复合材料论文碳纤维复合材料的成型工艺与应用现状
- 格式:docx
- 大小:448.02 KB
- 文档页数:11
碳纤维复合材料论文标题:碳纤维复合材料:制备、性能与应用摘要:碳纤维复合材料是一种重要的先进材料,在航空航天、汽车制造、体育器材以及其他领域具有广泛的应用前景。
本文综述了碳纤维复合材料的制备方法、性能特点以及其在不同领域的应用研究,旨在为碳纤维复合材料的研究和应用提供一定的参考。
1.引言随着科技的进步和产品性能需求的提高,新型材料的研究和应用成为一个重要的研究方向。
碳纤维复合材料以其高强度、低密度、优异的机械性能和化学稳定性等特点,受到了广泛关注。
2.碳纤维复合材料的制备方法2.1碳纤维的制备工艺2.2树脂基体的制备方法2.3复合材料的制备工艺2.4其他制备方法的研究进展3.碳纤维复合材料的性能特点3.1机械性能3.2热性能3.3电性能3.4耐腐蚀性能4.碳纤维复合材料在航空航天领域的应用4.1飞机结构件4.2发动机部件4.3航空航天用复合材料板5.碳纤维复合材料在汽车制造领域的应用5.1车身材料5.2引擎附件5.3车内装饰材料6.碳纤维复合材料在体育器材领域的应用6.1网球拍6.2高尔夫球杆6.3自行车车架7.碳纤维复合材料的未来发展趋势对碳纤维复合材料未来的发展趋势进行展望,并提出了一些研究方向和应用前景。
包括在材料性能的进一步提高、制备工艺的优化、成本的降低等方面。
结论:碳纤维复合材料以其出色的性能和广泛的应用领域,成为了当今研究热点。
本文综述了碳纤维复合材料的制备方法、性能特点以及在航空航天、汽车制造和体育器材等领域的应用情况,并对其未来的发展趋势进行了展望。
碳纤维复合材料在各个领域的应用前景广阔,值得进一步深入研究和应用。
风电叶片复合材料及碳纤维应用现状摘要:随着经济社会的不断发展,能源逐渐短缺,风力发电技术不断地发展成熟完善,政府相关部门也给予了很大的重视。
风电叶片的尺寸大小和质量对于风力发电影响也是非常大的,为了提高风力发电的影响力,把碳纤维复合材料引进电叶片的结构中,使得风电叶片的质量过大的问题得到解决。
另外,本文简要的介绍了不同复合材料的特征和复合材料的发展简史,分析了碳纤维复合材料应用在风电叶片中的优点,和对风力发电的工作效率和质量的提高作用。
关键词:复合材料;碳纤维;风力机叶片;应用随着时代的快速发展,世界范围内的经济发展水平都取得了重大突破,体现最为明显的为:人们生活质量取得了很大的提升,工业化发展速度迅猛,社会经济发展速率不断提升。
这种快速发展在给人们带来众多便利的同时,也引发了些许问题,生态环境的严重破坏就是其中一个,现如今我国自然生态环境由于工业化的迅猛发展造成了非常严重的破坏,在此背景之下,要求人们不断探索各种新型能源。
风力资源的发现和应用就在一定程度上减少了对生态环境的破坏程度,而且还是一种可再生资源,所以我们应该加大对其的研究和开发力度。
随着风力资源的广泛应用,风机单机容量也在不断扩大,而风力机叶片在风机运转过程中发挥着至关重要的作用,如何不断优化风力机叶片性能,就需要我们采用更为轻质和性能更好的材料,提高风力机运行效率,是我们目前风力机叶片需要研究的一个重要课题。
1复合材料的发展史为了方便大家理解碳纤维复合材料,在本文中对复合材料的发展史进行简短的介绍。
很早以前的远古时代,世界上就已经拥有,并在使用复合材料,这种材料就是自生长纤维增强复合材料,这种材料在植物中常见,最多见的就是竹子。
但是因为当时条件有限,这种复合材料在使用方面不发生任何的化学改变,只是进行物理上的变化,同时也没有批量生产,所以没有在大范围内应用。
远古时期的人们摆脱了山顶和岩洞的居住习惯,用稻草和泥土来建造房屋,这就是一种人工参与的复合材料。
碳纤维复合材料的成型工艺一、碳纤维复合材料概述碳纤维复合材料是一种由碳纤维增强体和树脂基体组成的新型高性能材料。
它以其轻质、高强度、高刚度、耐疲劳、耐腐蚀等优异性能,在航空航天、汽车制造、体育器材、建筑结构等领域得到了广泛的应用。
本文将探讨碳纤维复合材料的成型工艺,分析其重要性、挑战以及实现途径。
1.1 碳纤维复合材料的特点碳纤维复合材料的特点主要包括以下几个方面:- 轻质高强:碳纤维具有很高的比强度和比模量,使得复合材料在保持轻质的同时,具有很高的承载能力。
- 高刚度:碳纤维复合材料的刚度远高于传统材料,可以提供更好的结构稳定性。
- 耐疲劳:碳纤维复合材料具有优异的耐疲劳性能,适用于承受反复循环载荷的应用。
- 耐腐蚀:碳纤维复合材料对多种腐蚀性介质具有很好的抵抗力,适用于恶劣环境。
1.2 碳纤维复合材料的应用领域碳纤维复合材料的应用领域非常广泛,包括但不限于以下几个方面:- 航空航天:用于飞机结构、发动机部件等,以减轻重量、提高性能。
- 汽车制造:用于车身、底盘等部件,以提高燃油效率和车辆性能。
- 体育器材:用于自行车、网球拍、高尔夫球杆等,以提供更好的运动性能。
- 建筑结构:用于桥梁、高层建筑等,以提高结构的承载能力和耐久性。
二、碳纤维复合材料的成型工艺碳纤维复合材料的成型工艺是实现其优异性能的关键环节。
不同的成型工艺会影响材料的性能和应用范围。
2.1 预浸料成型工艺预浸料成型工艺是一种常用的碳纤维复合材料成型方法。
该工艺首先将碳纤维与树脂基体预先混合,形成预浸料,然后在模具上铺设预浸料,通过热压或真空袋压等方法固化成型。
预浸料成型工艺具有成型效率高、产品质量好等优点。
2.2 树脂传递模塑成型工艺树脂传递模塑(RTM)成型工艺是一种先进的复合材料成型技术。
该工艺通过将树脂注入闭合模具中,使树脂在模具内流动并浸润碳纤维,最终固化成型。
RTM工艺可以实现复杂形状的制品成型,且具有较低的生产成本。
国内外碳纤维复合材料现状及研究开发方向概要碳纤维复合材料是一种具有很高强度和轻质化特性的新型材料。
它由碳纤维和树脂等基质材料组成,具有优异的力学性能和低密度,广泛应用于航空航天、汽车、船舶、体育器材等领域。
本文将对国内外碳纤维复合材料的现状以及研究开发方向进行概述。
首先,国内外碳纤维复合材料的现状可以概括为以下几个方面。
一是碳纤维复合材料在航空航天领域的应用。
由于碳纤维复合材料具有高强度、低密度和热稳定性等特点,被广泛应用于航空航天领域,如飞机机体、发动机和燃气涡轮等部件。
二是碳纤维复合材料在汽车领域的应用。
汽车制造商越来越倾向于采用碳纤维复合材料制作汽车车身和结构件,以提高汽车的燃油效率和减轻车重,提高车辆的性能。
三是碳纤维复合材料在体育器材领域的应用。
碳纤维复合材料制作的高级运动器材,如高尔夫球杆、网球拍和自行车等,具有很高的刚性和强度,能够提高运动员的表现水平。
四是碳纤维复合材料在船舶领域的应用。
船舶结构件的重量和强度对于船舶的性能至关重要。
碳纤维复合材料具有高强度和轻质化特性,因此被广泛应用于船舶制造,可以提高船舶的性能和节能减排。
接下来,本文将重点讨论国内外碳纤维复合材料的研究开发方向。
一是开发新型碳纤维原料。
目前,市场上主要使用的碳纤维原料是聚丙烯腈纤维。
研究人员正在开发新型纤维原料,如石墨烯、纳米碳纤维等,以提高碳纤维的力学性能和热稳定性。
二是改善碳纤维与基质材料的界面粘结性能。
碳纤维与树脂等基质材料的界面粘结性能对复合材料的力学性能和耐久性影响很大。
研究人员正在探索提高界面粘结性能的方法,如表面改性和介入增韧等。
三是提高碳纤维复合材料的制备工艺。
制备工艺是影响碳纤维复合材料质量的关键因素之一、研究人员正在开发新的制备工艺,如预浸法、纺丝法和层合法等,以提高复合材料的力学性能和制造效率。
四是研究碳纤维复合材料的寿命与损伤机理。
碳纤维复合材料容易受到外界环境和应力加载的影响,会出现疲劳和损伤现象。
碳纤维复合材料论文复合材料论文:我国碳纤维增强复合材料的市场状况【摘要】碳纤维复合材料(CFRP)作为一种先进的复合材料,具有重量轻、模量高、比强度大、热膨胀系数低、耐高温、耐热冲击、耐腐蚀、吸振性好等一系列优点,在航空航天、汽车等领域已有广泛的应用。
文章通过对碳纤维在行业中的广泛应用及现状分析,对国内碳纤维复合材料市场的问题与前景进行了探讨。
【关键词】碳纤维复合材料;体育休闲用品;结构加固工程一、我国CFRP体育休闲用品的发展情况我国在八十年代初开始研制CFRP体育运动器材。
1983哈尔滨玻璃钢研究所研制的CFRP羽毛球拍,1987年研制成功碳纤维/玻璃纤维混杂增强环氧树脂的蜂窝夹层结构四人皮艇。
八十年代中期,由于中国的改革开放政策和劳动力低廉等原因,台湾逐步把劳动力密集,污染严重的CFRP体育器材制造业转往大陆沿海地区。
例如,台湾80%的高尔夫球杆、40.50%的网球拍、羽毛球拍,60%以上的自行车架制造业转移到深圳、东莞、福州和厦门等地;一些发达国家也把该种体育器材制造业转来中国。
例如,韩国把其大部分CFRP钓鱼杆制造业转来中国天津、威海和宁波等地。
据统计,2002年国产CFRP钓鱼杆、高尔夫球杆、网球拍、自行车等已分别占到世界同类产品产量的60%、60%、75%、65%。
这些CFRP体育休闲用品所消耗的CF量,约占当年世界CF消耗总量的16%。
然而,由于国际CFRP体育休闲用品已处于饱和状态,今后这方面产品将基本上处于稳定状态,年增长速度大体在1%左右。
二、结构加固工程已成为CFRP产业新的增长点中国从1997年开始从国外引入CFRP加固混凝土结构技术,并开始进行相关研究,由于其巨大的技术优势,在短短的时间内很快形成研究和工程应用的热点。
目前国内已有国家工业建筑诊断与改造工程技术研究中心、清华大学、东南大学、天津大学、北京航空航天大学、北京化工大学、中国建筑科学研究院等数十个高校和科研院所先后开展了CF加固建筑结构的研究,已完成多项研究课颗,发表研究论文100多篇。
碳纤维复合材料发展现状碳纤维复合材料是一种具有轻质、高强度、高刚度、耐腐蚀等优点的材料,因而具有广泛的应用前景。
在航空航天、汽车、体育用品等领域都有着重要的应用。
目前,碳纤维复合材料发展势头强劲,下面将从材料配方、生产工艺和应用领域三个方面探讨其发展现状。
首先,材料配方是碳纤维复合材料发展的基础。
随着材料科学的不断进步,碳纤维复合材料的配方也在不断改进。
传统的碳纤维复合材料由碳纤维和树脂基体组成,而现在则有更多的材料被引入其中,例如陶瓷颗粒、金属纤维等,以增强其性能。
此外,纳米技术的应用也为碳纤维复合材料的配方提供了新的思路。
其次,生产工艺是碳纤维复合材料发展的重要环节。
传统的生产方法主要是手工层叠,虽然能够获得优秀的性能,但是生产周期长、效率低。
随着机器人技术和3D打印技术的发展,碳纤维复合材料的生产工艺也发生了很大地变革。
现在,自动化生产线已经能够实现连续生产,并且可以根据产品设计进行定制生产,大大提高了生产效率和产品的一致性。
最后,碳纤维复合材料在各个领域的应用也在不断扩大。
在航空航天领域,碳纤维复合材料被广泛应用于飞机的机身、翅膀等关键部件,以减轻飞机重量,提高燃油经济性能。
在汽车领域,碳纤维复合材料可以用于汽车车身、底盘等部件,以提高车辆的安全性和节能性。
在体育用品领域,碳纤维复合材料逐渐取代传统材料,成为高档的高尔夫球杆、网球拍等产品的制造材料。
总的来说,碳纤维复合材料发展现状良好。
通过不断优化配方和改进生产工艺,碳纤维复合材料的性能得到了显著提升。
同时,各个领域对该材料的需求也在不断增加,推动了碳纤维复合材料产业的快速发展。
然而,碳纤维复合材料的成本仍然较高,且在大规模生产中尚存在技术难题,这些都是需要攻克的挑战。
但随着技术的进一步发展和应用的推广,相信碳纤维复合材料的未来会更加广阔。
碳纤维复合材料加工技术的研究与应用随着科技的不断发展,复合材料逐渐成为了许多行业不可或缺的技术之一。
碳纤维复合材料作为其中的一种材料,因其高强度、轻质、耐腐蚀、抗疲劳等优良性能,已经被广泛应用于航空航天、汽车、体育器材等领域。
而碳纤维复合材料实际上是由树脂或金属等基础材料与碳纤维等增强材料相互结合而成的,加工和制造时需要高超的技术和技能。
因此,本文将探讨碳纤维复合材料的加工技术及其应用现状。
一、碳纤维复合材料加工技术1. 碳纤维制备技术:从最基础的碳纤维开始,碳纤维的制备工艺是很关键的工艺之一。
常用的制备技术包括纺丝、气相沉积、化学气相沉积等方法。
其中,气相沉积可以制备出高质量、高性能的碳纤维。
2. 树脂基础材料:树脂是复合材料的基础材料之一,树脂的种类和性能对复合材料的性能有着至关重要的影响。
应根据复合材料的应用环境来选择合适的树脂。
3. 复合材料的成型工艺:成型是复合材料加工的重要环节。
常见的成型工艺有手层叠、自动化生产线、热成型等。
这些成型工艺需要工人进行操作,并具备高超的技能和技术。
4. 碳纤维和树脂的配比以及处理方法:碳纤维和树脂的配比对复合材料的性能影响很大,因此需要合理的设计。
同时,对于树脂的固化处理也需要进行精准的调控,以达到最佳的固化效果。
5. 后续处理:复合材料的后续处理可以提高其性能和耐用度。
常见的处理方法有表面处理、机械加工、辅助材料添加等。
二、碳纤维复合材料的应用现状1. 航空航天:碳纤维复合材料因其轻质高强的特性在航空航天领域的应用较为广泛。
例如,Boeing787飞机机身和翅膀的超过50%使用了碳纤维复合材料。
2. 汽车制造:碳纤维复合材料的性能优越,在汽车制造领域应用日益广泛。
复合材料的重量轻,安全性好,能有效提高汽车的燃油效率。
3. 体育器材:碳纤维复合材料在体育器材的制造中也有着重要的应用。
例如,高尔夫球杆、便携式篮球架等都可以使用碳纤维复合材料制造,提高其性能和可持续性。
碳纤维增强复合材料成形技术研究碳纤维增强复合材料是一种重要的材料,其在飞机、汽车、机器人等领域得到广泛应用。
由于其具有高强度、高模量、耐腐蚀性好等优点,成为一种理想的工程材料。
本文将对碳纤维增强复合材料的成形技术进行探讨。
一、碳纤维增强复合材料的制备过程碳纤维增强复合材料的制备过程分为三个主要步骤:纤维制备、复合材料成型和热处理。
其中,纤维制备是将聚合物通过拉伸成形成为纤维,再通过碳化实现成为碳纤维的过程。
复合材料成型是将碳纤维和树脂等复合材料的制备加工成为需要的形状、大小。
热处理则是将成型后的复合材料加热,使之获得更好的物理和化学性质。
二、碳纤维增强复合材料成形技术的发展历程碳纤维增强复合材料成形技术的起点可以追溯到20世纪60年代。
当时的技术水平相对较低,主要采用手工制备,生产效率低,质量难以控制。
自此后伴随着技术的快速发展,人们对于碳纤维增强复合材料成形技术的研究也越来越深入。
在80年代初期,热成型、真空成型和胶体成型等几种新的成型方法相继开发。
这些新的成型技术不仅提高了成型效率,也增进了制品的性能和质量。
在90年代,碳纤维增强复合材料成型技术向自动化和智能化方向发展,多层胶接成型、导向自动定位成型等新技术应运而生。
随着科技的发展,诸如二维和三维成型、数字化成型等新技术不断涌现,而医用、高档家居等领域也开始使用碳纤维增强复合材料。
可以说,随着碳纤维增强复合材料成形技术的不断进步和完善,我们也将会看到更广泛的应用领域。
三、碳纤维增强复合材料成型技术现状碳纤维增强复合材料成型技术现状主要表现在以下几个方面:1、成型技术加工效率较高,对生产效率的提高有着明显的作用,大型汽车、飞机等极大程度上采用该材料进行制造。
2、在成型技术上不可避免会产生浪费,而碳纤维增强复合材料需要进行严格的控制,特别是成型过程中的纤维取向控制等,这也是绝大多数制备单位所面临的难题。
3、而随着碳纤维增强复合材料成型技术在工业应用中的发展,传统成型方法已经无法满足市场需求,开发新的增材制造技术,如3D打印等将成为发展方向之一。
碳纤维复合材料论文导言碳纤维复合材料(CFRP)是一种由碳纤维和树脂基体组成的高性能材料。
随着科技的进步,CFRP在航空航天、汽车工业、体育用品等领域中得到了广泛的应用。
本论文将就CFRP的制备方法、性能特点以及应用前景进行详细探讨。
1. CFRP的制备方法CFRP的制备方法通常包括纺丝、预浸料、固化和成型四个步骤。
1.1 碳纤维纺丝碳纤维是由多个碳纤维丝束组成的。
纺丝过程中,先将碳纤维丝束在高温下拉伸,然后进行表面处理,以增加纤维与树脂的粘合性能。
1.2 预浸料制备预浸料是将纺丝得到的碳纤维与树脂基体进行浸渍得到的材料。
树脂基体一般采用环氧树脂。
预浸料制备过程中需要控制纤维的含量、纤维间的排列方式以及树脂的渗透性。
1.3 固化固化是指通过加热或加压将树脂基体中的单体或低分子量聚合物转变为高分子量聚合物的过程。
固化可以提高CFRP的强度和刚度。
1.4 成型成型是将固化后的预浸料经过特定形状的模具加热或加压成型,得到最终的CFRP产品。
2. CFRP的性能特点CFRP具有许多优良的性能特点,使其成为许多领域的首选材料。
2.1 高强度和高刚度相比于传统的金属材料,CFRP具有更高的强度和刚度。
其拉伸强度可以达到2000 MPa,弹性模量可以达到150 GPa以上。
2.2 轻质CFRP的密度大约为1.6 g/cm³,相比于钢材(7.8 g/cm³)和铝材(2.7g/cm³),CFRP具有更轻的重量优势。
2.3 抗腐蚀性由于CFRP的主要组成部分是碳纤维和树脂基体,它具有优良的抗腐蚀性能,不易受潮湿环境、化学物质和气候变化的影响。
2.4 热稳定性CFRP具有较高的热稳定性,可以在高温环境下长期使用而不发生形变或脆化。
2.5 高耐疲劳性由于CFRP的高强度和高刚度,它具有出色的耐疲劳性能,适用于长期受到重复加载的应用场景。
3. CFRP的应用前景随着CFRP技术的不断发展,其在各个领域的应用前景十分广阔。
复合材料概论课程论文碳纤维复合材料的成型工艺与应用现状院、部:材料与化学工程学院专业班级:学生姓名:指导教师:完成时间:2020/11/3摘要本文简述了碳纤维复合材料的性能、特点、成型工艺及应用领域现状、碳纤维复合材料的主流加工工艺,阐述了碳纤维复合材料在航空航天、汽车、风电、体育休闲等领域的应用现状,研究了该产业的发展趋势,并且提出了相关建议。
关键字:碳纤维;复合材料;成型工艺;应用;趋势AbstractIn this paper, the performance, characteristics, molding technology and application field status of carbon fiber composite materials, the mainstream processing technology of carbon fiber composite materials are briefly described. The application of carbon fiber composite materials in aerospace, automobile, wind power, sports and leisure fields is described. The development trend of the industry is studied, and relevant suggestions are put forward.Keywords:carbon fiber;composite material;molding process;applicaton; tren1引言碳纤维复合材料(CFRP)是20世纪兴起的一种新材料。
1879年爱迪生曾用纤维素纤维,如竹、亚麻、棉纱为原料,首先制得碳纤维并获得专利,但当时的碳纤维力学性能低,工业化程度也低,并未得到发展。
到1950年,由于火箭、航天及航空等尖端技术的发展,迫切需要比强度、比模量高和耐高温的新型材料,另一方面,采用前驱纤维为原料经热处理的工艺可制得碳纤维连续长丝,这一工艺奠定了碳纤维工业化的基础。
在美国空军基地,人们首先通过在2000℃拉伸人造丝来准备CFRP,然后CFRP进入了一个快速发展的时期。
它是由聚丙烯腈(PAN)、粘胶纤维和沥青经预氧化、碳化制成的耐高温、高强、高模的特种材料。
其中,聚丙烯腈(PAN)基复合材料具有优异的力学性能和广泛的应用领域,是当今碳纤维的主要产品,其产量占世界所有碳纤维总产量的90%以上[1]。
1碳纤维复合材料概述1.1碳纤维复合材料的特性与其它材料比,CFRP具有如下特性[2]:(1)比强度、比模量高:CFRP的比强度比钢高5倍,比模量也比刚高。
(2)密度小,强度高:CFRP的密度是其它金属材料密度的0.5倍左右。
高性能的CFRP强度能达到钢材的十几倍。
(3)抗疲劳特性好:CFRP的疲劳极限是拉伸强度的70%~80%,远大于一般金属的疲劳极限(40%~50%)。
(4)抗震性能好:CFRP中基体纤维界面可以吸收较大的震动能量,因此抗震性能好。
(5)可设计性强:CFRP具有各向异性,可以通过改变各铺层的方向和层数来得到满足强度、刚度和各种特殊需求。
(6)高温性能好:CFRO在400℃的高温下强度和弹性模量几乎无变化,而铝合金在400℃下强度显著下降,弹性模量几乎下降到零。
(7)成型性好:易于大面积整体成型。
1.2碳纤维复合材料的分类碳纤维是一种含碳量在95%以上的高强度、高模量特种纤维,但几乎所有的碳纤维都将进一步加工成复合材料以供终端使用。
碳纤维复合材料是以碳纤维为增强材料,以树脂、金属、陶瓷等作为基体材料,经过复合成型制成的结构材料。
与传统的金属材料相比,其具有密度小、比强度/比刚度高、耐腐蚀、抗疲劳、耐高温、便于设计、易于大面积整体成型加工等优点[3]。
按基体的不同,可分为树脂基复合材料(CFRP)、碳/碳复合材料(C/C)、金属基复合材料(CFRM)、陶瓷基复合材料(CFRC)及橡胶基复合材料(CFRR)等。
CFRP是碳纤维最主要的消费领域,其在全球碳纤维复合材料市场中的消费占比约为80%。
本文主要介绍我国CFRP的成型工艺、应用领域及现状。
碳纤维复合材料分类如图1所示。
图1碳纤维复合材料分类示意1.3碳纤维增强复合材料(CFRP)通常以碳纤维为增强体,热固性树脂(以环氧树脂居多)为基体制备的复合材料,纤维承担了大部分负载,并且是材料性能的主要贡献者。
而树脂有助于在纤维之间转移载荷,防止纤维弯曲,并将材料黏合在一起。
碳纤维增强板具有显著的高比强度和高比模量,使其成为航空航天、汽车工业等轻量化、高性能应用的首选。
碳纤维性能优异,与金属材料相比,在力学性能上有着明显优势,如表1所示。
碳纤维材料一般不单独使用,通常用于复合材料的增强体,并起到承载负荷的作用,而基体材料主要用于传递应力。
纤维通过与不同的基体材料复合,可以形成不同种类的复合材料,其中CFRP、C/C复合材料、CFRM、CFRC和CFRR是最常见的几种复合材料,应用最广泛的是碳纤维增强树脂基复合材料。
表1碳纤维复合材料与其他材料性能及优缺点对比2碳纤维复合材料的成型工艺CFRP的成型技术很多,以预浸料的铺层固化应用最为常见,其可用于模压成型、热压罐、拉挤成型等工艺。
最近发展起来的预成型件成型技术,采用液态注塑、整体成型,不仅可减少零件数目、降低成本,而且解决了分层剥离技术的难题,使层间剪切强度和冲击后压缩强度得到了大幅提高,在汽车、航空飞机等结构件的制备得到广泛应用。
CFRP成形技术分类如图2所示。
图2碳纤维复合材料成型技术分类示意2.1模压成型工艺模压成型是复合材料生产中一种传统常用的成型方法,由普通的塑料制品模压成型演变而来。
工艺流程为:将碳纤维预浸料置于上下模之间,合模将模具置于液压成型台上,经过一定时间的高温高压使树脂固化后,取下CFRP制品。
这种成型技术具有高效、制件质量好、尺寸精度高、受环境影响小等优点,适用于批量化、强度高的复合材料制件的成型,其缺点是前期模具制造复杂,投入高,且制件大小受压机尺寸的限制。
2.2热压罐成型工艺热压罐成型是最早开发用于航空结构复合材料制造并仍普遍使用的一种技术,特别是针对于一些大尺寸、形状复杂的制件。
热压罐成型工艺流程为:将单层预浸料按预定方向铺叠成的复合材料坯料放在热压罐内,在一定温度和压力下完成固化过程。
这种成型工艺采用的原料也是碳纤维预浸料中间体,其具有可固化不同厚度的层合板、可制造复杂曲面零件、使用范围广泛、工艺稳定可靠等优点,但也存在设备投资成本高、工艺生产成本高、制品大小受热压罐尺寸限制等缺点,适用于制造飞机舱门、整流罩、机载雷达罩,支架、机翼、尾翼等产品。
2.3树脂转移模塑成型工艺树脂转移模塑成型(RTM:ResinTransferMolding)技术是一种低成本复合材料的制造方法,最初主要用于飞机次承力结构件,如舱门和检查口盖,现已经成为近几年航空航天材料加工、汽车组件装配领域研究最为活跃的方向之一[4]。
RTM技术具有高效、低成本、制件质量好、尺寸精度高、受环境影响小等优点,可应用于体积大、结构复杂、强度高的复合材料制件的成型。
RTM工艺的主要原理是在模腔(模腔需要预先制作成特定尺寸)中铺放按性能和结构要求设计的增强材料预成形体,在一定压力范围内,采用注射设备将专用树脂体系注入闭合模腔,通过树脂与增强体的浸润固化成型。
它是一种不采用预浸料,也不采用热压罐的成形方法。
RTM主要的派生技术有真空导入模塑工艺、柔性辅助RTM、共注射RTM及高压RTM(HPRTM)等。
其中,HP-RTM采用预成型件、钢模、真空辅助排气,高压注射和高压下完成高性能热固性复合材料的浸渍和固化工艺,实现低成本、短周期(大批量)、高质量生产,宝马在德国兰茨胡特工厂的碳纤维车身生产便是采用该工艺,康得复材年产150万件碳纤维复合材料部件项目也将采用该工艺。
HP-RTM可以生产高质量、高精度、低孔隙率、高纤维含量的复杂复合材料构件,具有生产效率高、数分钟内即可固化、模具产品采用CAD设计、制造容易并可多次使用等优点。
3碳纤维复合材料的应用现状3.1航空航天CFRP是大型整体化结构的理想材料,目前我国航空航天碳纤维主要应用于航空装备制造领域[5]。
与常规材料相比,CFRP可使飞机减重20%~40%,可克服金属材料容易出现疲劳和被腐蚀的缺点,增强了飞机的耐用性。
CFRP的良好成型性可以使结构设计成本和制造成本大幅度降低。
航空航天领域对CFRP的需求主要来自两大方面,一是新研制飞机不断增加的CFRP的应用比例,二是新增的飞机订单,尤其是商用飞机[6]。
3.2汽车工业随着汽车工业的不断发展,市场对汽车的轻量、节能、环保等提出了更高的要求。
碳纤维具有比模量和比强度高、减重潜力大、安全性好等突出优点,是汽车轻量化的最佳选择。
欧洲铝协研究数据表明[7],若汽车整车质量降低10%,燃油效率可提高6%~8%;从绝对量来说,汽车重量每降低100kg,每百公里可节约0.6L燃油,二氧化碳排放可减少约10g/km。
3.3风电领域出于经济性考虑,当前主流的风电叶片为玻璃钢材质(GFRP),但随着低速风机和海上风机的不断发展,叶片长度的不断增加,GFRP在大型复合材料叶片制造中逐渐显现出性能方面的不足,叶片刚度和轻质要求均不能满足,因此部分结构使用碳纤维或碳纤/玻纤混合材料在性能及综合成本上将更具优势[8]。
根据测算,40m以上的风电叶片中关键结构如梁帽、主梁使用碳纤维复合材料一方面可使叶片自重减少38%,成本降低14%;另一方面可以提高叶片抗疲劳性能,提高输出功率。
低风速风场和海上风电共同推进了叶片的大型化发展,从而进一步推动CFRP在风电领域的高速增长。
2018年国内风电叶片CFRP消费量约为1.2万t,光威复材是国内Vestas和Tpi在国内的风电碳梁供应商,2019年该公司碳梁的产销量较2018年增长一倍,国内风电叶片领域对CFRP的需求增长迅猛。
3.4体育休闲碳纤维复合材料在高尔夫球杆、球拍、雪橇、滑雪板、曲棍球棒、钓鱼竿和自行车等体育休闲产品中广泛应用,主要生产国家及地区为中国大陆、美国及中国台湾。
体育休闲用品是我国碳纤维第一大应用领域,目前,我国文体休闲制品的碳纤维消费市场已经趋于饱和,产品多以出口国际市场为主,该领域CFRP生产量约2.1万t[9],未来发展速度将逐步放缓。
同时,随着碳纤维在新兴工业领域应用的逐步扩展,其在整个消费结构中所占比例将进一步降低。
3.5碳纤维的回收应用碳纤维复合材料在回收技术上目前分为物理回收法、化学回收法和能量回收法三大类。