弧度制1
- 格式:pptx
- 大小:117.08 KB
- 文档页数:34
弧度制定义和公式(一)弧度制定义和公式在数学中,弧度制是一种衡量角度大小的单位体系。
与角度制不同,弧度制使用角所对应的弧长作为度量标准,更加直观和精确。
本文将介绍弧度制的定义和常用公式,并通过举例进行说明。
弧度制定义在弧度制中,一个角的度量是其所对应的弧长与半径的比值。
一周的弧长正好是圆的周长,因此一周的角度被定义为360度或2π弧度。
根据这个定义,我们可以得到以下公式:•一周的弧长: 2πr•一周的角度: 360°=2π弧度角度和弧度的转换为了方便计算,我们需要将角度和弧度进行转换。
有以下两个常用的公式用于转换:1.角度转弧度:弧度 = 角度× π1802.弧度转角度:角度 = 弧度× 180π弧度制的应用弧度制在解决几何问题和求解三角函数值时非常有用。
下面是一些常见的应用公式和对应的解释:弧长公式弧长可以通过以下公式计算:•弧长 = 弧度× 半径例如,如果一个角的度数是60度,半径为5厘米,那么对应的弧长可以计算为:•弧长= 60° × π180× 5厘米 = π3× 5厘米≈ 厘米弧度和正弦函数的关系正弦函数可以表示为角度和弧度的函数。
根据三角函数定义,我们可以得到以下公式:•sin(θ)=sin(弧度)例如,如果一个角的度数是30度,那么对应的弧度可以计算为:•弧度= 30° × π180≈ 弧度因此,sin(30°)=sin()。
弧度和余弦函数的关系余弦函数也可以表示为角度和弧度的函数。
根据三角函数定义,我们可以得到以下公式:•cos(θ)=cos(弧度)例如,一个角的度数是45度,那么对应的弧度可以计算为:•弧度= 45° × π≈ 弧度180因此,cos(45°)=cos()。
总结本文介绍了弧度制的定义和常用公式,包括角度和弧度的转换公式,以及弧长和三角函数的关系公式。
题:4.2弧度制(一)教学目的:1.理解1弧度的角、弧度制的定义.2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算.3.熟记特殊角的弧度数教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算.教学难点:弧度的概念及其与角度的关系.授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的. 通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式. 使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解.教学过程:一、复习引入:1.角的概念的推广⑴“旋转”形成角一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角α.旋转开始时的射线OA叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O叫做角α的顶点.⑵.“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA为始边的角α=210°,β=-150°,γ=660°,定义的?规定周角的3601作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为180rn l π=3.探究30°、60°的圆心角,半径r 为1,2,3,4,分别计算对应的弧长l ,再计算弧长与半径的比结论:圆心角不变,则比值不变,因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度——弧度制二、讲解新课:1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.如下图,依次是1rad , 2rad , 3rad ,αrad探究:⑴平角、周角的弧度数,(平角=π rad 、周角=2π rad )⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 ⑶角α的弧度数的绝对值 rl=α(l 为弧长,r 为半径) ⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同⑸用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同2. 角度制与弧度制的换算:∵ 360︒=2π rad ∴180︒=π rad∴ 1︒=rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad三、讲解范例:例1 把'3067化成弧度解:⎪⎭⎫⎝⎛=2167'3067∴ rad rad ππ832167180'3067=⨯=例2 把rad π53化成度 解: 1081805353=⨯=rad π 注意几点:1.度数与弧度数的换算也可借助“计算器”进行;2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表示3rad , sin π表示πrad 角的正弦;3.一些特殊角的度数与弧度数的对应值应该记住:4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系任意角的集合 实数集R例3用弧度制表示:1 终边在x 轴上的角的集合2 终边在y 轴上的角的集合3 终边在坐标轴上的角的集合解:1 终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ 2 终边在y 轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ 3 终边在坐标轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈==Z k k S ,2|3πββ 四、课堂练习:1.下列各对角中终边相同的角是( )A.πππk 222+-和(k∈Z) B.-3π和322πC.-97π和911πD. 9122320ππ和2.若α=-3,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限3.若α是第四象限角,则π-α一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 .5.7弧度的角在第 象限,与7弧度角终边相同的最小正角为 .6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .7.求值:2cos4tan6cos6tan3tan3sinππππππ-+.8.已知集合A={α|2kπ≤α≤π+2kπ,k∈Z},B ={α|-4≤α≤4},求A ∩B .9.现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角.参考答案: 1.C 2.C 3.C4.{α|2k π<α<2π+2k π,k ∈Z } {α|k π<α<2π+k π,k ∈Z } 5.一 7-2π 6.3 7.28.A ∩B ={α|-4≤α≤-π或0≤α≤π} 9.2411π五、小结 1.弧度制定义 2.与弧度制的互化 2.特殊角的弧度数 六、课后作业:已知α是第二象限角,试求:(1)2α角所在的象限;(2)3α角所在的象限;(3)2α角所在范围.解:(1)∵α是第二象限角,∴2π+2k π<α<π+2k π,k ∈Z ,即4π+k π<2α<2π+k π,k ∈Z .故当k =2m (m ∈Z )时,4π+2m π<2α<2π+2m π,因此,2α角是第一象限角;当k =2m +1(m ∈Z )时,45π+2m π<2α<23π+2m π,因此,2α角是第三象限角.综上可知,2α角是第一或第三象限角.(2)同理可求得:6π+32k π<3α<3π+32k π,k ∈Z .当k =3m (m ∈Z )时,ππαππm m 23326+<<+,此时,3α是第一象限角;当k =3m +1(m ∈Z )时,πππαπππ322333226++<<++m m ,即3265αππ<+m <π+2m π,此时,3α角是第二象限角; 当k =3m +2(m ∈Z )时,ππαππm m 2353223+<<+,此时,3α角是第四象限角.综上可知,3α角是第一、第二或第四象限角. (3)同理可求得2α角所在范围为:π+4k π<2α<2π+4k π,k ∈Z .评注:(1)注意某一区间内的角与象限角的区别.象限角是由无数个区间角组成的,例如0°<α<90°这个区间角,只是k =0时第一象限角的一种特殊情况.(2)要会正确运用不等式进行角的表达,同时会以k 取不同值,讨论形如θ=α+32k π(k ∈Z )所表示的角所在象限. (3)对于本例(3),不能说2α只是第一、二象限的角,因为2α也可为终边在y 轴负半轴上的角23π+4k π(k ∈Z ),而此角不属于任何象限. 七、板书设计(略)八、课后记:一般情况下,我们在研究圆中的角的弧度一般都是正数!除非题目有特别的要求!有两种方法可以解释,一是正的弧对的弧度为正,负的弧对的是负的弧度(解释稍显牵强!),二是无论是顺时针方向还是逆时针旋转的角度数值始终是正数,所以研究时弧度取正数!扇形的圆心角始终是正数!。
弧度制弧长公式弧度公式:设一个半径为r的圆的圆心角为α,圆心角α所对的弧长为L,则有α=L/r。
【注】圆心角的大小由弧长和圆半径的比值唯一确定,跟圆的大小无关。
特别地,弧长等于半径的弧所对的圆心角是1弧度(1 rad)。
一、圆周角的弧度数根据圆的周长公式,半径为R的圆的周长为2πR。
设圆周角的弧度数为α,则根据弧度公式“α=L/r”得:α=2πR/R=2π。
所以,周角的弧度数为2π。
【注】弧度制的单位是“弧度”,英文单位为“rad”。
习惯上,弧度制的单位在高中数学中经常省略不写。
如“2π rad”常写作“2π”,“π rad”常写作“π”,“1 rad”常写作“1”等。
这样,弧度制下的弧度数就与全体实数R之间建立了一个一一对应的关系。
二、弧度与角度间的转化公式我们知道周角的角度为360°,而由上面的分析我们知道周角的弧度数为2π。
因为周角的角度数和弧度数是相等的,所以有:360°=2π。
化简得180°=π(或π=180°)。
特别地,角度制下的0°对应的弧度数为“0”,即0°=0 rad。
这就是弧度制与角度制之间的转换公式。
三、高中数学常见的特殊角的角度数与弧度数的对应关系。
(1)0°=0。
(2)360°=2π。
(3)180°=π。
(4)90°=π/2。
【注】在“180°=π”的等式两边同时除以“2”。
(5)45°=π/4。
【注】在“90°=π/2”的等式两边同时除以“2”。
(6)135°=3π/4。
【注】在“45°=π/4”的等式两边同时乘以“3”。
(7)60°=π/3。
【注】在“180°=π”的等式两边同时除以“3”。
(8)120°=2π/3。
【注】在“60°=π/3”的等式两边同时乘以“2”。
(9)30°=π/6。
课题:§3弧度制(1)
学习目标:()1了解弧度制的概念,体会弧度制是一种度量角的单位;()2能进行弧度与角度的互化;()3理解角的集合与实数集R之间建立的一一对应关系.
学习重点:弧度制的概念理解,弧度与角度的互化.
学习难点:弧度制的建立与运用.
学习过程:
创设情境:度量一个事物的方法很多,一般用与该事物同类的某一个事物来度量。
例如:表示温度的结果可能是?这节就来学习度量角的另一种方法-----弧度制.
探究新知:()1我们初中学习了“角度制”,怎么规定的1︒的角?
()21︒的角的大小会因为圆的大小而改变吗?即角度大小是一个与圆的无关的量. 弧度制的定义:
探究:如图,半径为r的圆的圆心与原点重合,角α的始边与x轴的非负半轴重合,交
角度制与弧度制的换算:
根据180π
︒=rad填空:1︒=rad,1rad=︒
问题1:把6730
︒'化成弧度
问题2:把35
π
rad 化成度
深化拓展:填写特殊角与弧度数的对应表:
由此应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与
实数的集合之间建立一种一一对应的关系
任意角的集合 实数集R
问题3:将下列各角化为2k π
α+(0≤2απ<,k Z ∈)的形式,并判断七所在象限.
()
1193
π; ()2315-︒; ()31485-︒
练习:弧度与角度互化:()111230︒'= ()2512
π-=
课后作业:课本11
P
~12P 习题13- 第1、2、7。