概率论-2-3 常见离散型随机变量的分布
- 格式:ppt
- 大小:1.30 MB
- 文档页数:35
第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =两点分布的方差:()(1)D X p p =-(2)二项分布: 若一个随机变量X 的概率分布由式{}(1),0,1,...,.k k n k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k e k k λλλ-==>=则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k e k k λλλ-==>=泊松分布的期望:()E X λ=泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt -∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度: 均匀分布的期望:()2a bE X +=均匀分布的方差:2()()12b a D X -=(2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩则称X 服从参数为λ的指数分布,记为 X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a ab x f ⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a ab x f指数分布的期望:1()E X λ=指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X 的概率密度为22()21()x f x ex μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()21()x f x ex μσ--=-∞<<+∞正态分布的期望:()E X μ=正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==2222()()x t xx ex e dt ϕφ---∞=⎰标准正态分布表的使用: (1)0()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数:设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
离散型随机变量及其分布列知识点离散型随机变量及其分布列知识点离散型随机变量是指在有限个或无限个取值中,只能取其中一个数值的随机变量。
离散型随机变量可以用分布列来描述其概率分布特征。
离散型随机变量的概率分布列概率分布列是描述离散型随机变量的概率分布的表格,通常用符号P 表示。
其一般形式如下:P(X=x1)=p1P(X=x2)=p2P(X=x3)=p3…P(X=xn)=pn其中,Xi表示随机变量X的取值,pi表示随机变量X取值为Xi的概率。
离散型随机变量的特点1. 离散型随机变量只取有限或无限个取值中的一个,变化不连续。
2. 取值之间具有间隔或间距。
3. 每个取值对应一个概率,概率分布可用概率分布列来体现。
4. 概率之和为1。
离散型随机变量的常见分布1. 0-1分布0-1分布是指当进行一次伯努利试验时,事件发生的概率为p,不发生的概率为1-p的离散型随机变量的分布。
其分布列为:P(X=0)=1-pP(X=1)=p2. 二项分布二项分布是进行n次伯努利试验中,事件发生的概率为p,不发生的概率为1-p时,恰好出现k次事件发生的离散型随机变量的分布。
其分布列为:P(X=k)=C(n,k)p^k(1-p)^(n-k)其中,C(n,k)为从n中选出k个的组合数。
3. 泊松分布泊松分布是指在某个时间段内,某一事件发生的次数符合泊松定理的离散型随机变量的分布。
其分布列为:P(X=k)=λ^ke^(-λ)/k!其中,λ为这段时间内事件的平均发生次数。
总结离散型随机变量及其分布列是概率论中的重要基础概念之一,具有广泛的应用。
掌握离散型随机变量及其分布列的知识点对于深入理解概率论及其实际应用有重要意义。
离散型随机变量及其分布列离散型随机变量是概率论中的一种重要概念。
它是指取有限或无限个数值的随机变量,其可能取值的集合是离散的。
离散型随机变量可以用分布列来描述其取值和对应的概率。
离散型随机变量的分布列是一个表格,其中包含了随机变量的所有可能取值和对应的概率。
这个表格可以用来表示离散型随机变量的分布情况。
每个取值对应的概率是该取值发生的可能性大小。
为了更好地理解离散型随机变量及其分布列,我们可以通过一个简单的例子来说明。
假设有一个掷硬币的实验,正面朝上记为1,反面朝上记为0。
这个实验的随机变量X可以取到的值只能是0或1,因此X是一个离散型随机变量。
通过多次实验,我们记录下了X的取值和对应的频率,得到如下的分布列:| X | 0 | 1 || :--: | :-: | :-: || P(X) | 0.4 | 0.6 |在这个例子中,分布列告诉我们当硬币扔出来后,有40%的可能性出现反面朝上,有60%的可能性出现正面朝上。
离散型随机变量的分布列具有以下性质:1. 所有可能取值的概率大于等于0:对于所有可能取值xi,P(X=xi)大于等于0。
2. 所有可能取值的概率之和为1:所有的概率值P(X=xi)的和等于1,即ΣP(X=xi) = 1。
离散型随机变量的分布列可以通过实验或者推理来确定。
在实验中,可以通过重复进行一定次数的实验,记录下随机变量的取值和对应的频率,从而近似估计出分布列。
在推理中,可以根据问题的给定条件和假设,利用概率论的理论和方法来推导出分布列。
离散型随机变量的分布列对于概率计算和统计分析非常重要。
通过分布列,可以计算出随机变量的期望、方差和其他重要统计量。
同时,分布列也可以用来描述随机变量的概率分布,从而进一步研究随机现象的规律和性质。
常见的离散型随机变量及其分布列有很多,例如二项分布、泊松分布、几何分布等。
这些分布在概率论、统计学和应用领域中都有广泛的应用。
对于每种离散型随机变量,都有其特定的分布列形式和计算方法。
离散型随机变量与分布一、离散型随机变量的概念离散型随机变量是指在一定范围内取有限个或可数个值的随机变量。
通常用字母X来表示离散型随机变量,例如X={x1, x2, x3, ...}。
每个xi表示X取某个值的情况,对应的概率为P(X=xi),概率取值介于0和1之间,且所有xi对应的概率之和等于1。
二、离散型随机变量的分布律离散型随机变量的分布律描述了X取不同值的概率分布情况。
记为P(X=xi)或P(X)。
其中,xi表示随机变量X可能取到的某个值,P(X=xi)表示X取xi时的概率。
常见的离散型随机变量分布律包括:1. 伯努利分布:伯努利试验是一类只有两种结果的随机试验,例如抛硬币或投骰子。
若随机变量X表示试验成功的概率,则伯努利分布的分布律为:P(X=x) = p^x(1-p)^(1-x),其中p表示试验成功的概率。
2. 二项分布:二项分布是n重伯努利试验的离散型随机变量分布。
它描述了进行n次独立的成功-失败试验(伯努利试验)中成功次数X的概率分布。
其分布律为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中C(n,k)表示从n次试验中选k次成功的组合数。
3. 泊松分布:泊松分布适用于描述一段时间或一定空间内随机事件发生的次数。
其分布律为:P(X=k) = (e^(-λ) * λ^k) / k!,其中λ表示单位时间或单位空间内事件发生的平均次数。
4. 几何分布:几何分布适用于描述在n次独立的伯努利试验中,首次获得成功的次数。
其分布律为:P(X=k) = (1-p)^(k-1) * p,其中p表示每次试验成功的概率。
5. 二项负分布:二项负分布描述了在一系列独立的伯努利试验中,获得r次成功时需要进行的试验次数。
其分布律为:P(X=k) = C(k-1, r-1) * p^r * (1-p)^(k-r),其中p表示每次试验成功的概率。
三、离散型随机变量的期望与方差离散型随机变量的期望和方差是对离散型随机变量分布的特征进行度量的指标。