专题:电磁感应现象中有关电容器类问题及问题详解
- 格式:doc
- 大小:340.22 KB
- 文档页数:11
难点挑战Җ㊀浙江㊀徐华兵㊀㊀电容器具有隔直流㊁通交流 的特点,可以理解为电容器具有 通变化的电流 的特点.实际教学中我们会发现学生对回路中电流变化的定量问题通常感觉难处理,本文就此类问题的解决办法进行剖析㊁归纳,以飨读者.1㊀电容器放电模型1 1㊀基础模型㊀图1如图1所示,电阻可忽略的光滑金属导轨与电动势为E 的电源相连,质量为m ㊁电阻为R的金属棒放在导轨上,一电容通过单刀双掷开关与导轨相连.先将开关扳向左侧给电容器充电,再将开关扳向右侧让电容器通过导体棒放电.1 2㊀电容器电压和电荷量变化规律当开关与左侧电源接触时,电容器充电,电容器两极板间获得一个恒定的电压,充电时间很短(数量级一般为10-6s ).稳定后电容器两端电压U =E ,电荷量Q 0=C U =C E .当开关与右侧导轨接触时,电容器通过金属棒放电,有电荷通过金属棒,棒在安培力的作用下向右加速运动.电容器两极板电荷量减少,电压减小;金属棒速度增加,感应电动势增加.当棒切割磁感线产生电动势与电容器两极板间电压相等时,棒匀速运动.电容器不再放电,两极板间电压恒定,此时电容器两极板间电压U =B l v m ,电荷量Q =C U =C B l v m .导体棒感应电动势㊁电荷量与时间关系图线如图2㊁3所示.图2㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图31 3㊀导体棒的运动规律根据牛顿第二定律有B I l =m a ,通过棒的电流逐渐减小,棒的加速度逐渐减小,棒做加速度减小的加速运动,最终以某一最大速度v m 匀速运动.对棒应用动量定理有B I l Δt =m v m -0,即有B l (C E -C B l v m )=m v m -0,解得v m =B l C Em +B 2l 2C.1 4㊀电路中的能量转化规律放电过程,电容器储存的电场能减少,棒的动能增加,而系统整个过程中的总能量应守恒.棒获得的动能E k m =12m v 2m =m (B l C E)22(m +B 2l 2C )2.电容器减少的能量ΔE =12C E 2-12C (B L v m )2=C E 2(m 2+2m B 2l 2C )2(m +B 2l 2C )2.从能量表达式中可以看出,电容器减少的能量比棒获得的能量要多,多余的能量转化为整个回路产生的热量和回路向外辐射的电磁波.而回路产生的热量和电磁辐射能E 损=ΔE -E k m =C E 2(m 2+2m B 2l 2C )2(m +B 2l 2C )2-m (B l C E )22(m +B 2l 2C )2=C E 2m2(m +B 2l 2C ).1 5㊀典型例题剖析例1㊀电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器.电磁轨道炮原理图如图4所示,图中直流电源电动势为E ,电容器的电容为C .2根固定于水平面内的光滑平行金属导轨间距为l ,电阻不计.炮弹可视为一质量为m ㊁电阻为R 的金属棒MN ,垂直放在2个导轨间处于静止状态,并与导轨良好接触.首先开关S 接1,使电容器完全充电.然后将S 接至2,导轨间存在垂直于导轨平面㊁磁感应强度大小为B 的匀强磁场(图中未画出),MN 开始向右加速运动.求:(1)磁场的方向;(2)MN 刚开始运动时加速度a 的大小;(3)MN 离开导轨后电容器上剩余的电荷量Q .图4当开关拨向2时,电容器通过金属棒放电,金属棒在磁场中做加速度减小的加速运动,当金属棒MN 两端的电压和电容器两极板间的电压相等时,金属棒达到最大速度.(1)由左手定则可以判断磁场方向应垂直于导轨平面向下.(2)电容器完全充电后,两极板间电压为E ,当开。
《电磁感应》中电容器充电、放电问题一、电容器充电问题1.如图所示,水平放置的两根平行光滑金属导轨相距40cm ,质量为0.1kg 的金属杆ab 垂直于导轨放于其上,导轨间接入电阻R =20Ω和电容C =500pF ,匀强磁场方向垂直于导轨平面竖直向下,磁感应强度B =1.0T ,现有水平向右的外力使ab 从静止开始以加速度a =5.0m /s 2向右做匀加速运动,不计其他电阻和阻力,求:(1)电容器中的电流; (2)t =2s 时外力的大小.解析:(1)电容器中电流I C =t Q ∆∆ ① △Q =C·△U ②△U =BL △V ③a =tV ∆∆ ④ 由上四式可得:I C =CBLa =1×10-9A(2)当t =2s 时,V =at =10m/s ,电动势E =BLV =4V ,通过R 的电流I =E/R =0.2A ,远大于电容器的充电电流。
所以电容器电流可忽略不计。
由牛顿第二定律:F -BIL =ma 解得:F =0. 58N2.如图所示,两光滑导轨相距为L ,倾斜放置,与水平地面夹角为θ,上端接一电容为C 的电容器。
导轨上有一质量为m ,长为L 的导体棒平行于地面放置,导体棒离地面的高度为h ,磁感应强度为B 的匀强磁场与两导轨所决定的平面垂直,开始时电容器不带电。
将导体棒由静止释放,整个电路电阻不计,则:( )A .导体棒先做加速运动,后作匀速运动B .导体棒一直做匀加速直线运动,加速度为a =22sin L CB m mg +α C .导体棒落地时瞬时速度v=222L CB m mgh + D .导体棒下落中减少的重力势能转化为动能,机械能守恒解析:设Δt 时间内电容器的带电量增加Δq ,则:I=CBLa t v CBL t q =∆∆=∆∆ (1)又因为ma BIL mg =-αsin 得I=BL mamg -αsin (2)由(1)(2)得CBLa BL ma mg =-αsin解得a =22sin L CB m mg +α,所以B 选项正确R C a bF 图3-3-4由22222sin sin 22L CB m mgh h L CB m mg aL v +=∙+==αα,所以C 选项正确。
专题:电磁感应现象中有关电容器类问题1、电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。
两根固定于水平面内的光滑平行金属导轨间距为L,电阻不计。
炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S接1,使电容器完全充电。
然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN 开始向右加速运动。
当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。
问:(1)磁场的方向;(2)MN刚开始运动时加速度a的大小;(3)MN离开导轨后的最大速度v m的大小。
试题分析:(1)根据通过MN电流的方向,结合左手定则得出磁场的方向.(2)根据欧姆定律得出MN刚开始运动时的电流,结合安培力公式,根据牛顿第二定律得出MN刚开始运动时加速度a的大小.(3)开关S接2后,MN开始向右加速运动,速度达到最大值时,根据电动势和电荷量的关系,以及动量定理求出MN 离开导轨后最大速度.解:(1)电容器上端带正电,通过MN的电流方向向下,由于MN向右运动,根据左手定则知,磁场方向垂直于导轨平面向下.2、一对无限长平行导轨位于竖直平面内,轨道上串联一电容器C(开始未充电).另一根质量为m的金属棒ab可沿导轨下滑,导轨宽度为L,在讨论的空间范围内有磁感应强度为B、方向垂直整个导轨平面的匀强磁场,整个系统的电阻可以忽略,ab棒由静止开始下滑,求它下滑h高度时的速度v.解:设ab 棒下滑过程中某一瞬时加速度为a i ,则经过一微小的时间间隔Δt ,其速度的增加量为Δv=a i ·Δt.棒中产生的感应电动势的增加量为:ΔE=BL Δv=BLa i ·Δt电容器的极板间电势差的增加量为:ΔU i =ΔE=BLa i ·Δt电容器电荷量的增加量为:ΔQ=C ·ΔU=CBLa i ·Δt电路中的充电电流为:I=t Q ∆∆=CBLa i ab 棒所受的安培力为:F=BLI=CB 2L 2a i由牛顿第二定律得:mg-F=ma i ,即mg-CB 2L 2a i =ma i ,所以,a i =22LCB m mg +,可见,棒的加速度与时间无关,是一个常量,即棒ab 向下做匀加速直线运动.所以要求的速度为v=2222LCB m mgh ah +=.3、如图所示,处于匀强磁场中的两根足够长且电阻不计的平行金属导轨相距L ,导轨平面与水平面重合,左端用导线连接电容为C 的电容器(能承受的电压足够大).已知匀强磁场的磁感应强度大小为B 、方向竖直向上.一质量为m 、电阻不计的直金属棒垂直放在两导轨上,一根绝缘的、足够长的轻绳一端与棒的中点连接,另一端跨过定滑轮挂一质量为m 的重物.现从静止释放重物并通过轻绳水平拖动金属棒运动(金属棒始终与导轨垂直并保持良好接触,不计滑轮质量和所有摩擦).求:(1)若某时刻金属棒速度为v ,则电容器两端的电压多大?(2)求证:金属棒的运动是匀加速直线运动;(3)当重物从静止开始下落一定高度时,电容器带电量为Q ,则这个高度h 多大?解:(1)电容器两端的电压U 等于导体棒上的电动势E ,有:U=E=BLv(2)金属棒速度从v 增大到v+△v 的过程中,用时△t (△t →0),加速度为a ,有:电容器两端的电压为:U=BLv电容器所带电量为:式中各量都是恒量,加速度保持不变,故金属棒的运动是匀加速直线运动.(3)由于金属棒做匀加速直线运动,且电路中电流恒定4、如图所示,有一间距为L且与水平方向成θ角的光滑平行轨道,轨道上端接有电容器和定值电阻,S为单刀双掷开关,空间存在垂直轨道平面向上的匀强0磁场,磁感应强度为B。
电磁感应中的电容器与金属棒相结合的问题黄德利山东省兖州一中272100摘要:部分导体做变速运动产生变化的电流时,高中阶段的闭合电路欧姆定律就无法列式计算,学生感觉无从下手,从而这一类的问题成为高三复习的难点。
通过最近全国各地的一模考试发现,这类问题在各地一模中均有体现。
关键词:电磁感应;电容器;金属棒电容器是一个储存电荷的容器,它可以进行无数次的充放电.在充放电的过程中,可以理解为变化的电流可以通过电容器。
因此,在一些含有电容器的电磁感应电路中,当一部分导体做变速运动产生变化的电流时,高中阶段的闭合电路欧姆定律就无法列式计算,学生感觉无从下手,从而这一类的问题成为高三复习的难点。
通过最近全国各地的一模考试发现,这类问题在各地一模中均有体现。
实际上这类问题,只要认真分析,寻找其中的规律,这类问题其实也很好解决。
下面通过几个例题对与电容器相关的问题分类解决。
一、金属棒做匀加速直线运动例1、。
如图所示,位于同一水平面的两根平行导轨间的距离是L,导线的左端连接一个耐压足够大的电容器,电容器的电容为C.放在导轨上的导体杆cd与导轨接触良好,cd杆在平行导轨平面的水平力作用下从静止开始匀加速运动,加速度为a,磁感强度为B的匀强磁场垂直轨道平面竖直向下,导轨足够长,不计导轨和连接电容器导线的电阻,导体杆的摩擦也可忽略.求从导体杆开始运动经过时间t电容器吸收的能量E=?解析:据题意,导体杆MN加速切割磁感线,产生的感应电动势且不断增大,电容器两极板间电压随着增大,储存的电能增加,同时由于电容器处于连续充电状态中,电路中有持续的充电电流,故导体杆受到向左的安培力.因电容器在时间t 内吸收的电能可以用克服安培力做的功来量度,所以弄清楚充电电流及安培力的变化规律,就成为解答本题的关键。
设某时刻导体杆切割磁感线的速度为v,产生的感应电动势为E,电容器所带的电荷量为q,两极板间的电压为u,则有:u=E=BLv,q=Cu=CBLv。
电磁感应现象压轴难题知识归纳总结一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,两根足够长的光滑平行直导轨固定在水平面上,导轨左侧连接一电容器,一金属棒垂直放在导轨上,且与导轨接触良好。
在整个装置中加上垂直于导轨平面的磁场,磁感应强度按图乙所示规律变化。
0~t 0内在导体棒上施加外力使导体棒静止不动,t 0时刻撤去外力。
已知电容器的电容为C ,两导轨间距为L ,导体棒到导轨左侧的距离为d ,导体棒的质量为m 。
求: (1)电容器带电量的最大值; (2)导体棒能够达到的最大速度v m 。
【答案】(1)00CB Ld Q t =;(2)22022()CB L dv t m CB L =+() 【解析】 【分析】 【详解】(1)电容器两极板的电压B U Ld t =电容器的带电量00CB t Q CU Ld== (2)电容器放电后剩余的电量Q CU ''=U BLv '=由动量定理得i BI L t mv ∑∆= Q Q I t '-=∆解得22022()CB L d v t m CB L =+()2.如图所示,光滑的水平平行金属导轨间距为 L ,导轨电阻忽略不计.空间存在垂直于导轨平面竖直向上的匀强磁场,磁感应强度大小为 B ,轻质导体棒 ab 垂直导轨放置,导体棒 ab 的电阻为 r ,与导轨之间接触良好.两导轨之间接有定值电阻,其阻值为 R ,轻质导体棒中间系一轻细线,细 线通过定滑轮悬挂质量为 m 的物体,现从静止释放该物体,当物体速度达到最大时,下落的高度为 h , 在本问题情景中,物体下落过程中不着地,导轨足够长,忽略空气阻力和一切摩擦阻力,重力加速度 为 g .求:(1)物体下落过程的最大速度 v m ;(2)物体从静止开始下落至速度达到最大的过程中,电阻 R 上产生的电热 Q ; (3)物体从静止开始下落至速度达到最大时,所需的时间 t .【答案】(1)22()mg R r B L + (2) 3244()2mghR m g R R r R r B L+-+ (3) 2222()()m R r B L h B L mg R r +++ 【解析】【分析】在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大,由平衡条件、闭合电路欧姆定律和电磁感应定律求出物体下落过程的最大速度;在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律求出电阻R 上产生的电热;在系统加速过程中,分别对导体棒和物体分析,根据动量定理可得所需的时间;解:(1)在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大 对物体,由平衡条件可得mg=Fr 对导体棒Fr=BIL对导体棒与导轨、电阻R 组成的回路,根据闭合电路欧姆定律EI R r=+ 根据电磁感应定律E=BLv m 联立以上各式解得m 22()v mg R r B L +=(2)在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律可得 mgh=12mv m 2+Q 总 在此过程中任一时刻通过R 和r 两部分电阻的电流相等,则电功率之比正比于电阻之比,故整个过程中回路中的R 与r 两部分电阻产生的电热正比于电阻,所以Q R Q R r=+总 联立解得3244()Q 2mghR m g R R r R r B L +=-+(3)在系统加速过程中,任一时刻速度设为v,取一段时间微元Δt,在此过程中分别对导体棒和物体分析,根据动量定理可得22TF0B L vtR r⎛⎫-∆=⎪+⎝⎭()Tm F mg t v-∆=∆整理可得22m mB L vg t t vR r∆-∆=∆+即22m mB Lg t x vR r∆-∆=∆+全过程叠加求和22m mmB Lgt h vR r-=+联方解得2222()t()m R r B L hB L mg R r+=++3.某同学在学习电磁感应后,认为电磁阻尼能够承担电梯减速时大部分制动的负荷,从而减小传统制动器的磨损.如图所示,是该同学设计的电磁阻尼制动器的原理图.电梯箱与配重质量都为M,通过高强度绳子套在半径1r的承重转盘上,且绳子与转盘之间不打滑.承重转盘通过固定转轴与制动转盘相连.制动转盘上固定了半径为2r和3r的内外两个金属圈,金属圈内阻不计.两金属圈之间用三根互成120︒的辐向导体棒连接,每根导体棒电阻均为R.制动转盘放置在一对励磁线圈之间,励磁线圈产生垂直于制动转盘的匀强磁场(磁感应强度为B),磁场区域限制在120︒辐向角内,如图阴影区所示.若电梯箱内放置质量为m的货物一起以速度v竖直上升,电梯箱离终点(图中未画出)高度为h时关闭动力系统,仅开启电磁制动,一段时间后,电梯箱恰好到达终点.(1)若在开启电磁制动瞬间,三根金属棒的位置刚好在图所示位置,则此时制动转盘上的电动势E为多少?此时a与b之间的电势差有多大?(2)若忽略转盘的质量,且不计其它阻力影响,则在上述制动过程中,制动转盘产生的热量是多少?(3)若要提高制动的效果,试对上述设计做出二处改进.【答案】(1)22321()2Bv r rEr-=,22321()6Bv r rUr-= (2)21()2Q M m v mgh=+-(3) 若要提高制动的效果,可对上述设计做出改进:增加外金属圈的半径r3或减小内金属圈的半径r2【解析】 【分析】 【详解】(1)在开启电磁制动瞬间,承重转盘的线速度为v ,所以,角速度1v r ω=所以,制动转盘的角速度1vr ω=,三根金属棒的位置刚好在图2所示位置,则fe 切割磁感线产生电动势22321()2Bv r r B S E t t r -∆Φ⋅∆===∆∆所以干路中的电流223E EI R R R R R==++ 那么此时a 与b 之间的电势差即为路端电压22321()6Bv r r U E IR r -=-=(2)电梯箱与配重用绳子连接,速度相同;由能量守恒可得21(2)()2m M v m M gh Mgh Q +=+-+ 解得:21()2Q M m v mgh =+- (3)若要提高制动的效果,那么在相同速度下,要使h 减小,则要使制动转盘产生的热量增加,即在相同速度下电功率增大,,速度为v 时的电功率222223221()362B v r r E P Rr R-== 所以,若要提高制动的效果,可增加外金属圈的半径r 3或减小内金属圈的半径r 2或减小金属棒的电阻或减小承重盘的半径r 1.4.如图所示,在倾角为θ的斜面内有两条足够长的不计电阻的平行金属导轨,导轨宽度为L ,导轨上端连有阻值为R 的电阻;在垂直于导轨边界ab 上方轨道空间内有垂直于导轨向上的均匀变化的匀强磁场B 1。
2023届高三物理一轮复习重点热点难点专题特训专题68 电磁感应现象中的含容电路和双棒问题 特训目标特训内容 目标1电磁感应现象中的含容电路(1T —5T ) 目标2等间距双棒问题(6T —10T ) 目标3 不等间距双棒问题(11T —15T )一、电磁感应现象中的含容电路1.如图所示,水平面上固定着两根足够长的光滑金属导轨MN 和PQ ,相距为L ,左端MP 间接有电容为C 的电容器。
导轨处于方向竖直向下、磁感应强度大小为B 0的匀强磁场中,质量为m 的金属棒ab 横放在导轨上且与导轨接触良好。
现给金属棒一个平行导轨向右的瞬时冲量I ,关于此后的过程,下列说法正确的是( )A .金属棒做匀变速运动,最后匀速运动B .金属棒做匀加速运动,最后停止运动C .金属棒最终的速度大小为0220B LCI m B L C + D .整个过程中金属棒克服安培力做的功为22I m -22222C mI m B L +() 【答案】D【详解】AB.根据动量定理可知金属棒获得的初速度v0=Im对金属棒受力分析可知,金属棒在运动过程中受到的合外力等于安培力。
金属棒切割磁感线产生感应电动势,给电容器充电,金属棒做减速运动,金属棒的速度减小,安培力减小,做变减速运动,最终当金属棒两端电压和电容器两端电压相等时,金属棒做匀速运动,AB错误;C.对金属棒,设其做匀速运动时的速度为v,根据动量定理有-B0I电Lt=m(v-v0)又I电t=q且q=CU,U=B0Lv解得v=220CIm B L+,C错误;D.对金属棒应用动能定理有-W A=12mv2-12m2v解得W A=22Im-()22222CmIm B L+,D正确。
故选D。
2.如图甲、乙、丙中,除导体棒ab可动外,其余部分均固定不动,甲图中的电容器C原来不带电。
设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计,图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向里的匀强磁场中,导轨足够长。
关于电磁感应中 电容问题 的讨论王㊀成(江苏省苏州中学㊀215002)摘㊀要:电容问题一直是一类难题ꎬ电磁感应中的电容更是难上加难ꎬ众所周知电容在直流电路中是断路的ꎬ但是电流大小或者方向一旦发生变化就出现了 通路 ꎬ当然这里的通路不是真的通了ꎬ而是电容的不断充电与放电ꎬ本文抓住电容充放电时电容上电压和电流的特点.就电容在电磁感应中问题进行归纳与总结ꎬ希望能够抛转引玉.关键词:电磁感应ꎻ电容电路中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2019)07-0063-02㊀㊀一㊁电容器充放电的过程的电压㊁电流的特点电容充电与放电都是一个过程.而不是一个瞬间.图1(a)电键k打到1时ꎬ电源给电容充电ꎬ当电压与电动势相等时ꎬ充电结束.(b)图像就是充电时的电压-时间图像ꎬ电键k打到2时ꎬ电容放电ꎬ电量完全放完放电结束.(c)图像是放电时的电压-时间图像.因为电流i=q/tꎬq=ucꎬ所以i=uc/tꎬ所以图像的斜率可出电流的特点ꎬ可以看出充电时电流是越来越小ꎬ放电时电流也是越来越小.㊀㊀图1㊀㊀二㊁电磁感应中的电容1.恒力作用在切割棒上时电容电路的规律 匀变速直线运动任何运动受力的分析必须从受力分析开始ꎬ电容在电路中会出现充放电ꎬ充电与放电就产生电流ꎬ由于有了电流就有了安培力ꎬ所以必须从安培力的形式下手ꎬ由于安培力是个变化的力ꎬ所以必须用微元法进行分析ꎬ分析安培力的形式ꎬ注意这里不能用欧姆定律进行解题.例1㊀如图2所示ꎬ竖直放置在绝缘地面上的金属框架ꎬ框架的上端接有一电容为C的电容器ꎬ有一质量为mꎬ长为L金属棒与框架接触良好无摩擦平行滑动ꎬh为离地面的高度ꎬ匀强磁场强度为B与框架平面保持垂直ꎬ开始时电容器没有电量ꎬ将棒释放自静止滑下ꎬ求棒落到地面的时间t.不计各处电阻.解析㊀假设导体棒做匀加速运动ꎬ导棒在重力作用下下落ꎬ下落的同时由于磁场的存在ꎬ运动的导体棒切割磁场ꎬ产生了感应电动势.由于电容器的存在ꎬ在棒上产生相应的充电电流ꎬ棒垂直磁场时就会受到安培力ꎬ因此ꎬ棒在重力㊁安培力作用下向下加速运动ꎬ由牛顿第二定律F合=maꎬ得到mg-F安=maꎬF安=BIL.某时刻电容器充的电量大小为Q=CUꎬ而U=BLv.在很小的时间әt内ꎬ棒上电动势的变化量为әUꎬ电容器上电量的增加量为әQꎬ显然әU=BLәvꎬәQ=C әUꎬ再根据电流的定义式i=ΔQtΔꎬa=ΔvΔtꎬ得:a=mgm+B2L2C加速度与时间无关ꎬ说明是匀加速运动ꎬ用匀变速直线运动的公式可以求解.2.无拉力作用时电容电路的规律 先变加速ꎬ最后会匀速直线运动电容电路中导体棒如果不受到拉力ꎬ合力就只有安培力的作用了ꎬ安培力大小与电流大小有关ꎬ电流的大小变化与电容充放电的特点有关ꎬ速度的变化引起反电动势的变化ꎬ电容两端的电压与感应电动势大小相等从而打到电压的平衡ꎬ这样电流的消失ꎬ最终会匀速直线运动.例2㊀如图3所示ꎬ金属杆ab贴着水平平行金属导轨在匀强磁场中沿垂直磁场电容为C的电容器ꎬ先用外力拉着金属棒向右方向运动ꎬ到有一定速度时突然撤销外力.不计摩擦ꎬ则分析棒最终的运动情况可能是(㊀㊀).A.简谐运动㊀B.匀速直线运动㊀C.匀加速运动㊀D.匀减速运动解析㊀这种类型是先有速度ꎬ电容上的电量为0.分析必须从受力开始ꎬ以金属杆为对象ꎬ当外力拉杆ab在匀强磁场中沿垂直磁场方向运动切割磁场时ꎬ杆的两端产生感应电动势ꎬ电容器此刻被充电ꎬ设棒向右为正ꎬ使用右手定则判断方向可知:ab中产生的电流从b流到aꎬ所以电容器上正下负.当外力突然消失后ꎬ棒将做加速度减小的减速运动ꎬ从而电路产生的电动势也相应的减小ꎬ所以电路中感应电流会对应的变小ꎬ随着时间的推移ꎬ当棒产生的感应电动势与电容器两端的电压相等时ꎬ电流消失ꎬ棒ab受到安培力为0ꎬ所以棒最终将做匀速运动ꎬ故B正确.故选:B.要强调的是电容的电量不会无限的增大ꎬ导体棒也不会无限的减少ꎬ只有匀速直线运动才是导体棒最终的状态.例3㊀如图4所示ꎬ光滑的水平面上有一平行金属导轨ꎬ导轨光滑且电阻不计.电源的电动势为Eꎬ匀强磁场与导轨垂直.阻值为R的导体棒垂直于导轨静止放置ꎬ且与导轨接触.T=0时ꎬ将电键S由1掷到2.Q㊁i㊁v和a分别表示电容器所带的电荷量㊁棒中的电流㊁棒的速度和加速度.图5中正确的是(㊀㊀).㊀㊀解析㊀这种类型是先有电量ꎬ而导体棒的速度为0.开关S打在1时电容被充电ꎬ开关打到2时ꎬ电容器开始形成放电电流ꎬ垂直磁场中的导体棒必然受到安培力的作用ꎬ从而产生加速度ꎬ速度增大ꎬ根据公式感应电动势E=BLv发现速度越大ꎬ反电动势也越大ꎬ而电容的放电特点可以看出电流变小ꎬ从安培力F=BIL得到安培力减小ꎬ根据a=F/m很容易得到加速度即减小的结论.所以棒先做加速度减少的变加速运动.这种由于电容器短接放电产生电流使得导体棒在安培力作用下加速运动ꎬ而导体棒运动产生反电动势会越来越大.电容上的电压越来越小ꎬ感应电动势与电容上的电压两者相等时ꎬ电流消失ꎬ所以最终导体棒做匀速直线运动.即电容器的电量从此不再变化ꎬ所以不会减到0.故选:D.㊀㊀参考文献:[1]郭玉英ꎬ姚建欣ꎬ张玉峰.基于学生核心素养的物理学科能力研究[M].北京:北京师范大学出版社ꎬ2017.[2]王超.微元思想之花绽放物理新课堂[J].中学物理ꎬ2013(19).[3]殷绍燕.电磁感应中导体棒受安培力作用的教学实践[J].物理通报ꎬ2013(6).[责任编辑:闫久毅]一道物理极值问题引发的思考张书玮(内蒙古包头市第一中学㊀014040)摘㊀要:本文就浙江大学出版社出版由舒幼生㊁钟小平主编的«新编高中物理竞赛培训教材»第一分册第八讲圆周运动习题6的答案进行分析及补充讨论.关键词:物理ꎻ特值法中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2019)07-0064-02㊀㊀一㊁题目与参考答案题目㊀如图1所示ꎬ一根长为l的均匀细杆可以绕通过其一端的水平轴O在竖直平面内转动ꎬ杆最初处在水平位置.杆上距O为a处放有一小物体(可视为质点)ꎬ杆与其上小物体最初均处于静止状态ꎬ若此杆突然以匀角速度ω绕O轴运动.问:当ω取什么值时小物体与杆可能相碰?㊀㊀参考答案:当ω较小时物体正好撞晨杆的边缘ꎬ转过小半圆周ꎬ12gt2=l2-a2cosωt=al{ꎬω=g2(l2-a2)arccosalꎬ所以0<ωɤg2(l2-a2)arccosal.当ω较大时物体也撞晨边缘ꎬ转过大半圆周ꎬ。
电磁感应中的电容器与金属棒相结合的问题之南宫帮珍创作创作时间:二零二一年六月三十日黄德利山东省兖州一中 272100摘要:部份导体做变速运动发生变动的电流时, 高中阶段的闭合电路欧姆定律就无法列式计算, 学生感觉无从下手, 从而这一类的问题成为高三复习的难点.通过最近全国各地的一模考试发现, 这类问题在各地一模中均有体现.关键词:电磁感应;电容器;金属棒电容器是一个贮存电荷的容器, 它可以进行无数次的充放电.在充放电的过程中, 可以理解为变动的电流可以通过电容器.因此, 在一些含有电容器的电磁感应电路中, 当一部份导体做变速运动发生变动的电流时, 高中阶段的闭合电路欧姆定律就无法列式计算, 学生感觉无从下手, 从而这一类的问题成为高三复习的难点.通过最近全国各地的一模考试发现, 这类问题在各地一模中均有体现.实际上这类问题, 只要认真分析, 寻找其中的规律, 这类问题其实也很好解决.下面通过几个例题对与电容器相关的问题分类解决.一、金属棒做匀加速直线运动例1、.如图所示, 位于同一水平面的两根平行导轨间的距离是L, 导线的左端连接一个耐压足够年夜的电容器, 电容器的电容为C.放在导轨上的导体杆cd 与导轨接触良好, cd杆在平行导轨平面的水平力作用下从静止开始匀加速运动, 加速度为a, 磁感强度为B的匀强磁场垂直轨道平面竖直向下, 导轨足够长, 不计导轨和连接电容器导线的电阻, 导体杆的摩擦也可忽略.求从导体杆开始运动经过时间t电容器吸收的能量E=?解析:据题意, 导体杆MN加速切割磁感线, 发生的感应电动势且不竭增年夜, 电容器两极板间电压随着增年夜, 贮存的电能增加, 同时由于电容器处于连续充电状态中, 电路中有继续的充电电流, 故导体杆受到向左的安培力.因电容器在时间t内吸收的电能可以用克服安培力做的功来量度, 所以弄清楚充电电流及安培力的变动规律, 就成为解答本题的关键.设某时刻导体杆切割磁感线的速度为v, 发生的感应电动势为E, 电容器所带的电荷量为q, 两极板间的电压为u, 则有:u=E=BLv,q=Cu=CBLv.设经过一个很短的时间间隔Δt, 速度的变动量为Δv, 则电容器带电量的变动量为:Δq=CBLΔv.在时间Δt内充电电流的平均值可暗示为:i==CBLa式中a暗示Δt内导体杆运动的平均加速度.若把Δt取得足够小, 那么i和a就分别趋近于该时刻的充电电流的瞬时值及加速度的瞬时值.于是, 杆MN所受安培力的瞬时值可暗示为:F安=BiL=CB2L2a.上式标明:安培力的瞬时值与加速度成正比.将安培力瞬时值表达式代入牛顿第二定律, F-CB2L2a=ma.由此解得a=.由上式不难看出:加速度a是恒定的, 杆MN做匀加速直线运动,进而推知:充电电流是恒定电流, 安培力是恒力.因时间t内, 杆MN的位移为:s=at2=故杆MN克服安培力做的功可暗示为:W=F安·s=,电容器在时间t内吸收的电能E=W, 可用上式暗示.二、金属棒在恒定外力下的直线运动例2、如图, 两条平行导轨所在平面与水平空中的夹角为θ, 间距为L.导轨上端接有一平行板电容器, 电容为C.导轨处于匀强磁场中, 磁感应强度年夜小为B, 方向垂直于导轨平面.在导轨上放置一质量为m的金属棒, 棒可沿导轨下滑, 且在下滑过程中坚持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ, 重力加速度年夜小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑, 求:(1)电容器极板上积累的电荷量与金属棒速度年夜小的关系;(2)金属棒的速度年夜小随时间变动的关系.解析:(1)设金属棒下滑的速度年夜小为v, 则感应电动势为①平行板电容器两极板之间的电势差为U=E②设此时电容器极板上积累的电荷量为Q, 按界说有③联立①②③式得④(2)设金属棒的速度年夜小为v时经历的时间为t, 通过金属棒的电流为i.金属棒受到的磁场的作用力方向沿导轨向上, 年夜小为⑤设在时间间隔(t, t+Δt)内流经金属棒的电荷量为ΔQ, 按界说有⑥ΔQ也是平行板电容器极板在时间间隔(t, t+Δt)内增加的电荷量.由4式得⑦式中Δv为金属棒的速度变动量, 按界说有⑧金属棒所受到的摩擦力方向斜向上, 年夜小为⑨式中N是金属棒对导轨的正压力的年夜小, 有⑩金属棒在时刻t的加速度方向沿斜面向下, 设其年夜小为a, 根据牛顿第二定律有联立⑤至11式得由上式及题设可知, 金属棒做初速度为零的匀加速运动, t时刻金属棒的速度年夜小为三、通过上面例题可以看出, 电磁感应与电容器的综合问题, 涉及电磁感应、电容、电流强度、安培力、牛顿定律、匀变速直线运动规律等多方面物理知识 , 综合性较强.此类题的关键是电容器充电电流与运动的关系, 求这两者关系思维跨越较年夜, 考查了综合能力和分析论证能力, 有较高的区分度, 体现了较强的选拔性.。
专题:电磁感应现象中有关电容器类问题1、电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。
两根固定于水平面的光滑平行金属导轨间距为L,电阻不计。
炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S接1,使电容器完全充电。
然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动。
当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。
问:(1)磁场的方向;(2)MN刚开始运动时加速度a的大小;(3)MN离开导轨后的最大速度v m的大小。
试题分析:(1)根据通过MN电流的方向,结合左手定则得出磁场的方向.(2)根据欧姆定律得出MN刚开始运动时的电流,结合安培力公式,根据牛顿第二定律得出MN刚开始运动时加速度a的大小.(3)开关S接2后,MN开始向右加速运动,速度达到最大值时,根据电动势和电荷量的关系,以及动量定理求出MN离开导轨后最大速度.解:(1)电容器上端带正电,通过MN的电流方向向下,由于MN向右运动,根据左手定则知,磁场方向垂直于导轨平面向下.2、一对无限长平行导轨位于竖直平面,轨道上串联一电容器C(开始未充电).另一根质量为m 的金属棒ab 可沿导轨下滑,导轨宽度为L ,在讨论的空间围有磁感应强度为B 、方向垂直整个导轨平面的匀强磁场,整个系统的电阻可以忽略,ab 棒由静止开始下滑,求它下滑h 高度时的速度v.解:设ab 棒下滑过程中某一瞬时加速度为a i ,则经过一微小的时间间隔Δt ,其速度的增加量为Δv=a i ·Δt.棒中产生的感应电动势的增加量为:ΔE=BL Δv=BLa i ·Δt电容器的极板间电势差的增加量为:ΔU i =ΔE=BLa i ·Δt电容器电荷量的增加量为:ΔQ=C ·ΔU=CBLa i ·Δt电路中的充电电流为:I=tQ ∆∆=CBLa i ab 棒所受的安培力为:F=BLI=CB 2L 2a i由牛顿第二定律得:mg-F=ma i ,即mg-CB 2L 2a i =ma i ,所以,a i =22L CB m mg +,可见,棒的加速度与时间无关,是一个常量,即棒ab 向下做匀加速直线运动.所以要求的速度为v=2222LCB m mgh ah +=.3、如图所示,处于匀强磁场中的两根足够长且电阻不计的平行金属导轨相距L ,导轨平面与水平面重合,左端用导线连接电容为C 的电容器(能承受的电压足够大).已知匀强磁场的磁感应强度大小为B 、方向竖直向上.一质量为m 、电阻不计的直金属棒垂直放在两导轨上,一根绝缘的、足够长的轻绳一端与棒的中点连接,另一端跨过定滑轮挂一质量为m 的重物.现从静止释放重物并通过轻绳水平拖动金属棒运动(金属棒始终与导轨垂直并保持良好接触,不计滑轮质量和所有摩擦).求:(1)若某时刻金属棒速度为v ,则电容器两端的电压多大?(2)求证:金属棒的运动是匀加速直线运动;(3)当重物从静止开始下落一定高度时,电容器带电量为Q ,则这个高度h 多大?解:(1)电容器两端的电压U 等于导体棒上的电动势E ,有:U=E=BLv(2)金属棒速度从v 增大到v+△v 的过程中,用时△t (△t →0),加速度为a ,有:电容器两端的电压为:U=BLv电容器所带电量为:式中各量都是恒量,加速度保持不变,故金属棒的运动是匀加速直线运动.(3)由于金属棒做匀加速直线运动,且电路中电流恒定4、如图所示,有一间距为L且与水平方向成θ角的光滑平行轨道,轨道上端接有电容器和定值电阻,S为单刀双掷开关,空间存在垂直轨道平面向上的匀强0磁场,磁感应强度为B。
将单刀双掷开关接到a点,一根电阻不计、质量为m 的导体棒在轨道底端获得初速度v0后沿着轨道向上运动,到达最高点时,单刀双掷开关接b点,经过一段时间导体棒又回到轨道底端,已知定值电阻的阻值为R,电容器的电容为C,重力加速度为g,轨道足够长,轨道电阻不计,求:(1)导体棒上滑过程中加速度的大小;(2)若已知导体棒到达轨道底端的速度为v,求导体棒下滑过程中定值电阻产生的热量和导体棒运动的时间。
解:(1)导体棒上滑的过程中,根据牛顿第二定律得:又,有:联立解得:(2)导体棒上滑过程中,有导体棒下滑的过程中,由动量定理得:而联立解得:导体棒下滑的过程中,由能量守恒定律得:解得:5、如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系.解:(1)设金属棒下滑的速度大小为v,则感应电动势为E=BLv①平行板电容器两极板之间的电势差为U=E②设此时电容器极板上积累的电荷量为Q,按定义有C =Q U③ 联立①②③式得Q =CBLv ④(2)设金属棒的速度大小为v 时经历的时间为t ,通过金属棒的电流为i .金属棒受到的磁场的作用力方向沿导轨向上,大小为F =BLi ⑤设在时间间隔(t ,t +Δt )流经金属棒的电荷量为ΔQ ,按定义有⑥ΔQ 也是平行板电容器极板在时间间隔(t ,t +Δt )增加的电荷量.由④式得 ΔQ =CBL Δv ⑦式中,Δv 为金属棒的速度变化量.按定义有⑧金属棒所受到的摩擦力方向斜向上,大小为F f =μF N ⑨式中,F N 是金属棒对于导轨的正压力的大小,有F N =mg cos θ⑩金属棒在时刻t 的加速度方向沿斜面向下,设其大小为a ,根据牛顿第二定律有 mg sin θ-F -F f =ma ⑪联立⑤至⑪式得⑫由⑫式及题设可知,金属棒做初速度为零的匀加速运动.t 时刻金属棒的速度大小为6、在光滑水平地面上,两根彼此平行的光滑导轨PQ 、MN 相距为L=1m ,在它们的末端垂直PQ、MN跨放一金属杆ab,ab的质量为m=0.005kg,在导轨的另一端连接一个已经充电的电容器,电容器的电容C=200F,有一匀强磁场,方向垂直导轨PQ、MN所在平面向下,如图所示,磁感强度为B=0.5T.(除导轨PQ、MN和金属杆ab外其余部分都是绝缘的)当闭合电键K时,ab杆将从导轨上冲出,并沿光滑斜面升到高为0.2m处,这过程电容器两端电压减小了一半,求:(1)磁场对金属杆ab冲量的大小.(2)电容器原来充电电压是多少.7、如图所示,水平桌面上放置一U形金属导轨,两导轨平行,间距为L,导轨距水平地面高h。
导轨左端连接有一个电源、一个单刀双掷开关、一个电容器。
电源电动势为E,电阻为r,电容器电容为C。
一根质量为m不计电阻的裸导线放在导轨上,方向与导轨垂直,导轨所在平面有一个方向向下的匀强磁场,磁感应强度为B。
先将单刀双掷开关拨到a;待电路稳定后将单刀双掷开关拨到b。
开关拨到b后,导线在安培力作用下向右运动离开导轨,然后做平抛运动直至落到水平地面上。
(1)在开关拨到a到电路稳定的过程中,画出电容器电压u随电量q变化的图象。
(2)结合(1)中所画图象,求稳定时电容器储存的能量E C。
(3)导线落到水平地面,此时电容器两端的电压为,求落地位置与导轨右端的水平距离x及开关拨到b后电阻R上产生的热Q R。
解:(1)电容器充电完毕后,电容器两端的电压等于电源的电动势,所以电容器的带电量:q=CE根据电容器的定义式:C=q /U所以:u=q,电压与电量成正比,所以画出u-q的图线如图:充电的过程中克服电场力做的功:W=qU所以图线与横坐标围成的面积即为电容器储存的能量.有:E0=EQ联立得:E0=CE2(3)根据平抛运动的规律可得由动量定理,It=q,q=EC联立解得由能量关系可知,此过程中R上产生的焦耳热:点睛:本题是电磁感应与电路、力学知识的综合,解答的关键是由电路的串联关系先求出电容器两端的电压,再根据动量定理及电量表达式求出导体棒最大速度.同时要搞清能量转化关系.8、某同学设计了一个电磁击发装置,其结构如图所示。
间距为L=10cm的平行长直导轨置于水平桌面上,导轨中NO和N′O′段用绝缘材料制成,其余部分均为导电金属材料,两种材料导轨平滑连接。
导轨左侧与匝数为100匝、半径为5cm的圆形线圈相连,线圈存在垂直线圈平面的匀强磁场。
电容为1F的电容器通过单刀双掷开关与导轨相连。
在轨道间MPP′M′矩形区域存在垂直桌面向上的匀强磁场,磁感强度为2T。
磁场右侧边界PP′与OO′间距离为a =4cm。
初始时金属棒A处于NN′左侧某处,金属棒B处于OO'左侧距OO'距离为a处。
当开关与1连接时,圆形线圈中磁场随时间均匀变化,变化率为;稳定后将开关拨向2,金属棒A被弹出,与金属棒B相碰,并在B棒刚出磁场时A棒刚好运动到OO′处,最终A棒恰在PP′处停住。
已知两根金属棒的质量均为0.02kg、接入电路中的电阻均为0.1Ω,金属棒与金属导轨接触良好,其余电阻均不计,一切摩擦不计。
问:(1)当开关与1连接时,电容器电量是多少?下极板带什么电?(2)金属棒A与B相碰后A棒的速度v是多少?(3)电容器所剩电量Q′是多少?【解析】(1)将开关拨向2 时A 棒会弹出说明所受安培力向右,电流向上,故电容器下板带正电;(2) A、B 棒相碰地方发生时没有构成回路,没有感应电流,A、B 棒均作匀速直线运动直至A 棒到达OO′处,设碰后A 棒速度为v ,由于B 棒的位移是A 棒的两倍,故B 棒速度是2v。
A 棒过OO′ 后在安培力作用下减速。
由动量定理可知:即两边求和可得,即;(3) 设A 棒与B 棒碰前的速度为v0,碰撞过程动量守恒,则有:mv0=mv+2mv,可得A 棒在安培力作用下加速,则有:即两边求和得:得代入前面的数据可知,电容器所剩电量为。