汽车转向系统毕业设计论文
- 格式:doc
- 大小:448.50 KB
- 文档页数:13
第一章绪论1.1汽车转向器的功能及重要性汽车在行驶过程中需要改变行驶方向时,驾驶员通过汽车转向系使汽车转向桥(一般是前桥)上的车轮相对于汽车纵轴线偏转一定的角度,使汽车达到转向的目的。
另外,当汽车直线行驶时,转向轮往往会受到路面侧向干扰力的作用而自动偏转,从而改变了原来的行驶方向,此时,驾驶员也可以通过汽车转向系使转向轮向相反的方向偏转,恢复汽车原来的行驶方向。
汽车转向系的功用是改变和保持汽车的行驶方向,而作为转向系重要执行机构的转向器的作用是:将转向盘的转动变为齿条轴的直线运动或转向摇臂的摆动,降低传动速度,增大转向力矩并改变转向力矩的传动方向。
1.2汽车转向器的主要性能参数1.2.1转向器的效率转向器的输出功率与输入功率之比,称为转向器的传动效率。
功率P1从转向轴输入,经转向摇臂轴输出所求得的效率称为正效率,用符号η+表示,η+=( P1—P2)/P1;反之称为逆效率,用符号η-表示,η- =(P3—P2)/P3。
式中,P2为转向器中的摩擦功率;P3为作用在转向摇臂轴上的功率。
为了保证转向时驾驶员转动转向盘轻便,要求正效率高。
为了保证汽车转向后转向轮和转向盘能自动返回到直线行驶位置,又需要有一定的逆效率。
为了减轻在不平路面上行驶时驾驶员的疲劳,车轮与路面之间的作用力传至转向盘上要尽可能小,防止打手又要求此逆效率尽可能低。
转向器的正效率η+影响转向器正效率的因素有:转向器的类型、结构特点、结构参数和制造质量等。
(1)转向器类型、结构特点与正效率在前述四种转向器中,齿轮齿条式、循环球式转向器的正效率比较高,而蜗杆指销式特别是蜗杆滚轮式转向器的正效率要明显的低些。
同一类型转向器,因结构不同其正效率也不一样。
另外两种结构的转向器正效率,根据试验结果分别为70%和75%。
转向摇臂轴轴承的形式对效率也有影响,用滚针轴承比用滑动轴承可使正逆效率提高约10%。
(2) 转向器的结构参数与正效率如果忽略轴承和其它地方的摩擦损失,只考虑啮合副的摩擦损失,对于蜗杆和螺杆类转向器,其正效率可用下式计算η+=tanα/tan(α+ρ) …………………………………(1-1)式中,α为蜗杆(或螺杆)的螺线导程角;ρ为摩擦角,ρ=arctanf(f为摩擦因数)。
汽车电动助力转向系统设计毕业论文本章主要介绍汽车电动助力转向系统设计的背景和意义,以及论文的目的和结构安排。
汽车转向系统是车辆控制的重要组成部分,它直接影响着驾驶员的操控感受和行车安全性。
随着科技的发展,传统的液压助力转向系统逐渐被电动助力转向系统所取代。
电动助力转向系统通过电力传动装置提供操控力,相较于液压助力转向系统具有更高的效率、更好的节能性和可靠性。
本文的目的是设计一种可靠、高效的汽车电动助力转向系统。
在研究的基础上,将重点关注系统的结构设计、控制算法优化、故障诊断等方面。
通过对系统的设计和优化,可以提高汽车的操控性和安全性。
本文结构安排如下:第二章将介绍汽车电动助力转向系统的背景与发展;第三章将详细阐述系统的设计原理与结构;第四章将重点探讨控制算法的优化与实现;第五章将研究系统的故障诊断方法与技术;最后,第六章将总结全文,并提出进一步研究的展望。
通过本文的研究和实践,相信可以为汽车电动助力转向系统的设计与优化提供一定的参考和借鉴,推动汽车技术的发展与进步。
在这一部分,我们将对汽车电动助力转向系统设计相关的文献进行综述。
我们将总结已有的研究成果,以及当前存在的问题。
具体内容}本文详细介绍了汽车电动助力转向系统设计的方法和步骤,涵盖了传感器选择、电机控制、系统优化等方面。
传感器选择在汽车电动助力转向系统设计中,选择合适的传感器是至关重要的。
传感器可以检测车轮的转向角度、转向速度以及转向力等参数,为后续的电机控制提供必要的数据支持。
常见的传感器包括转向角度传感器、转向速度传感器和转向力传感器。
在选择传感器时,需考虑其精度、响应速度和可靠性等因素,并确保其能与电机控制系统良好地配合。
电机控制在汽车电动助力转向系统中,电机控制是实现转向功能的核心部分。
电机控制系统通过接收传感器提供的数据,计算并控制电机的输出力矩,从而实现汽车的转向功能。
电机控制的关键是控制算法的设计和实现。
常见的电机控制方法有PID控制、模糊控制和神经网络控制等。
目录摘要 (I)Abstract ..................................................................................I I 第1章绪论 (1)1.1 汽车转向系统简介 (1)1.1.1 转向系的设计要求 (1)1.2 EPS的特点及发展现状 (2)1.2.1 EPS与其他系统比较 (2)1.2.2 EPS的特点 (2)1.2.3 EPS在国内外的应用状况 (3)1.3 本课题的研究意义 (4)第2章电动助力转向系统的总体组成 (5)2.1 电动助力转向系统的机理及类型 (5)2.1.1 电动助力转向系统的机理 (5)2.1.2 电动助力转向系统的类型 (7)2.2 电动助力转向系统的关键部件 (9)2.2.1 扭矩传感器 (9)2.2.2 车速传感器 (9)2.2.3 电动机 (9)2.2.4 减速机构 (10)2.2.5 电子控制单元 (10)2.3 电动助力转向的助力特性 (11)第3章电动助力转向系统的设计 (12)3.1 对动力转向机构的要求 (12)3.2 齿轮齿条转向器的设计与计算 (12)3.2.1 转向系计算载荷的确定 (13)3.2.2 齿轮齿条式转向器的设计 (14)3.2.3 齿轮齿条转向器转向横拉杆的运动分析 (22)3.2.4 齿轮齿条传动受力分析 (24)3.2.5 齿轮轴的强度校核 (24)第4章转向传动机构的优化设计 (29)4.1 结构与布置 (29)4.2 用解析法求内、外轮转角关系 (30)4.3 转向传动机构的优化设计 (32)4.3.1 目标函数的建立 (32)4.3.2 设计变量与约束条件 (33)4.4 研究结论 (36)结论 (37)致谢 (39)参考文献 (40)附录1 (41)附录2 (46)摘要汽车转向系统可按转向的能源不同分为机械转向系统和动力转向系统两类。
汽车电动助力转向系统是一种新型的汽车动力转向系统,与传统液压转向系统相比,采用电动机直接提供助力,具有多方面优越性。
汽车转向器设计及应用毕业论文目录插图清单 (3)表格清单 (3)摘要 (4)Abstract (5)第一章绪论 (6)1.1 汽车转向器的功能及重要性 (6)1.2 汽车转向器的主要性能参数 (6)1.2.1转向器的效率 (6)2.2.2传动比的变化特性 (7)2.2.3转向盘自由行程 (9)1.4 汽车转向器的工作原理 (10)1.4.1 动力转向系统的工作原理 (10)1.4.2 转阀式液压助力转向器工作原理 (11)第二章总体方案设计 (12)2.1 转向器设计的分类 (12)2.1.1齿轮齿条式转向器 (12)2.1.2 蜗杆曲柄销式转向器 (12)2.1.3 循环球式转向器 (12)2.2 转向器方案分析 (13)2.3 防伤安全机构方案分析 (15)第三章循环球式转向器的设计与计算 (17)3.1 螺杆、钢球和螺母传动副 (18)3.1.1 钢球中心距D、螺杆外径D1和螺母径D2 (19)3.1.2 钢球直径d及数量n (19)3.1.3 滚道截面 (20)3.1.4 接触角 (20)3.1.5 螺距P和螺旋线导程角 (21)3.1.6 工作钢球圈数W (21)3.1.7 导管径d1 (21)3.2 齿条、齿扇传动副的设计 (21)3.3 循环球式转向器零件强度计算 (23)3.3.1钢球与滚道之间的接触应力σ (23) (24)3.3.2 齿的弯曲应力w3.3.3 转向摇臂轴直径的确定 (24)第四章动力转向机构的设计 (25)4.1 对动力转向机构的要求 (25)4.2 液压式动力转向机构布置方案分析 (25)4.2.1 动力转向机构布置方案分析 (25)4.3 液压式动力转向机构的计算 (27)4.3.1 动力缸尺寸的计算 (27)4.3.2 分配滑阀参数的选择 (27)4.3.3 分配阀的回位弹簧 (27)4.3.4 动力转向器的评价指标 (29)第五章转向梯形 (31)5.1 转向梯形结构方案分析 (31)5.1.1 整体式转向梯形 (31)5.1.2 断开式转向梯形 (32)5.2整体式转向梯形机构优化设计 (33)致谢 (37)参考文献 (38)插图清单图1-1 转向器角传动比变化特性曲线 (9)图1-2 液压动力转向系统示意图 (11)图2-1 循环球式齿条-齿扇转向器 (13)图2-2 防伤转向传动轴简图 (15)图2-3 防伤转向轴简图 (15)图3-1 螺杆钢球螺母传动副 (19)图3-2 四段圆弧滚道截面 (20)图3-3 为获得变化的齿侧间隙齿扇的加工原理和计算简图 (22)图3-4 用于选择偏心n的线图 (22)图3-5 螺杆受力简图 (24)图4-1 动力转向机构布置方案图 (26)图4-2 动力缸的布置 (27)图4-3 确定动力缸长度尺寸简图 (28)图4-4 预开隙1e (28)图4-5 静特性曲线分段图 (30)图5-1 整体式转向梯形 (31)图5-2 断开式转向梯形 (32)图5-3 断开点的确定 (33)图5-4 理想的、外车轮转角关系简图 (34)图5-5 转向梯形机构优化设计的可行域 (36)表格清单表3-1 循环球转向器的主要参数 (17)表3-2 循环球式转向器的部分参数 (18)表3-3 系数k与A/B的关系 (23)摘要汽车转向器是汽车的重要组成部分,也是决定汽车主动安全性的关键总成,它的质量严重影响汽车的操纵稳定性。
汽车转向系统ES设计论文汽车转向系统(ES)是汽车的重要安全控制系统之一,它具有控制车辆转向动作的功能。
随着汽车技术的发展和智能化水平的提高,汽车转向系统的设计也变得越来越重要。
本文将探讨汽车转向系统的设计,并介绍一些目前比较常见的设计方案。
首先,汽车转向系统的设计应考虑到车辆的稳定性和安全性。
在转向过程中,车辆必须保持平稳,并且转向动作应该准确可靠。
因此,汽车转向系统应该具备快速而精准的响应能力。
一种常见的设计方案是采用电动助力转向系统(EPAS),它通过电动马达提供动力,并且可以根据车速和驾驶员的输入进行精确控制。
EPAS可以实现转向力的实时调节,提高转向精度和驾驶稳定性。
另外,汽车转向系统的设计还需要考虑到能耗和环保性。
传统的液压助力转向系统存在液压流体泄漏和能量浪费的问题。
为了解决这些问题,一种可行的设计方案是采用电子助力转向系统(EPS)。
EPS利用电动机替代了传统的液压泵,从而减少了能源的消耗。
而且,EPS还可以根据驾驶条件和需求调整转向力的大小,提供更好的驾驶体验。
此外,在汽车转向系统的设计中,还需要考虑到自动驾驶技术的应用。
随着自动驾驶技术的发展,汽车转向系统需要能够与其他智能化技术进行联动,实现更高级别的自动驾驶功能。
例如,通过与车辆定位系统和传感器的协同工作,汽车转向系统可以自动感知道路情况,并根据需要进行自动转向。
这样可以大大提高驾驶的安全性和舒适性。
最后,汽车转向系统的设计还应该兼顾可靠性和故障监测与诊断(FDD)功能。
由于汽车在使用过程中可能会遇到各种故障和异常情况,因此必须具备故障检测和诊断功能。
一种常用的设计方法是采用红外传感器和电子控制单元进行实时监测和故障诊断。
当转向系统发生故障时,FDD系统可以及时发出警报并采取相应措施,确保驾驶员和车辆的安全。
综上所述,汽车转向系统的设计应注重提高驾驶稳定性、降低能耗、适应自动驾驶技术和增强故障监测与诊断功能。
未来,随着汽车技术的不断发展,我们可以期待更先进和智能化的汽车转向系统的设计和应用。
汽车转向机构设计(大学毕业设计)本文旨在探讨汽车转向机构设计的背景、意义以及其在大学毕业设计中的目的和重要性。
汽车转向机构的设计是汽车工程中的重要环节,它直接影响着车辆的操控性能和安全性。
因此,对于汽车工程专业的学生而言,深入研究和理解转向机构的设计原理和方法具有重要意义。
在大学毕业设计中选择研究汽车转向机构设计的话题,一方面可以拓宽学生的专业知识和技能,提高其在汽车工程领域的综合素质;另一方面,通过实际设计方案的研究与实施,使学生对理论知识的应用能力得到进一步锻炼和提升。
本文将首先介绍汽车转向机构设计的背景和意义,强调其在汽车工程中的重要性。
然后,将探讨转向机构设计的基本原理和方法,包括传动机构、转向系统及其相关部件的选择和设计等方面的内容。
最后,通过对实际案例的分析和总结,总结出一套完整可行的汽车转向机构设计方案,并对未来可能的改进和发展方向进行展望。
通过本文的研究,将有助于提高汽车工程专业学生对汽车转向机构设计的理解和掌握,同时也为未来相关研究和实践工作提供了借鉴和参考。
研究目标明确研究汽车转向机构设计的目标和要解决的问题,例如提高驾驶安全性、提升转向机构的性能等。
研究内容和方法明确研究汽车转向机构设计的目标和要解决的问题,例如提高驾驶安全性、提升转向机构的性能等。
研究内容和方法本文旨在对汽车转向机构进行设计,并将其作为大学毕业设计的研究内容。
本研究将详细介绍转向机构的结构、原理以及涉及的相关知识点,以便深入了解转向机构的工作原理和相关概念。
本文旨在对汽车转向机构进行设计,并将其作为大学毕业设计的研究内容。
本研究将详细介绍转向机构的结构、原理以及涉及的相关知识点,以便深入了解转向机构的工作原理和相关概念。
在进行研究时,将采用以下方法和实验步骤来解决问题:文献调研:通过查阅相关文献和资料,了解转向机构的基本构造和工作原理,掌握相关研究领域的最新进展。
理论分析:对转向机构的结构和原理进行理论分析,分析各个部件的功能和相互关系,为后续设计提供理论基础。
前言100多年前,汽车刚刚诞生后不久,其转向操作是模仿马车和自行车的转向方式,用一个操纵杆或手柄来使前轮偏转实现转向的。
由于操纵费力且不可靠,以致时常发生车毁人亡的事故。
第一辆不用马拉的四轮汽车问世时,它已经吧前桥和前轮组成为了一总成。
该总成别安装在枢轴上,可以绕前桥中心的一个点转动,利用一个杆柱连接前桥的中点,通过地板往上延伸,转向盘就紧固再杆柱上端,以此操纵汽车。
这种装置在汽车车速不超过马车的速度时,还是很好用的,但当车速提高后,驾驶员就要求提高转向的准确性,以减少轮胎的磨损,延长轮胎的使用寿命。
后来他们发现,正在探索的这种理论在1817年就已经呗阐明了。
1817年,德国人林肯斯潘杰提出了类似于现代汽车的将前轮用转向节与前梁连接方式。
(即改进转向器的想法)。
他研制了一种允许汽车前轮在主轴上独立回转的结构—把车轮与转向节连接起来,转向节又用可转动的销轴与前轴连接,从而发明了转向梯形机构,并与第二年将其向英国政府申请专利的权力转让给了出版商、英籍德国人阿克曼。
不久,阿曼克向英国专利局申请了“平行连杆式转向机构”专利。
1879年,法国四轮马车制造商杰特发明了第一个平行四边形转向联动机构。
杰特的转向机构可以把转向中心点移向两侧。
他把一根杆子与带有两个连接臂的转向节相连。
当时称为转向臂和随动臂。
杰特把转向柱的一端与转向臂连接,当转动转向柱时,通过转向臂和随动臂、横拉杆和车轮轴转动车轮,实现汽车转向。
1857年,英国的达吉恩蒸汽汽车是第一辆采用转向盘来实现汽车转向的机动车辆。
1872年苏格兰的查理士第一个把转向盘安装到煤气发动机车辆上。
此前,想把转向盘安装到车辆上的多次尝试均未得到认可。
1878年,“现代汽车之父”、德国的卡尔·本茨在他的三轮乘坐车上首次采用了所谓的齿轮齿条式转向器,但却考一根操纵杆来控制汽车行使方向。
1886年,英国的弗雷德里克·斯特里克兰说服了他的朋友、汽车制造商雷克,把一个用于轮船上的转向柱和转向盘装到了一辆新的戴姆勒·弗顿敞蓬车上。
哈尔滨工业大学本科毕业论文(设计)东风DFL1310载重车双前桥转向系统优化设计摘要汽车的双前转向桥转向轮产生异常磨损是较普遍的现象,本文以某型号的双前轴转向载货汽车技术参数作为研究对象,进行转向系统结构参数的优化,从而减少轮胎磨损。
首先根据该车型底盘改装手册中参数用CATIA建立三维运动模型,从而加深自己对该车型转向系统的理解并以此作为后续数学分析与建模的依据;接着通过运用数学知识从整体考虑双前桥系统转向机构,建立了参数化的汽车双前桥转向系统数学模型;然后运用MATLAB软件将数学模型进行编程并建立总体的优化目标函数以进行运算,最终得到了双前桥转向系统部分结构的优化参数,接着通过编写程序对优化后一轴及二轴内外轮转向半径与理论值进行对比分析,得出优化取得较好结果的结论;最后依据CATIA建立的三维模型用CAD绘制出二维工程图纸。
关键词:双前桥转向系统,CATIA三维建模,克曼原理,MATLAB优化仿真- I -哈尔滨工业大学本科毕业论文(设计)The double front axle of Dongfeng trucksteering System optimization designAbstractAuto double front axle steering knuckle steering wheel to generate abnormal wear is a more common phenomenon,this paper to a certain type of double front axle steering truck technology parameters as the research object,to the optimization of the structure parameters of the system,to reduce tyre wear.According to the vehicle chassis modification manual parameters to establish three-dimensional model with CATIA,so as to deepen their understanding of the vehicle steering system as the analysis and modeling of subsequent mathematical basis;then through the double front axle system using mathematical knowledge from the overall consideration of the steering mechanism,establish the double front axle steering system parametric mathematical model;then use the mathematical model with MATLAB software programming and the optimization objective function to establish the overall operation,finally got the optimized parameters of dual front axle steering system parts of the structure,and then through the preparation process of the optimized one axis and two axis wheel steering radius were compared with the theoretical value analysis,obtains success;finally,based on the 3D CATIA model established by CAD to draw the 2D engineering drawings.Key Words:Double front axle steering system,CATIA modeling,Ackerman principle,MATLAB simulation and optimization- II -哈尔滨工业大学本科毕业论文(设计)目录摘要 (I)Abstract (II)第 1 章绪论 (1)1.1 本课题研究目的和意义 (1)1.2 国内外研究现状概述 (2)1.3 本课题研究内容及技术方案 (3)1.4 本设计的特色 (4)第 2 章双前桥转向系统理论 (5)2.1 双前桥转向系统理论 (5)2.1.1 转向系统设计的基本要求 (5)2.1.2 双前桥转向系统结构 (6)2.1.3 两轴汽车转向时理想的内、外前轮转角关系 (7)2.1.4 双前轴转向汽车转向时的理想的同侧车轮转角关系 (8)2.2 本章小结 (10)第 3 章双前桥转向系统CATIA 运动模型 (11)3.1 CATIA软件介绍 (11)3.2 建立双前桥转向系统零部件三维模型 (12)3.2.1 建立一桥横梁三维数模 (12)3.2.2 建立一桥左、右转向节三维数模 (12)3.2.3 建立一桥转向节臂三维数模 (14)3.2.4 建立一桥左右转向梯形臂三维数模 (14)3.2.5 建立拉杆球头总成三维数模 (15)3.2.6 建立拉杆卡箍三维数模 (15)3.2.7 建立拉杆体三维数模 (16)3.2.8 建立转向器三维数模 (16)3.2.9 建立部分车架三维数模 (17)3.3 建立双前桥转向系统三维装配模型 (17)3.4 本章小结 (19)第 4 章双前桥转向系统的优化 (20)4.1 MATLAB软件介绍 (20)4.2 基于MATLAB的双前桥转向汽车转向机构运动模型 (20)- III -哈尔滨工业大学本科毕业论文(设计)4.2.1 双前桥转向理论 (20)4.2.2 双前桥转向系统数学模型的建立 (22)4.2.3 第一轴转向垂臂机构数学模型 (22)4.2.4 第二轴转向垂臂机构数学模型 (24)4.2.5 摇臂机构总模型 (24)4.2.6 梯形机构模型 (25)4.2.7 建立优化目标函数 (26)4.3 用Matlab进行仿真 (26)4.3.1 编写Matlab仿真程序 (26)4.3.2 编写Matlab调用程序 (28)4.3.3 用Matlab进行优化 (28)4.3.4 对优化结果进行仿真检验 (29)4.4 本章小结 (32)第 5 章平面二维图纸的绘制 (33)5.1 CAD软件简介 (33)5.2 绘制CAD工程图纸 (33)5.3 本章小结 (34)结论 (35)致谢 (36)参考文献 (37)- IV -哈尔滨工业大学本科毕业论文(设计)第1章绪论1.1本课题研究目的和意义当今社会,国家的经济飞速发展,人们生活水平越来越高出行也越来越离不开汽车。
河北科技大学毕业论文题目:汽车电动助力转向系统特点与应用专业:汽车检测与维修目录引言…………………………………………………………………………………第1章汽车动力转向系统的历史发展概况……………………………………第2章汽车动力转向系统的原理及特点………………………………………第3章EPS系统的组成原理及分类……………………………………………3.1 EPS系统的组成……………………………………………………3.2 EPS系统的工作原理………………………………………………3.3 EPS系统主要部件的结构及工作原理……………………………3.4 EPS系统的分类……………………………………………………3.5 EPS系统的性能及特点……………………………………………第4章 EPS系统的发展趋势……………………………………………………引言近年来,随着电子技术的迅速发展,电子技术在汽车上的应用范围不断扩大。
汽车转向系统中愈来愈多的采用电子器件,汽车转向系统已从简单的纯机械式转向系统、液压动力转向系统(HydraulicPowerSteering,简称HPS)、电动液压助力转向系统(ElectricHydraulicPowerSteering,简称EHPS)和电控液压助力转向系统(ElecticallControlledHydraulicPowerSteering,简称ECHPS)发展到如今的更为节能及操纵性能更为优越的电动助力转向系统(ElectricalPow erSteering,简称EPS系统)。
EHPS和ECHPS系统等助力系统在汽车上的采用,改善了汽车转向力的控制特性,降低了驾驶员的转向负担,然而汽车转向系统始终处于液压机械传动阶段,EHPS相比传统HPS降低了能源损耗。
但电液动力转向系统,不论ECHPS还是EHPS都与传统的HPS一样存在液压油泄漏问题。
EPS 系统是新一代的助力转向系统,其性能特点与优势是电液动力转向系统所不能比拟的。