差计算即可得. 【详解】解:(1)①如图所示:①如图所示:(2)由图可知2AB cm =,236AE cm =⨯=, 116322OA AE cm ∴==⨯=, 1OB OA AB cm ∴=-=【点睛】本题考查了无刻度直尺和圆规画图,根据线段中点计算线段的长度;掌握好相关的定义,根据线段中点的特性解题是关键.42.如图,已知线段AB =6,延长AB 至C ,使BC =2AB ,点P 、Q 分别是线段AC 和AB 的中点,求PQ 的长.【答案】PQ 的长为6.结合图形、根据线段中点的定义计算. 【详解】解:①BC =2AB ,AB =6,①BC =2×6=12,①AC =AB +BC =6+12=18,①点P 、Q 分别是线段AC 和AB 的中点,①AP =12AC =12×18=9, AQ =12AB =12×6=3, ①PQ =AP -AQ =9-3=6,故PQ 的长为6.【点睛】本题考查了两点间的距离、线段中点的定义,掌握线段的和差的计算方法、中点的定义是解题的关键. 43.尺规作图,已知:线段(),a b a b >,求作:AB a b =+.(保留作图痕迹,不写作法)【答案】见解析【分析】先在射线AM 上依次截取AC =a ,再截取CB =b ,则线段AB =a +b .【详解】解:如图,线段AB 即为所作.【点睛】本复考查了作图-复杂作图:杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.44.如图,延长线段AB 到点C ,使2BC AB =,取AC 的中点D .已知3cm BD =,求AC 的长.【答案】18 【分析】设cm AB x =,则2cm BC x =,先根据线段的和差可得3cm AC x =,再根据线段的中点的定义可得3cm 2CD x =,然后根据线段的和差可得1cm 2BD x =,结合3cm BD =可求出x 的值,由此即可得出答案. 【详解】设cm AB x =,则2cm BC x =,3cm AC AB BC x ∴=+=,点D 是AC 的中点,13cm 22CD AC x ∴==, 1cm 2BD BC CD x ∴=-=,。
直线射线线段练习题一、选择题(每题2分,共20分)1. 下列关于直线、射线、线段的描述,正确的是:A. 直线没有端点B. 射线有一个端点C. 线段有两个端点D. 所有选项都是正确的2. 线段AB的长度为5cm,线段CD的长度为3cm,若线段AB与线段CD 平行,则:A. AB和CD可能相等B. AB一定比CD长C. AB一定比CD短D. AB和CD长度没有关系3. 如果线段MN和线段PQ相交于点O,那么点O是线段MN的:A. 中点B. 端点C. 任意一点D. 无法确定4. 直线l上的点A和点B确定了一条:A. 直线B. 线段C. 射线D. 无法确定5. 射线OA和射线OB的共同点是:A. 点OB. 点AC. 点BD. 没有共同点二、填空题(每题2分,共20分)6. 线段的两个端点分别记作____和____。
7. 如果线段AB和线段CD相交,那么交点可以记作____。
8. 直线可以无限延伸,因此它的长度是____。
9. 射线从一点出发,向一方无限延伸,这个点称为射线的____。
10. 若线段AB的中点为M,则AM的长度等于____。
11. 直线上的任意两点都可以确定一条____。
12. 线段的延长线是一条____。
13. 如果线段AB和线段CD重合,那么它们的长度____。
14. 线段AB和线段CD平行,且线段AB的长度为10cm,则线段CD的长度也是____。
15. 射线OA和射线OB的端点都是____。
三、简答题(每题10分,共30分)16. 描述如何确定一条线段的中点。
17. 解释直线、射线和线段的区别。
18. 如果线段AB和线段CD相交,且交点为E,说明线段AE和线段BE 的关系。
四、计算题(每题15分,共30分)19. 已知线段AB的长度为8cm,线段BC的长度为6cm,线段AC的长度为10cm。
如果线段AB和线段BC在同一直线上,求线段AC的长度。
20. 射线OA和射线OB从同一点O出发,分别向不同方向延伸。
射线直线线段练习题一、选择题1. 在平面几何中,下列哪一项不是线段的特点?A. 有两个端点B. 长度有限C. 可以无限延伸D. 可以度量长度2. 如果线段AB的长度为5厘米,线段CD的长度为10厘米,线段AB 与线段CD的关系是:A. 相等B. 平行C. 垂直D. 长度不同3. 射线具有以下哪个特点?A. 有一个端点B. 有两个端点C. 长度有限D. 可以度量长度4. 直线与射线的区别在于:A. 直线是直的,射线不是B. 直线有两个端点,射线有一个端点C. 直线可以无限延伸,射线不能D. 直线和射线都是直的5. 在几何学中,下列哪一项是线段AB的中点?A. 点AB. 点BC. 点CD. 点D二、填空题6. 线段AB的长度是线段CD长度的两倍,若线段CD的长度为3厘米,则线段AB的长度是________厘米。
7. 如果线段AB与线段CD平行,且线段AB的长度为6厘米,线段CD的长度为4厘米,则线段AB与线段CD之间的距离是________厘米。
8. 射线OA是从点O出发,沿着A方向无限延伸的线,若点A与点O的距离为8厘米,则射线OA的长度是________厘米。
9. 直线AB是一条无限延伸的线,它没有端点,因此直线AB的长度是________厘米。
10. 若线段MN与线段PQ相交于点R,且线段MN的长度为7厘米,线段PQ的长度为9厘米,则点R是线段MN的________。
三、简答题11. 解释什么是直线,并给出直线的三个特点。
12. 描述射线与线段在几何学中的主要区别。
13. 如果线段XY与线段ZW相交,并且线段XY的长度是线段ZW长度的一半,线段ZW的长度是15厘米,求线段XY的长度。
14. 给出一个实际生活中线段、射线和直线的例子,并解释它们在该情境中的作用。
15. 如果两条直线相交于一点,这个点被称为什么?请解释为什么这个点在几何学中很重要。
四、计算题16. 已知线段EF的长度为12厘米,线段GH的长度为18厘米,如果线段EF与线段GH相交于点I,求点I到线段EF和线段GH的两个端点的距离之和。
关于四年级线段,射线,直线的数学题一、选择题1.下列说法正确的是()。
A. 直线比射线长B. 线段有两个端点,可以度量长度C. 射线有一个端点,可以向一端无限延长,所以比直线长D. 以上说法都不对2.下列图形中,不可以度量长度的是()。
A. 线段B. 射线C. 直线D. 以上都可以度量3.从一点出发可以画出()条射线。
A. 1B. 2C. 3D. 无数4.经过两点可以画出()条直线。
A. 1B. 2C. 3D. 无数二、填空题5.直线有()个端点,它可以向两端()。
6.线段有()个端点,它的长度是()的。
7.射线有()个端点,它可以向一端()。
三、判断题8.一条直线长5厘米。
()9.射线比线段长。
()10.通过一点可以画无数条直线。
()11.两点确定一条直线。
()四、作图题12.过点A画出两条射线,并标出它们的端点。
(请在实际纸上或电子设备上作图,此处无法直接展示)13.过直线外一点P,画出这条直线的垂线。
(请在实际纸上或电子设备上作图,此处无法直接展示)五、应用题14.小明从家到学校有两条路可以走,一条是直的,另一条是弯的。
小明应该选择哪条路?为什么?(用线段和直线的知识解释)答:小明应该选择直的路。
因为两点之间线段最短,所以直的路是距离最短的路线。
15.小红在操场上跑步,她沿着一个长方形的操场跑了一圈。
请问,小红跑过的路线是由什么图形组成的?答:小红跑过的路线是由两条长线段和两条短线段组成的,这四个线段首尾相连,形成了一个长方形。
4 小题,每题3 分,共计12 分)1. 填一填。
(1)( )、( )都可以无限延长,其中( )没有端点 , ( )只有一个端点。
(2)线段是直的,有( )个端点;将线段向两个方向无限延长,就形成了( )线;从线段的一个端点向一个方向无限延长,就得到一条( )线。
1. 变式1. 下面的图形中 , 哪些是线段 ? 哪些是射线 ? 哪些是直线 ?射线: ( ) 线段: ( ) 直线: ( )2.两点之间,线段最短变式2. 两点之间,()最短 , 它的长度就是两点之间的()。
变式3. 看图片,回答问题。
4 小题,每题3 分,共计12 分)1.. 想一想 , 判一判。
( 互相垂直的打“√”, 不互相垂直的打“×”)变式1. 选择。
(1)垂直的两条直线或线段有( ) 个交点。
A.1B.2C.3(2)当两条直线相交成( ) 时 , 这两条直线互相垂直。
A. 锐角B. 直角C. 任何角(3)如右图 , 从 A 点出发 , 最短的一条线段是( )。
A.ABB.ACC.ADD.AE变式2.变式3. 图形中的垂线。
(1)正方形的哪些边是互相垂直的?(2)标出图中互相垂直的线段。
(3)写出下面这个正方形中互相垂直的线段。
(至少写4 组)4 小题,每题3 分,共计12 分)按要求画一画。
(1)用画垂线的方法画出一个边长是 4 厘米的正方形。
(2)画一个长是 4 厘米、宽是 2 厘米的长方形。
变式1. 分别量出点 A 到已知直线的距离。
变式2.我出问题你来答,我来指挥你来画。
变式3. 乐乐家所在的小村庄要修一条小路到附近的公路,怎样修最近?(画一画)4 小题,每题3 分,共计12 分)例4. 在互相平行的线下面画“√”。
变式1. 判断对错。
(1)不相交的两条直线叫平行线。
( )(2)平行的两条直线永远不会相交。
( )(3)数学书封面的两条对边是相互平行的。
( )(4)过直线外一点 , 只能画一条已知直线的平行线。
直线、射线、线段练习1、已知线段AB=8cm,在直线AB上画线段BC,使BC=3cm,则线段AC= .2、在锯木料时,一般先在木板上画出两点,然后过这两点弹出一条墨线,这是因为.3、往返于A、B两地的客车,中途停靠四个站,共有种不同的票价,要准备种车票.4、如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为___________cm.5、平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的16个点最多可确定条直线.6、已知A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm.则线段AC= cm.7、点A、B、C在同一条直线上,AB=6,BC=10,D、E分别是AB、BC的中点,DE的长8、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是cm.9、如图,点A、B、C在直线l上,则图中共有________条线段,有________条射线.10、如图,AB=9,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D始终在点C右侧,图中所有线段的和等于30cm,且AD=3CD,则CD= cm.11、如图所示,点A,B,C,D在同一条直线上,则这条直线上共有线段条.12、两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.13、点A,B,C在同一条直线上,AB=6cm,BC=2cm,则AC= .14、如图,平面内有公共端点的四条射线OA,OB,OC,OD,从射线OA开始按逆时针方向依次在射线上写出数字2,﹣4,6,﹣8,10,﹣12,….则第16个数应是;“﹣2016”在射线上.15、已知线段AB=6cm,AB所在直线上有一点C, 若AC=2BC,则线段AC的长为cm.16、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .17、如图,AB:BC:CD=2:3:4,AB的中点M与CD的中点N的距离是3 cm,则BC=18、已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.19、如图,已知线段AB=4,延长线段AB到C,使BC =2AB,点D是AC的中点,则DC的长等于 .20、如图,在自来水株管道AB的两旁有两个住宅小区C,D,现要在住管道上开一个接口P往C,D两小区铺设水管,为节约材料,接口P应开在主管AB的什么位置可以用学过的数学知识来解决这个问题。