500KV电网过电压保护绝缘配合与电气设备接地暂行技术标准
- 格式:doc
- 大小:554.50 KB
- 文档页数:27
对应的旧标准:SDJ 8-79;SD 119-84交流电气装置的接地Grounding for AC edectrical insfallations中华人民共和国电力行业标准交流电气装置的接地DL/T621—1997DL/T621—1997Grounding for AC electrical installations中华人民共和国电力工业部1997-09-02批准1998-01-01实施前言本标准是根据原水利电力部1979年1月颁发的SDJ8—79《电力设备接地设计技术规程》和1984年3月颁发的SD119—84《500kV电网过电压保护绝缘配合与电气设备接地暂行技术标准》,经合并、修订之后提出的。
本标准较修订前的两个标准有如下重要技术内容的改变:1)增加了电阻接地系统交流电气装置保护接地接地电阻的规定;2)修订了有效接地系统接地装置接地线热稳定校验的规定;提出3~66kV不接地、消弧线圈接地和高电阻接地系统进行异地两相短路接地线热稳定校验的要求;3)补充了接地网非等间距布置时的接地网接触电位差、跨步电位差的计算方法;4)修订了杆塔接地装置和自然接地极冲击系数的计算方法;5)提出接地装置耐腐蚀的工作寿命的要求;6)增加了气体绝缘全封闭组合电器(GIS)的接地规定;7)参考IEC有关标准补充了低压建筑物电气装置的接地系统和接地装置等内容。
本标准发布后,SDJ8—79和SD119—84第六章500kV电网电气设备接地即行废止。
本标准的附录A、附录B、附录C、附录D和附录E是标准的附录,附录F是提示的附录。
本标准由电力工业部科学技术司提出。
本标准由电力工业部绝缘配合标准化技术委员会归口。
本标准起草单位:电力工业部电力科学研究院高压研究所。
本标准起草人:杜澍春。
本标准委托电力工业部电力科学研究院高压研究所负责解释。
1范围本标准规定了交流标称电压500kV及以下发电、变电、送电和配电电气装置(含附属直流电气装置,并简称为A类电气装置)以及建筑物电气装置(简称B类电气装置)的接地要求和方法。
中华人民共和国电力行业标准高海拔污秽地区悬式绝缘子串片数 DL/T 562—95选 用 导 则中华人民共和国电力工业部1995-06-02批准 1995-10-01实施1 适用范围本导则主要适用于海拔高度为1000~5000m 以内污秽地区35~500kV 电压 等级三相交流输电线路悬式绝缘子串片数的选定。
2 引用标准及规定2.1 GB 311.1—83 高压输变电设备的绝缘配合2.2 SDJ3—79 架空送电线路设计技术规程2.3 GB4585.2—91 交流系统用高压绝缘子人工污秽试验方法 固体层法 3 海拔1000m 及以下清洁地区输电线路悬式绝缘子串片数工作电压是确定绝缘子串片数的决定条件,线路直线杆塔悬式绝缘子串片数N 可按工作电压作用下所要求的爬电距离初步选定:N U L ≥⋅λ1m / (1)式中 λ——单位爬由比距,cm/kV ;L ——单个绝缘子的爬电距离,cm ;U 1m ⋅——最高工作电压,kV 。
综合考虑内过电压和大气过电压的影响,现行设计规程中对清洁区(0级污区) 直线杆悬式绝缘子串片数有表1规定(参见SDJ3)。
表 1 额定电压与绝缘子串片数的关系*此值取于《500kV 电网过电压保护绝缘配合与电气设备接地暂行技术标准》。
4 不同海拔范围内污秽地区悬式绝缘子串片数4.1 1000m 以下污秽地区单片绝缘子污秽耐压值按GB 4585.2的规定进行绝缘子污秽耐压试验,试验得到绝缘子串的污秽耐压 值即可求出单片绝缘子的污秽耐压值:U U N d n c n ⋅⋅=/ v (2)式中 U d n ⋅——单片绝缘子污秽耐压值;U c n ⋅——绝缘子串污秽耐压值,kV ;N ——试验绝缘子串片数。
4.2 1000m 以上地区单片绝缘子污秽耐压值应该直接在线路需经过的高海拔地区,按GB4585.2的规定进行绝缘子污秽耐 压试验,得出高海拔地区单片绝缘子的污秽耐压值:U U N d n g c n g ⋅⋅⋅⋅=/ (3)式中 U d n g ⋅⋅——高海拔下单片绝缘子污秽耐压值;U c n g ⋅⋅——高海拔下绝缘子串的污秽耐压值。
输变电标准讲解资料《交流电气装置的接地》(DL/T 621-1997)2008 年8月目录前言一、本标准对交流电气装置的接地的基本要求二、对发电厂、变电所电气装置及配电电气装置的接地电阻的要求三、发电厂、变电所接地装置的电位计算四、接地装置的热稳定校验五、对发电厂、变电所电气装置中电气设备接地线的连接要求六、线路杆塔的接地装置七、关于接地电阻的测量八.低压系统的接地形式前言本标准根据原水利电力部1979年1月颁发的《电力设备接地设计规程》SDJ8-79和1984年3月颁发的《500kV电网过电压保护绝缘配合与电气设备接地暂行技术标准》SD119-84,经合并、修订提出的。
标准的适用范围—A类(500kV及以下电力系统发电、变电、送电和配电)B类(一般工业与民用低压)电气装置接地要求和方法。
本标准与修订前标准的重要差别:2)补充了低电阻接地系统接地要求;3)修改了有效接地系统要求;4)补充了GIS变电所的接地要求;5)修改了接地线等热稳定计算中短路电流的持续时间的要求,并且针对不同情况提出具体规定;6)增加了变电所接地装置不均匀网格的设计和计算等的内容;7)补充了对电气装置耐腐蚀和工作寿命的要求;8)增补了B类(一般工业与民用低压)电气装置接地要求和方法。
下面结合本标准的原文,对上述各项问题将作简要的阐述。
一、本标准对交流电气装置的接地的基本要求。
1.在系统发生接地故障时接地装置所产生的接触电位差Vt与跨步电位差Vs,均应符合3、4条的要求。
新的标准,对“低电阻接地系统”与“有效接地系统”的要求一致。
见3、4条a 中的(1)、(2)。
式(3.4a)来源于标准(SDJ8—79)是参照76版IEEE No80〈变电站接地安全规程〉中美国人达尔基尔(Daljiel)的“3S心颤电流曲线”,它是以统计方法综合了各种躯体和心脏大小与人体接近的动物的试验结果。
提示了在0.03~3秒的时间范围内人体开始发生心室颤动的电流(心颤电流)Io(A)有效值和人体吸收能量相关的关系式:式中t:电击时间S;K:由试验导出的“能量常数”它是人体重量的函数据下包线得出,原标准采用早期公布的体重70kg K70=0.0272。
D L-T620-1997交流电气装置的过电压保护和绝缘配合中华人民共和国电力行业标准交流电气装置的过电压保护和绝缘配合Overvoltage protection and insulation coordination forAC electrical installationsDL/T620—1997中华人民共和国电力工业部1997-04-21批准1997-10-01实施前言本标准是根据原水利电力部1979年1月颁发的SDJ7—79《电力设备过电压保护设计技术规程》和1984年3月颁发的SD119—84《500kV电网过电压保护绝缘配合与电气设备接地暂行技术标准》,经合并、修订之后提出的。
本标准较修订前的两个标准有如下重要技术内容的改变:1)增补了电力系统电阻接地方式,修订了不接地系统接地故障电流的阈值;2)对暂时过电压和操作过电压保护,补充了有效接地系统偶然失地保护和并联补偿电容器组、电动机操作过电压保护及隔离开关操作引起的特快暂态过电压保护等内容,对330kV系统提出新的操作过电压水平要求,修订了限制500kV合闸和重合闸过电压的原则和措施等;3)增加了金属氧化物避雷器参数选择的要求;4)增加了变电所内金属氧化物避雷器最大保护距离和SF6GIS变电所的防雷保护方式的内容;5)充实并完善了3kV~500kV交流电气装置绝缘配合的原则和方法,给出架空线路、变电所绝缘子串、空气间隙和电气设备绝缘水平的推荐值。
本标准发布后,SDJ7—79即行废止;SD119—84除第六章500kV电网电气设备接地外也予以废止。
本标准的附录A、附录B和附录C是标准的附录,附录D、附录E和附录F是提示的附录。
本标准由电力工业部科学技术司提出。
本标准由电力工业部绝缘配合标准化技术委员会归口。
本标准起草单位:电力工业部电力科学研究院高压研究所。
本标准起草人:杜澍春、陈维江。
本标准委托电力工业部电力科学研究院高压研究所负责解释。
输变电标准讲解资料《交流电气装置的接地》(DL/T 621-1997)2008 年 8月目录前言一、本标准对交流电气装置的接地的基本要求二、对发电厂、变电所电气装置及配电电气装置的接地电阻的要求三、发电厂、变电所接地装置的电位计算四、接地装置的热稳定校验五、对发电厂、变电所电气装置中电气设备接地线的连接要求六、线路杆塔的接地装置七、关于接地电阻的测量八.低压系统的接地形式前言本标准根据原水利电力部1979年1月颁发的《电力设备接地设计规程》SDJ8-79和1984年3月颁发的《500kV电网过电压保护绝缘配合与电气设备接地暂行技术标准》SD119-84,经合并、修订提出的。
标准的适用范围—A类(500kV及以下电力系统发电、变电、送电和配电)B类(一般工业与民用低压)电气装置接地要求和方法。
本标准与修订前标准的重要差别:2)补充了低电阻接地系统接地要求;3)修改了有效接地系统要求;4)补充了GIS变电所的接地要求;5)修改了接地线等热稳定计算中短路电流的持续时间的要求,并且针对不同情况提出具体规定;6)增加了变电所接地装置不均匀网格的设计和计算等的内容;7)补充了对电气装置耐腐蚀和工作寿命的要求;8)增补了B类(一般工业与民用低压)电气装置接地要求和方法。
下面结合本标准的原文,对上述各项问题将作简要的阐述。
一、本标准对交流电气装置的接地的基本要求。
1.在系统发生接地故障时接地装置所产生的接触电位差Vt与跨步电位差Vs,均应符合3、4条的要求。
新的标准,对“低电阻接地系统”与“有效接地系统”的要求一致。
见3、4条a 中的(1)、(2)。
式(3.4a)来源于标准(SDJ8—79)是参照76版IEEE No80〈变电站接地安全规程〉中美国人达尔基尔(Daljiel)的“3S心颤电流曲线”,它是以统计方法综合了各种躯体和心脏大小与人体接近的动物的试验结果。
提示了在0.03~3秒的时间范围内人体开始发生心室颤动的电流(心颤电流)Io(A)有效值和人体吸收能量相关的关系式:式中t:电击时间S;K:由试验导出的“能量常数”它是人体重量的函数据下包线得出,原标准采用早期公布的体重70kg K70=0.0272。
对应的旧标准:SDJ 8-79;SD 119-84交流电气装置的接地Grounding for AC edectrical insfallations中华人民共和国电力行业标准交流电气装置的接地DL/T621—1997DL/T621—1997 Grounding for AC electrical installations中华人民共和国电力工业部1997-09-02批准1998-01-01实施前言本标准是根据原水利电力部1979年1月颁发的SDJ8—79《电力设备接地设计技术规程》和1984年3月颁发的SD119—84《500kV 电网过电压保护绝缘配合与电气设备接地暂行技术标准》,经合并、修订之后提出的。
本标准较修订前的两个标准有如下重要技术内容的改变:1)增加了电阻接地系统交流电气装置保护接地接地电阻的规定;2)修订了有效接地系统接地装置接地线热稳定校验的规定;提出3~66kV不接地、消弧线圈接地和高电阻接地系统进行异地两相短路接地线热稳定校验的要求;3)补充了接地网非等间距布置时的接地网接触电位差、跨步电位差的计算方法;4)修订了杆塔接地装置和自然接地极冲击系数的计算方法;5)提出接地装置耐腐蚀的工作寿命的要求;6)增加了气体绝缘全封闭组合电器(GIS)的接地规定;7)参考IEC有关标准补充了低压建筑物电气装置的接地系统和接地装置等内容。
本标准发布后,SDJ8—79和SD119—84第六章500kV电网电气设备接地即行废止。
本标准的附录A、附录B、附录C、附录D和附录E是标准的附录,附录F是提示的附录。
本标准由电力工业部科学技术司提出。
本标准由电力工业部绝缘配合标准化技术委员会归口。
本标准起草单位:电力工业部电力科学研究院高压研究所。
本标准起草人:杜澍春。
本标准委托电力工业部电力科学研究院高压研究所负责解释。
1范围本标准规定了交流标称电压500kV及以下发电、变电、送电和配电电气装置(含附属直流电气装置,并简称为A类电气装置)以及建筑物电气装置(简称B类电气装置)的接地要求和方法。
1引言随着电力工业的迅速发展,输电线路覆盖面不断扩大,超高压输电线路的延伸,因雷击输电线路而引起的跳闸事故日益增多,据国内外输电线路故障在近十几年来的分类统计表明,由于雷击引起的输电线路的跳闸次数占输电线路总故障跳闸次数的50%~70%,尤其是在多雷、土壤电阻率高,地形复杂地区的输电线路雷击事故率更高,这将给社会带来巨大的经济损失。
为了减少输电线路雷击跳闸事故,提高输电线路供电的可靠性,一般采用的是减少避雷线屏蔽角,增加绝缘子绝缘长度、多重屏蔽、双回路差接绝缘和降低杆塔接地电阻等技术措施,这些措施中唯有降低杆塔接地电阻值是最为灵活,较为经济,容易实施,效果明显的一种手段,但对经过山区和长距离的输电线路,难免会遇到土壤电阻率高的地段,故使降低杆塔接地电阻值较为困难,所以对这些杆塔采用带串联间隙复合绝缘避雷器(SGMOA)是防止雷害,提高线路耐雷水平的最有效方式。
目前,变电站所采用瓷套避雷器因其重量、防爆、热稳定、受潮、破碎及防污性能等问题,很难在线路杆塔上安装使用,为此,保定电力修造厂与清华大学、华北电力集团公司超高压局共同研制出重量轻、体积小、防污性能好、热稳定优越、不易受潮、运输安装维护方便的SGMOA,产品经国家电力集团公司电力设备及仪表检验测试中心的全面型式试验,各种性能指标均达到设计要求,产品通过专家评审,已挂网运行。
2串联间隙复合绝缘避雷器防止雷害的性能特点众所周知,电力系统各种电压等级输配网中,每条线路的升、降压站的出、入口都装设避雷器,这些避雷器主要使线路雷电在导线感应波及变电站电器绝缘设备的过电压限制在一定范围内,从而使避雷器达到防雷效果。
但随着输电线路电压等级的提高,雷击高杆塔概率相应增多,当雷击接地电阻值高的杆塔顶部时,杆塔顶部出现瞬间电位与导线雷感应电位叠加工频电压幅值之差,大于杆塔顶部悬挂绝缘子的50%雷电冲击闪络电压数值时,绝缘子发生闪络造成固定绝缘子导线与杆塔之间短路。
DLT620-97交流电气装置的过电压保护和绝缘配合【DL/T620-97】《交流电气装置的过电压保护和绝缘配合》Overvoltage protection and insulation coordination forAC electrical installations中华人民共和国电力工业部1997-04-21批准 1997-10-01实施前言本标准是根据原水利电力部1979年1月颁发的SDJ7—79《电力设备过电压保护设计技术规程》和1984年3月颁发的SD 119—84《500kV电网过电压保护绝缘配合与电气设备接地暂行技术标准》,经合并、修订之后提出的。
本标准较修订前的两个标准有如下重要技术内容的改变:1)增补了电力系统电阻接地方式,修订了不接地系统接地故障电流的阈值;2)对暂时过电压和操作过电压保护,补充了有效接地系统偶然失地保护和并联补偿电容器组、电动机操作过电压保护及隔离开关操作引起的特快暂态过电压保护等内容,对330kV系统提出新的操作过电压水平要求,修订了限制500kV合闸和重合闸过电压的原则和措施等;3)增加了金属氧化物避雷器参数选择的要求;4)增加了变电所内金属氧化物避雷器最大保护距离和SFGIS变电所的防雷保护方式的内容; 65)充实并完善了3kV,500kV交流电气装置绝缘配合的原则和方法,给出架空线路、变电所绝缘子串、空气间隙和电气设备绝缘水平的推荐值。
本标准发布后,SDJ 7—79即行废止;SD119—84除第六章500kV电网电气设备接地外也予以废止。
本标准的附录A、附录B和附录C是标准的附录,附录D、附录E和附录F是提示的附录。
本标准由电力工业部科学技术司提出。
本标准由电力工业部绝缘配合标准化技术委员会归口。
本标准起草单位:电力工业部电力科学研究院高压研究所。
本标准起草人:杜澍春、陈维江。
本标准委托电力工业部电力科学研究院高压研究所负责解释。
【DL/T620-97】《交流电气装置的过电压保护和绝缘配合》1 范围本标准规定了标称电压为3kV,500kV交流系统中电气装置过电压保护的方法和要求;提供了相对地、相间绝缘耐受电压或平均(50%)放电电压的选择程序,并给出了电气设备通常选用的耐受电压和架空送电线路与高压配电装置的绝缘子、空气间隙的推荐值。
500kV 电网过电压保护绝缘配合与电气设备接地暂行技术标准SD 119—84主编部门:水利电力总电力科学研究院高压研究所批准部门:中华人民共和国水利电力部实行日期:1984年3月22日中华人民共和国水利电力部关于颁发《500kV电网过电压保护绝缘配合与电气设备接地暂行技术标准》的通知(84)水电技字第18号现颁发“500kV电网过电压保护绝缘配合与电气设备接地暂行技术标准”(SD119—84),过去以会议纪要或其他形式所作的有关这方面的规定作废,凡我部系统的设计单位和发供电单位,对新建工程均按此标准执行,对原有设备以及扩建工程可参照执行。
执行该标准中出现的问题,请告部科技司,以便修订时参考。
1984年3月22日1 总则1.0.1 本标准适用于500kV电网的过电压保护、绝缘配合与电气设备接地。
1.0.2 水利电力部1979年颁发的《电力设备过电压保护设计技术规程》SDJ7—79(以下简称SDJ7—79)和《电力设备接地设计技术规程》SDJ8—79(以下简称SDJ8—79)的部分条款,同样适用于500kV电网。
对于这部分条款,本标准列出其相应章、节及条目,仍应按该两规程执行。
2 电网电压、中性点接地方式及运行中出现的各种电压2.0.1 电网额定电压为500kV。
电网最高电压及设备最高电压为550kV(按GB156—86)。
2.0.2 电网中性点采用直接接地方式。
即电网中变压器中性点直接或经小阻抗与接地装置连接。
电网任意一处的零序电抗与正序电抗比值X2/X1≤3。
注:变压器中性点经小阻抗接地时,以不影响变压器中性点的绝缘水平为限。
2.0.3 运行中出现的作用于电网设备绝缘上的电压有:a.正常运行时的工频电压;b.工频过电压、谐振过电压;c.操作过电压;d.雷电过电压。
3 工频过电压、谐振过电压、操作过电压及其保护3.1 工频过电压、谐振过电压及其保护3.1.1 工频过电压、谐振过电压与电网结构、容量、参数、运行方式以及各种安全、自动装置的特性有关。
工频过电压、谐振过电压除增大绝缘承受电压外,还对选择过电压保护装置有重要影响,设计电网时应结合实际条件预测。
对工频过电压,应采取措施尽量加以降低。
工频过电压水平应通过技术经济比较加以确定。
须采取措施防止产生谐振过电压;或用保护装置限制其幅值和持续时间。
3.1.2 工频过电压的限制。
电网中的工频过电压一般由线路空载、接地故障和甩负荷等引起。
根据500kV电网的特点,有时须综合考虑这几种过电压。
通常可取正常送电状态下甩负荷和在线路受端有单相接地故障情况下甩负荷作为确定电网工频过电压的条件。
一般主要采用在线路上安装并联电抗器的措施限制工频过电压。
在线路上架设良导体避雷线降低工频过电压时,宜通过技术经济比较加以确定。
电网的工频过电压水平一般不超过下列数值:线路断路器的变电所侧 1.3U xg;线路断路器的线路侧 1.4U xg。
注:U xg为电网最高相电压有效值,kV。
3.1.3 谐振过电压的防止和限制。
电网中的谐振过电压一般由发电机自励磁、线路非全相运行状态以及二次谐波谐振等引起。
3.1.3.1 电网中发电机自励磁过电压。
当发电机经变压器与空载线路相连,在发电机全电压合闸、逐步升压起动或因甩负荷而导致发电机带空载长线路时,如发电机容量较小,可能产生发电机自励磁过电压,应验算发生这一情况的可能性。
经验算,如有发生有励磁的可能,而又无法通过改变运行方式加以避免时,可采用在线路上安装并联电抗器的措施予以防止。
3.1.3.2 线路非全相运行状态产生的谐振过电压。
空载线路上接有并联电抗器,且其零序电抗小于线路零序容抗时,如发生非全相运行状态(分相操动的断路器故障或采用单相重合闸时),由于线间电容的影响,断开相上可能发生谐振过电压。
上述条件下由于并联电抗器铁芯的磁饱和特性,有时在断路器操作产生的过渡过程激发下,可能发生以工频基波为主的铁磁谐振过电压。
在并联电抗器的中性点与大地之间串接一小电抗器,一般可有效地防止这种过电压。
该小电抗器的电抗值宜按补偿并联电抗器所接线路的相间电容选择,同时应考虑以下因素:a.并联电抗器、中性点小电抗器的电抗及线路容抗的实际值与设计值的变异范围;b.限制潜供电流的要求;c.连接小电抗器的并联电抗器中性点绝缘水平。
最终确定小电抗器的电抗值时,应校验对非全相谐振过电压的解谐效果。
若线路带空载变压器,不论线路上有无并联电抗器,以及它是否有小电抗器,应校验在线路非全相运行状态下发生谐振的可能性,如发生谐振或断开相的过电压较高,应避免这一运行方式。
3.1.3.3 二次谐波谐振过电压。
当空载线路(或其上接有空载变压器时)由电源变压器断路器合闸、重合闸、或由只带有空载线路的变压器低压侧合闸以及电网解列等情况下,如由这些操作引起的过渡过程的激发使变压器铁芯磁饱和、电感作周期性变化,回路等值电感在二倍工频下的电抗与二倍工频下线路入口容抗接近相等时,可能产生以二次谐波为主的谐振过电压。
应尽量避免产生二次谐波谐振的运行方式、操作方式以及防止在故障时出现该种谐振的接线;确实无法避免时,可在变电所线路继电保护装置内增设过电压速断保护,以缩短该过电压的持续时间。
3.2 操作过电压及其保护3.2.1 电网的操作过电压一般由下列原因引起。
a.线路合闸和重合闸;b.空载变压器和并联电抗器分闸;c.线路非对称故障分闸和振荡解列;d.空载线路分闸。
线路合闸和重合闸过电压对电网设备绝缘配合有重要影响,应采用有合闸电阻的断路器对该过电压加以限制。
避雷器可作为变电所电气设备操作过电压的后备保护装置,该避雷器同时是变电所的雷电过电压的保护装置。
设计时对a、c类过电压,应结合电网条件加以预测。
3.2.2 线路合闸和重合闸操作过电压。
空载线路合闸时,由于线路电感-容的振荡将产生合闸过电压。
线路重合时,由于电源电势较高以及线路上残余电荷的存在,加剧了这一电磁振荡过程,使过电压进一步提高。
因此断路器应安装合闸电阻,以有效地降低合闸及重合闸过电压。
应按电网预测条件,求出空载线路合闸、单相重合闸和成功、非成功的三相重合闸(如运行中使用时)的过电压分布,求出包括线路受端的相对地及相间统计操作过电压。
预测这类操作过电压的条件如下:a.空载线路合闸,线路断路器合闸前,电源母线电压为电网最高电压;b.成功的三相重合闸前,线路受端曾发生单相接地故障;非成功的三相重合闸时,线路受端有单相接地故障。
空载线路合闸、单相重合闸和成功的三相重合闸(如运行中使用时),在线路受端产生的相对地统计操作过电压,不应大于22U xg。
注:统计操作过电压,见附录F名词解释F.3。
3.2.3 分断空载变压器和并联电抗器的操作过电压。
由于断路器分断这些设备的感性电流时强制熄弧所产生的操作过电压,应根据断路器结构、回路参数、变压器(并联电抗器)的接线和特性等因素确定。
该操作过电压一般可用安装在断路器与变压器(并联电抗器)之间的避雷器予以限制。
对变压器,避雷器可安装在低压侧或高压侧,但如高低压电网中性点接地方式不同时,低压侧宜采用磁吹阀型避雷器。
当避雷器可能频繁动作时,宜采用有高值分闸电阻的断路器。
3.2.4 线路非对称故障分闸和振荡解列操作过电压。
电网送受端联系薄弱,如线路非对称故障导致分闸,或在电网振荡状态下解列,将产生线路非对称故障分闸或振荡解列过电压。
预测线路非对称故障分闸过电压,可选择线路受端存在单相接地故障的条件,分闸时线路送受端电势功角差应按实际情况选取。
有分闸电阻的断路器,可降低线路非对称故障分闸及振荡解列过电压。
当不具备这一条件时,应采用安装于线路上的避雷器加以限制。
3.2.5 对于空载线路分闸过电压,应采用在电源对地电压为1.3U xg条件下分闸时不重燃的断路器加以防止。
3.2.6 变电所应安装避雷器以防止操作过电压损坏电气设备。
安装位置如下:a.出线断路器线路侧的每一线路入口侧,称安装于该位置的避雷器为线路避雷器;b.出线断路器变电所侧,称安装于该位置的避雷器为变电所避雷器。
所有避雷器具体安装位置和数量尚应结合4.4.2确定。
注:线路入口处无并联电抗器时,如预测(对断路器合闸需考虑合闸电阻一相失灵条件)该处过电压不超过避雷器操作过电压保护水平时,可不必在该处安装避雷器。
3.2.7 具有串联间隙避雷器的额定电压,应不低于安装点的电网工频过电压水平。
3.2.8 应用金属氧化物避雷器限制操作过电压时,应参照厂家产品使用说明书,使其长期运行电压值、工频过电压、谐振过电压允许持续时间符合电网要求。
3.2.9 避雷器的操作过电压通流容量、允许吸收能量应符合电网要求(对断路器合闸需考虑合闸电阻一相失灵的条件)。
此外,还应校核避雷器上的电压是否超过其规定保护水平。
当超过时,应考虑其对绝缘配合的影响。
3.2.10 为监测运行电网的工频过电压、谐振过电压和操作过电压,宜在变电所安装过电压波形或幅值的自动记录装置,并妥为收集实测结果。
4 雷电过电压及其保护4.1 雷电过电压4.1.1 电网中雷电过电压,起因于设备遭到直接雷击,或因它处的雷击而在设备上形成感应或反击至设备。
雷电过电压出现的频数和强度,与雷暴活动及雷电流幅值有关。
a.年平均雷暴日数分布;b.雷电流幅值概率曲线及线路防雷设计中雷电流波形参数。
以上分别见SDJ7—79附录十三及第二章第15条。
4.1.2 线路上的雷电过电压。
a.线路年平均遭受雷击次数;b.雷击于线路杆塔顶部避雷线在导线上感应的雷电过电压幅值;c.线路杆顶雷击次数的决定;d.雷击杆顶在绝缘子上产生的雷电过电压幅值;e.雷绕击于导线概率;以上均见SDJ7—79第二章及其附录一~四。
f.雷击导线产生的雷电过电压(U l)由下式确定U l=100I l(1)式中I l——雷电流幅值,kA。
4.2 避雷针和避雷线4.2.1 见SDJ7—79第三章第一节。
4.3 架空送电线路的保护4.3.1 500kV线路应沿全线架设双避雷线。
杆塔上避雷线对边导线的保护角,一般不大于15°。
山区宜采用较小的保护角。
4.3.2 线路耐雷水平一般不宜低于120~100kA(较大值用于平原线路、多雷区线路以及大跨越档中央)。
变电所两公里进线段,应尽量不低于160kA。
为此,可采取改善接地、敷设耦合地线或适当加强绝缘等措施。
4.3.3 线路杆塔工频接地电阻值,见SDJ7—79第四章第一节第50条表9。
4.3.4 避雷线与导线在档距中央当15℃无风时的距离:a.一般档距见SDJ7—79第四章第一节第51条。
b.大档距见SDJ7—79第四章第三节第66条。
4.3.5 绝缘避雷线的放电间隙,参见SDJ7—79第四章第一节第50条,放电间隙型式及距离宜通过试验确定。
4.3.6 500kV线路与同级或较低电压线路、弱电流线路交叉时的保护,原则见SDJ7—79第四章第二节,交叉距离不得小于6m。