各种拓扑的同步整流
- 格式:pptx
- 大小:14.96 MB
- 文档页数:52
同步整流及 LLC 死区时间目录1. 同步整流概述2. LLC 调制技术简介3. 死区时间的重要性4. 提高死区时间的方法5. 结语1. 同步整流概述同步整流是一种用于直流电源系统中的电路,它的作用是将交流输入电压转换为直流电压输出。
这种电路通常用于电力电子设备中,例如变流器、逆变器等,也被广泛应用于新能源领域,如光伏发电系统、风力发电系统等。
同步整流电路的性能对整个系统的效率和稳定性具有非常重要的影响。
2. LLC 调制技术简介LLC 调制(LLC Resonant Converter)是一种高效率、高性能的拓扑结构,常用于电源转换器中。
它由电感、电容和开关器件组成,能够在较高的频率下工作,因此具有较高的功率密度和转换效率。
LLC 调制技术在大功率电源领域得到了广泛的应用,尤其在高性能服务器、通信设备、工业设备等方面发挥了重要作用。
3. 死区时间的重要性在同步整流及 LLC 调制电路中,死区时间是一个至关重要的参数。
它指的是两个开关器件同时导通或关断时的时间间隔,这个间隔时间是为了避免在交流电源转换到直流电压时引起破坏性的电流冲击。
如果死区时间设置不合理,就容易导致开关器件同时导通或关断,造成开关器件损坏或系统性能下降。
合理设置死区时间对于同步整流及 LLC 拓扑电路的稳定工作至关重要。
4. 提高死区时间的方法为了提高死区时间的准确性和稳定性,工程师们提出了一系列方法和技术。
采用精准的时间控制器和逻辑电路可以确保死区时间的精确控制,以满足不同工况下的要求。
采用智能的控制算法,结合实时反馈的信息,可以动态调整死区时间,适应不同的工作环境。
采用高性能的开关器件或者增加并联开关器件的方式,也可以有效降低死区时间的影响,提高系统的稳定性和可靠性。
5. 结语同步整流及 LLC 调制技术在电力电子领域有着广泛应用和发展前景,而死区时间作为关键参数之一,对于整个系统的性能和稳定性具有重要影响。
随着技术的不断进步和创新,相信工程师们会提出更多更优秀的方法和技术,进一步提高死区时间的准确性和稳定性,为同步整流及 LLC 调制电路的性能提升和系统可靠性保障提供更好的保障。
绿色同步整流器控制IC—UCC24610在新一代绿色开关电源中,提高能效的关键技术是同步整流。
二次侧控制各种电路拓扑的同步整流器控制IC—UCC24610。
其为高性能控制器,即能驱动标准电平MOSFET,也可以驱动逻辑电平MOSFET,它即能大幅度减小整流的功耗,还能间接地减小初级侧的损耗。
采用漏源电压检测,最适于反激变换器和LLC谐振半桥,其最适于4.5V~5.5V的输出电压,它提供一个可调节的辅助触发滤波器调节时段自动地在轻载之下开关,而且SYNC输入还可用于CCM系统,保护特色在TON和EN/TOFF端,防止由于开路或短路造成的导通运行。
主要特色如下:◆直到600kHz工作频率;◆V DS MOSFET检测;◆ 1.6Ω漏入、2.0Ω源出的栅驱动阻抗;◆自动轻载管理;◆可调输入的保护特色;◆20ns典型的关断比例延迟;◆可以直接从5V输出电压供电;◆可以从休眠和轻载模式下同步唤醒;◆最少的外部元件;由UCC24610作反激变换器同步整流的电路如图1:图1 UCC24610 做反激电路同步整流的基本应用电路由UCC24610作LLC谐振半桥同步整流的电路如图2:图2 UCC24610 做半桥电路的同步整流驱动电路UCC24610的内部方框电路如图3:图3 UCC24610 的内部等效方框电路* UCC24610外部引脚功能如下:◆1PIN SYNC 栅关断同步端在SYNC端一个下降沿立即令栅电压为低电平,将MOSFET关断,异步端到源漏电压,而不管TON时段的状态,当功率变换器在CCM下工作时,在开关变换器的命令下必须关断控制MOSFET,将SYNC接到初级侧变换器的信号处,用一支高压电容隔离,或变压器隔离,或其他合适的元件,连续的低电平在SYNC端将会使栅电平一直为低。
◆2PIN EN/TOFF 使能功能和关断时段调节端,当V CC电平降到V CC(OFF)以下时,UCC24610处在UVLO模式,EN/TOFF端在IC内经过一支10K电阻接到GND,内部电流源也关断,当V CC超过V CC(ON)之后,10KΩ电阻被移去,电流源开启,此后,当EN/TOFF超过V EN(ON)时,UCC24610进入运行模式,而EN/TOFF降到V EN(OFF)以下时,UCC24610进入休眠模式,EN/TOFF端的电压还去调节可控制MOSFET的最小关断时间,EN/TOFF在IC内部由两个水平的电流源驱动,所以EN/TOFF端上的电压可以由从EN/TOFF端到GND 连接的电阻值决定。
同步整流电路分析_电源技术概要一、传统二极管整流电路面临的问题近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。
低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。
开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。
在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。
快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。
举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。
此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。
即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。
因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。
二、同步整流的基本电路结构同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。
它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。
功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。
用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。
1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路2、单端自激、隔离式降压同步整流电路图1 单端降压式同步整流器的基本原理图基本原理如图1所示,V1及V2为功率MOSFET,在次级电压的正半周,V1导通,V2关断,V1起整流作用;在次级电压的负半周,V1关断,V2导通,V2起到续流作用。
同步整流电路的功率损耗主要包括V1及V2的导通损耗及栅极驱动损耗。
九个最有用的电源拓扑结构图现代电源设计大约开始于三十年前,只有少数的拓扑结构可以很好地服务于业界。
在年代,对新的和领先的电源转换技术的研究创建了数以千计的可以加以使用的新型拓扑结构。
今天,主流行业已回到早期拓扑结构。
少数的相同的电路可以为大多数应用提供最佳解决方案。
在电源设计开始,有三种基本的转换器:降压式、升压式和降压升压式。
早期分析论文仅覆盖了这些拓扑结构。
也有的转换器表现完全与这些基本拓扑结构一样。
它们被认为是降压式、升压式和降压升压系列,电路中内建了隔离。
内建在降压式转换器系列是正激、双开关正激、半桥、全桥和推挽式。
升压有一种隔离型号,可以采用一个桥接或推挽式电路。
隔离降压升压电路是著名的反激式转换器。
发明新的电源拓扑结构和研究其工作正成为有趣的研究工作。
这形成了过去的大部分研究,尤其在年代期间。
一些新奇的电路发明出来,绞尽脑汁以全面了解它们的操作。
的论文提出了超过个新的拓扑结构,使用了更多的开关和二极管。
有一段时间,似乎老的待机拓扑结构已处于被取代的危险之中。
对许多需要生产产品的设计人员来说,这是一个非常困惑的时间。
在阅读会议论文之后,工程师们很想尝试预示着上佳表现,但是却被证明很难投入生产的奇异新颖的拓扑结构。
因此,业界兜了一大圈又回到原处。
现在,几乎所有设计都依赖于原来的基本拓扑结构。
例外的是对某些非常高密度的应用,或者是不寻常的电压及功率范围,但是工作的工程师几乎总能用一组基本电路找到可做的工作。
这不是说行业没有进展。
行业有了长足的发展——恰恰不是通过使用根本不同的电路拓扑结构。
主要进展一直在正确的应用中明智地利用正确的电路,某些拓扑结构将电源分割成较小的若干块(如母板和负载点转换器)、先进的封装、新的硅片器件,以及小心应用低损耗开关。
降压式转换器降压式转换器是所有电源中最基本的。
它提供比输入更低的电压输出,可以用在不需要隔离的所有功率级别。
如图()所示,当输出电压处于低电位时,降压式转换器的二极管可以用一个有源开关替代。
题目:两相交错全桥LLC+同步整流拓扑内容大纲:I. 介绍LLC电路的基本原理和作用1. 什么是LLC电路2. LLC电路的工作原理3. LLC电路在电力转换中的应用II. 介绍两相交错全桥拓扑1. 两相交错全桥拓扑的特点2. 两相交错全桥拓扑的工作原理3. 两相交错全桥拓扑在电力转换中的应用III. 介绍同步整流拓扑1. 同步整流拓扑的基本概念2. 同步整流拓扑的工作原理3. 同步整流拓扑在电力转换中的应用IV. LLC+同步整流拓扑在电力转换中的应用1. 两相交错全桥LLC+同步整流拓扑的优势2. 两相交错全桥LLC+同步整流拓扑在高效能电力转换中的效果3. 实际工程中的应用案例V. 结论1. 对于两相交错全桥LLC+同步整流拓扑的展望---在当今的电力转换系统中,LLC电路和同步整流拓扑作为两种重要的电路拓扑结构,在各类高效能电力转换应用中发挥着重要作用。
其中,两相交错全桥LLC+同步整流拓扑更是在多种场合得到了广泛应用,并取得了突出的效果。
I. 介绍LLC电路的基本原理和作用1. 什么是LLC电路LLC电路是一种电力电路拓扑结构,由电感(L)、电容(C)和电阻(R)组成。
LLC电路通过控制电感和电容的振荡频率,实现对电压和电流的平滑调节,具有输出电压稳定、效率高等特点。
2. LLC电路的工作原理LLC电路的工作原理是通过谐振电路来实现对电压和电流的控制,从而实现高效能的电力转换。
3. LLC电路在电力转换中的应用LLC电路在直流-直流转换、直流-交流变换以及其他工业和航空航天领域的电力转换中得到广泛应用。
II. 介绍两相交错全桥拓扑1. 两相交错全桥拓扑的特点两相交错全桥拓扑是一种特殊的拓扑结构,它通过交错相位的方式,实现了更加平稳的输出电压和电流,并具有更高的效率。
2. 两相交错全桥拓扑的工作原理通过两相交错的工作方式,两相交错全桥拓扑有效地减小了输出电压和电流的波动,从而提高了电力转换的质量。
同步整流以及电荷保持驱动技术1、为什么我们使用同步整流技术:目前,越来越多的IC芯片都需要低电压供电。
随着功率变换器输出电压的降低,整流损耗成为变换器的主要损耗。
为使变换器达到很高的效率,必须降低整流损耗。
原有整流电路使用肖特基二极管作为整流二极管,但是由于导通压降在低压输出时候相对较大,引起的损耗也是我们不能接受的。
于是我们采用低导通电阻的MOSFET 进行整流,这是提高变换器效率的一种有效途径。
实现这一功能的电路就叫做同步整流电路。
实现同步整流功能的MOSFET 称作同步整流管。
2、同步整流电路拓扑简单介绍:使用肖特基二极管做整流管,正向压降0.4V左右。
使用MOSFET做整流管。
自驱动方式。
在采用了自驱动同步整流中。
当变压器次级同名端电压为正的时候,VQ2的栅极电压为底VQ2关断。
VQ1的栅极电压为高,Vgd>0 则VQ1导通。
电流通过L1负载VQ1流通。
当变压器次级同名端电压为负,VQ1关断,VQ2开通。
负载电流通过VQ2续流。
这就是同步整流的基本原理。
当变换器输出电压在5V 左右时,可以直接利用变压器次级电压驱动同步整流管;当变换器输出电压明显高于5V 或很低( 2. 2V以下) 时,一般附加一个绕组,利用附加绕组电压驱动同步整流管。
3、拓扑结构及其缺点:正激式变换器是最多使用在同步整流中的拓扑,其优点主要在于结构简单、次级纹波电流明显衰减,纹波电压低、功率开关管峰值电流较低、并联工作容易、可以自动平衡、属降压型变换器。
它也是最早应用于低压大电流的变换器。
但其在采用同步整流时候存在以下缺点: 第一:同步整流中的死区过大使得其效率减小; 第二:整流管的体二极管不仅在导通的过程中增加了电路的损耗,而且在关断过程中,由于其反向恢复特征,也会引起能量损耗。
由于死区产生的体二极管导通损耗分析如下:在变压器电压保持为零的死区时间内,输出电流流经续流同步整流管VS2 ,但VS2栅极无驱动电压,所以输出电流必须流经VS2的体二极管。