材料力学复习资料
- 格式:doc
- 大小:258.00 KB
- 文档页数:9
材料力学1. 材料与构件的许用应力值有关。
2. 切应力互等定理是由单元体静力平衡关系导出的。
3.弯曲梁的变形情况通过梁上的外载荷来衡量。
4.有集中力作用的位置处,其内力的情况为剪力阶跃,弯矩拐点。
5. 在材料力学的课程中,认为所有物体发生的变形都是小变形6. 危险截面是最大应力所在的截面。
7. 杆件受力如图所示,AB段直径为d1=30mm,BC 段直径为d2=10mm,CD段直径为d3=20mm。
杆件上的最大正应力为127.3MPa。
8. 一根两端铰支杆,其直径d=45mm,长度l=703mm,E=210GPa,σp=280MPa,λs=43.2。
直线公式σcr=461-2.568λ。
其临界压力为478kN。
9. 一个钢梁,一个铝梁,其尺寸、约束和载荷完全相同,则横截面上的应力分布相同,变形后轴线的形态不相同。
10. 当实心圆轴的直径增加1倍时,其抗扭强度增加到原来的8倍。
11. 材料力学中求内力的普遍方法是截面法。
12. 压杆在材料和横截面面积不变的情况下,采用D 横截面形状稳定性最好。
13. 图形对于其对称轴静矩和惯性矩均不为零。
14. 梁横截面上可能同时存在切应力和正应力。
15. 偏心拉伸(压缩),其实质就是拉压和弯曲的组合变形。
16. 存在均布载荷的梁段上弯矩图为抛物线。
17. 矩形的对角线的交点属于形心点。
18. 一圆轴用碳钢制作,校核其扭转角时,发现单位长度扭转角超过了许用值。
为保证此轴的扭转刚度,应增加轴的直径。
19. T形图形由1和2矩形图形组成,则T形图形关于x轴的惯性矩等于1矩形关于m轴的惯性矩与2矩形关于n轴的惯性矩的合。
20. 材料力学中关心的内力是物体由于外力作用而产生的内部力的改变量。
21.杯子中加入热水爆炸时,是外层玻璃先破裂的;单一载荷作用下的目标件,其上并不只存在一种应力。
22. 单位长度扭转角θ与扭矩、材料性质、截面几何性质有关。
23. 转角是横截面绕中性轴转过的角位移;转角是挠曲线的切线与轴向坐标轴间的夹角;转角是变形前后同一截面间的夹角24.单元体的形状可以改变;单元体上的应力分量应当足以确定任意方向面上的应力25. 可以有效改善梁的承载能力的方法是:加强铸铁梁的受拉伸一侧;将集中载荷改换为均布载荷;将简支梁两端的约束向中间移动。
第一章 绪论1. 承载能力:强度:构件在外力作用下抵抗破坏的能力刚度:构件在外力作用下抵抗变形的能力稳定性:构件在外力作用下保持其原有平衡状态的能力2. 变形体的基本假设:连续性假设、均匀性假设、各向同性假设3. 求内力的方法:截面法4. 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲第二章 拉伸、压缩1. 轴力图必须会画:轴力N F 拉为正、压为负2. 横截面上应力:均匀分布 AF N =σ 3. 斜截面上既有正应力,又有切应力,且应力为均匀分布。
ασσα2cos =αστα2sin 21=σ为横截面上的应力。
横截面上的正应力为杆内正应力的最大值,而切应力为零。
与杆件成45°的斜截面上切应力达到最大值,而正应力不为零。
纵截面上的应力为零,因此在纵截面不会破坏。
4. 低碳钢、灰铸铁拉伸时的力学性能、压缩时的力学性能低碳钢拉伸在应力应变图:图的形状、四个极限、四个阶段、各阶段的特点、伸长率(脆性材料、塑性材料如何区分)5. 强度计算脆性材料、塑性材料的极限应力分别是 拉压时的强度条件:][max max σσ≤=AF N 强度条件可以解决三类问题:强度校核、确定许可载荷、确定截面尺寸 6.杆件轴向变形量的计算 EA l F l N =∆ EA :抗拉压刚度 7. 剪切和挤压:剪切面,挤压面的判断第三章 扭转1.外力偶矩的计算公式: 2.扭矩图T 必须会画:扭矩正负的规定3.切应力互等定理、剪切胡克定律4.圆轴扭转横截面的应力分布规律:切应力的大小、作用线、方向的确定sb σσ,min /::)(9549r n kW P m N n P M ⋅=5.横截面上任一点切应力的求解公式:ρI ρT τP ρ=——点到圆心的距离6. 扭转时的强度条件:][max max ττ≤=tW T 7.实心圆截面、空心圆截面的极惯性矩、抗扭截面模量的计算公式 实心圆截面:极惯性矩432D πI p =,抗扭截面模量316D πW t = 空心圆截面:极惯性矩)1(3244αD πI P -=,抗扭截面模量)1(1643αD πW t -==, 8.圆轴扭转时扭转角:pI G l T =ϕ p I G :抗扭刚度 第四章 弯曲内力1.纵向对称面、对称弯曲的概念2. 剪力图和弯矩图必须会画:剪力、弯矩正负的规定3.载荷集度、剪力和弯矩间的关系4. 平面曲杆的弯矩方程5.平面刚架的弯矩方程、弯矩图第五章 弯曲应力1. 纯弯曲、中性层、中性轴的概念2.弯曲时横截面上正应力的分布规律:正应力的大小、方向的确定3. 横截面上任一点正应力的计算公式:zI My =σ 4. 弯曲正应力的强度校核][max max σσ≤=zW M 或][max max max σI y M σz ≤= 对于抗拉压强度不同的材料,最大拉压应力都要校核5. 矩形截面、圆截面的惯性矩和抗弯截面模量的计算 矩形截面:惯性矩,1213bh I z =抗弯截面模量:261bh W z = 实心圆截面:惯性矩464D πI z =,抗弯截面模量:332D πW z = 空心圆截面:惯性矩)1(6444αD πI z -=,抗弯截面模量:)1(3243αD πW z -=, 第七章 应力和应变分析、强度理论1. 主应力、主平面、应力状态的概念及应力状态的分类2. 二向应力状态分析的解析法:应力正负的规定:正应力以拉应力为正,压应力为负;切应力对单元体内任意点的矩顺时针转向为正;α角以逆时针转向为正D d α=D d α=任意斜截面上的应力计算最大最小正应力的计算公式最大最小正应力平面位置的确定 最大切应力的计算公式主应力、主平面的确定3. 了解应力圆的做法,辅助判断主平面4. 广义胡克定律5.四种强度理论内容及适用范围第八章 组合变形1. 组合变形的判断2. 圆截面轴弯扭组合变形强度条件 第三强度理论:[]σσ≤+=WT M r 223 第四强度理论:[]σσ≤+=W T M r 22375.0 W ——抗弯截面模量323d W π=第九章 压杆稳定1. 压杆稳定校核的计算步骤(1)计算λ1和λ2(2)计算柔度λ,根据λ 选择公式计算临界应(压)力(3)根据稳定性条件,判断压杆的稳定性2. P 1σπλE = ba s 2σλ-= ⎪⎪⎩⎪⎪⎨⎧+-=--++=ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy y x xy y x y x 22min max 22xy y x y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+=⎭⎬⎫y x xy σστα--=22tan 0231max σστ-=柔度i lμλ= AI i = I ——惯性矩 μ——长度系数;两端铰支μ=1;一端铰支,一段固定μ=0.7;两端固定μ=0.5; 一端固定,一端自由μ=23. 大柔度杆1λλ≥ 22cr λπσE = 中柔度杆12λλλ<≤ λσb a -=cr小柔度杆 2λλ< s cr σσ=4. 稳定校核条件st cr n n FF ≥= F ——工作压力 cr F =cr σ A 第十章 动载荷1. 冲击动荷因数冲击物做自由落体 冲击开始瞬间冲击物与被冲击物接触时的速度为 v水平冲击时 Δst 是冲击点的静变形。
1、解释:(1)形变(应变)强化:材料经历一定的塑性变形后,其屈服应力升高了,这种现象称为应变强化;(2)弹性变形:材料受外力作用发生尺寸和形状的变形,外力除去后随之消失的变形;(3)刚度:在弹性范围内,构件抵抗变形的能力称为刚度;(4)弹性不完整性:弹性变形时加载线与卸载线并不重合,应变落后于应力,存在着弹性后效、弹性滞后、Bauschinger 效应等,这些现象属于弹性变形中的非弹性问题,称为弹性的不完整性;(5)弹性后效:在应力作用下应变不断随时间而发展的行为,以及应力去除后应变逐渐恢复的现象称为弹性后效;(6)弹性滞后:弹性变形范围内,骤然加载和卸载的开始阶段,应变总要落后于应力,不同步;(7)Bauschinger效应:经过预先加载变形,然后再反向加载变形时的弹性极限(屈服强度)降低的现象;(8)应变时效:经变形和时效处理后,材料塑性、韧性降低,脆性增加的现象;(9)韧性:指材料在断裂前吸收塑性变形功和断裂功的能力;(10)脆性断裂:按断裂前不发生宏观塑性变形;(11)韧性断裂:断裂前表现有宏观塑性变形;(12)平面应力状态:只有两个方向上存在应力的状态;(13)平面应变状态:变形只发生在x-y平面内,板厚方向变形为零;(14)低温脆性:随温度降低金属材料由韧性断裂转变为脆性断裂的现象;(15)高周疲劳:指小型试样在变动载荷(应力)试验时,疲劳断裂寿命≥105 周次的疲劳过程;(16)低周疲劳:循环塑性应变控制下的疲劳;(17)等强温度:晶粒和晶界两者强度相等时的温度;(18)弹性极限:试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力值,用σ表示,超过σel时,认为材料开始屈服;el(19)疲劳极限:在s-n曲线上水平部分所对应的应力值;(20)应力腐蚀开裂:材料或零件在应力和腐蚀的环境的共同作用下引起的开裂;(21)氢脆:在应力和过量的氢共同作用下使金属材料塑性、韧性下降的一种现象;(22)腐蚀疲劳:零构件的破坏是在疲劳和腐蚀联合作用下发生的,这种失效形式称为腐蚀疲劳;(23)蠕变极限:高温长期载荷作用下材料的塑性变形抗力指标;(24)持久强度:在高温长时载荷作用下抵抗断裂的能力;(25)松弛稳定性:金属材料抵抗应力松弛的性能;(26)磨损:物体表面互相摩擦时材料自该表面逐渐损失的过程。
材料力学复习资料全材料力学复习资料一、填空题K为了保证机器或结构物正常地工作,要求每个构件都有足够的抵抗破坏的能力,即要求它们有足够的强度:冋时要求他们有足够的抵抗变形的能力?即要求它们有足够的刚度:另外,对于受压的细长直杆,还要求它们工作时能保持原有的平衡状态,即要求其有足够的稳定性「2、材料力学是研究构件强度、刚度、稳定性的学科。
3、强度是指构件抵抗破坏的能力:冈帔是指构件抵抗变形的能力:稳左性是指构件维持其原有的平衡状态的能力。
4、在材料力学中,对变形固体的基本假设是连续性假设、均匀性假设、各向同性假设5、随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫舉性变形。
6、截面法是计算力的基本方法。
7、应立是分析构件强度问题的重要依据。
8、线应变和切应变是分析构件变形程度的基本量。
9、轴向尺寸远大于横向尺寸,称此构件为枉。
10、构件每单位长度的伸长或缩短,称为线应变°11、单元体上相互垂直的两根棱边夹角的改变量.称为切应变-12、轴向拉伸与压缩时直杆横截而上的力,称为轴力,13、应力与应变保持线性关系时的最大应力,称为比例极限14、材料只产生弹性变形的最大应力,称为弹性极根:材料能承受的最大应力,称为强度极限。
15、弹性模量E是衡量材料抵抗弹性变形能力的指标。
16、延伸率6是衡量材料的塑性指标。
6 M5%的材料称为塑性材料:§ V5%的材料称为脆性材料。
17、应力变化不大,而应变显著增加的现象,称为屈服或流动18、材料在卸载过程中,应力与应变成线性关系。
19、在常温下把材料冷拉到强化阶段,然后卸载,当再次加载时,材料的比例极限提高,而塑性降低,这种现象称为冷作硬化20、使材料丧失正常工作能力的应力,称为极限应力,21、在工程计算中允许材料承受的最大应力,称为许用应力。
22、当应力不超过比例极限时,横向应变与纵向应变之比的绝对值,称为泊松比一23、胡克定律的应力适用恫是应力不超过材料的比例极限。
材料力学1:对构件正常工作的要求:强度,刚度,稳定性。
2:对可变形固体的假设有:连续性假设,均匀性假设,各向同性假设,完全弹性假设,小变形假设。
3:杆件变形的基本形式:轴向拉伸或轴向拉压缩,剪切,扭转,弯曲。
4:拉杆的纵向线应变ε=Δl/l,横向线应变ε’=Δd/d。
5:胡克定律:Δl=FnL/EA,E为弹性模量,EA称为拉伸(压缩)刚度。
6:单周应力状态下的胡克定律:ε=ζ/E,δ=ε*E泊松比V= Iε1/ΕI7:被蓄在弹性体内的应变能Vε在数值上等于外力所作的功W,即Vε=W称为功能原理,Vε=(FN*NL)/2EA或Vε=(EA/2L)ΔL²8:低碳钢的拉伸过程分为四个阶段:弹性阶段,屈服阶段,强化阶段,局部变形阶段(缩颈现象)。
9:脆性材料对应力集中比较敏感(划玻璃)。
10:弹性模量E,切变模量G与泊松比的关系:G=E/2(1+V)11:传动轴的外力偶矩:Me=9.55*10³*(P/n)=传递的功率/转速12:扭转切应力的一般计算公式:Jp=Tp/Ip=扭矩/极损性矩将Wp=Ip/r带入有Jp=T/WpWp为扭转截面系数。
13:剪切胡克定理:η=G*r和δ=EεG:切变模量,14:矩形截面Iz=bh³/12 ,Wz=bh²/6。
圆截面Iz=(πd³*d)/64,Wz=πd³/32;Ip=(πd³*d)/32,Wp=πd³/16;空心圆截面:Ip=【(πD²*D²)/32】*(1-α²α²),Wp=【(πD³)/16】(1-α²α²),α=d/D15:相对扭转角ψ=Mel/GIp或ψ=TL/GIpGIp称为扭转刚度;单位长度扭转角:ψ’=T/GIp,ψ’=dψ/dλ,Δd=T1d/E1A16:弹簧所受的内力主要是扭转切应力。
17:工程上常见的三种基本静定梁:简支梁,外伸梁,悬臂梁。
材料力学复习资料一、填空题K为了保证机器或结构物正常地工作,要求每个构件都有足够的抵抗破坏的能力,即要求它们有足够的强度:冋时要求他们有足够的抵抗变形的能力•即要求它们有足够的刚度:另外,对于受压的细长直杆,还要求它们工作时能保持原有的平衡状态,即要求其有足够的稳定性「2、材料力学是研究构件强度、刚度、稳定性的学科。
3、强度是指构件抵抗破坏的能力:冈帔是指构件抵抗变形的能力:稳左性是指构件维持其原有的平衡状态的能力。
4、在材料力学中,对变形固体的基本假设是连续性假设、均匀性假设、各向同性假设5、随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫舉性变形。
6、截面法是计算力的基本方法。
7、应立是分析构件强度问题的重要依据。
8、线应变和切应变是分析构件变形程度的基本量。
9、轴向尺寸远大于横向尺寸,称此构件为枉。
10、构件每单位长度的伸长或缩短,称为线应变°11、单元体上相互垂直的两根棱边夹角的改变量.称为切应变-12、轴向拉伸与压缩时直杆横截而上的力,称为轴力,13、应力与应变保持线性关系时的最大应力,称为比例极限14、材料只产生弹性变形的最大应力,称为弹性极根:材料能承受的最大应力,称为强度极限。
15、弹性模量E是衡量材料抵抗弹性变形能力的指标。
16、延伸率6是衡量材料的塑性指标。
6 M5%的材料称为塑性材料:§ V5%的材料称为脆性材料。
17、应力变化不大,而应变显著增加的现象,称为屈服或流动18、材料在卸载过程中,应力与应变成线性关系。
19、在常温下把材料冷拉到强化阶段,然后卸载,当再次加载时,材料的比例极限提高,而塑性降低,这种现象称为冷作硬化20、使材料丧失正常工作能力的应力,称为极限应力,21、在工程计算中允许材料承受的最大应力,称为许用应力。
22、当应力不超过比例极限时,横向应变与纵向应变之比的绝对值,称为泊松比一23、胡克定律的应力适用恫是应力不超过材料的比例极限。
2024年上学期材料力学(考试)复习资料一、单项选择题1.钢材经过冷作硬化处理后其()基本不变(1 分)A.弹性模量;B.比例极限;C.延伸率;D.截面收缩率答案:A2.在下面这些关于梁的弯矩与变形间关系的说法中,()是正确的。
(1 分)A.弯矩为正的截面转角为正;B.弯矩最大的截面挠度最大;C.弯矩突变的截面转角也有突变;D.弯矩为零的截面曲率必为零。
答案:D3.在利用积分计算梁位移时,积分常数主要反映了:( ) (1 分)A.剪力对梁变形的影响;B.支承条件与连续条件对梁变形的影响;C.横截面形心沿梁轴方向的位移对梁变形的影响;D.对挠曲线微分方程误差的修正。
答案:B4.根据小变形条件,可以认为() (1 分)A.构件不变形;B.构件不变形;C.构件仅发生弹性变形;D.构件的变形远小于其原始尺寸答案:D5.火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是。
(1 分)A.脉动循环应力;B.非对称的循环应力;C.不变的弯曲应力;D.对称循环应力答案:D6.在下列结论中()是错误的(1 分)A.若物体产生位移则必定同时产生变形;B.若物体各点均无位移则必定无变形;C.若物体产生变形则物体内总有一些点要产生位移;D.位移的大小取决于物体的变形和约束状态答案:B7.在下列三种力(1、支反力;2、自重;3、惯性力)中()属于外力(1 分)B.3和2;C.1和3;D.全部答案:D8.在一截面的任意点处若正应力ζ与剪应力η均不为零则正应力ζ与剪应力η的夹角为() (1 分)A.α=90;B.α=450;C.α=00;D.α为任意角答案:A9.拉压杆截面上的正应力公式ζ=N/A的主要应用条件是() (1 分)A.应力在比例极限以内;B.外力合力作用线必须重合于杆件轴线;C.轴力沿杆轴为常数;D.杆件必须为实心截面直杆答案:A10.构件的疲劳极限与构件的()无关。
(1 分)A.材料;B.变形形式;C.循环特性;D.最大应力。
材料力学复习资料一、选择题1、材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
这是因为对可变形固体采用了()假设。
A连续均匀性B各向同性C小变形D平面2、研究构件或其一部分的平衡问题时,采用构件变形前的原始尺寸进行计算,这是因为采用了()假设。
A平面 B 连续均匀性 C 小变形 D 各向同性3、关于截面法的适用对象和范围,下列说法正确的是:()。
A等截面直杆B直杆承受基本变形C不论基本变形还是组合变形,但限于直杆的横截面D不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况4、为使材料有一定的强度储备,安全系数取值应()。
A大于1 B 等于1 C小于1 D 都有可能5、脆性材料所具有的性质是:()。
A 试件拉伸过程中出现屈服现象B 压缩强度极限比拉伸强度极限大得多C 抗冲击性能比塑性材料好D 若极件因开孔造成应力集中现象,对强度无明显影响6、与塑性材料比,脆性材料在拉伸时,力学性能的最大特点是()。
A 强度低,对应力集中不敏感B相同拉力作用下变形小C断裂前几乎没有塑性变形D应力-应变关系严格遵循胡克定律7、下列材料中,不属于各向同性材料的有()。
A钢材B塑料C浇铸很好的混凝土D松木8、关于材料的冷作硬化现象有以下四种结论,正确的是()。
A由于温度降低,其比例极限提高,塑性降低;B由于温度降低,其弹性模量提高,泊松比减小;C经过塑性变形,其比例极限提高,塑性降低;D经过塑性变形,其弹性模量不变,比例极限降低。
9、低碳钢试样拉伸时,横截面上的应力公式σ =F N/A适用于以下哪一种情况? (a)。
A 只适用于σ ≤σ pB 只适用于σ ≤σ eC 只适用于σ ≤σ sD 在试样拉断前都适用10、关于下列四种结论,正确的是( a )。
○1同一截面上正应力与切应力必相互垂直。
○2同一截面上各点的正应力必定大小相等,方向相同。
材料力学I 期末复习资料一、判断题1. 弹性体静力学的任务是尽可能的保证构件的安全工作。
(Y )2. 作用在刚体上的力偶可以任意平移,但作用在弹性体上的力偶一般不能平移。
(Y )3. 若构件上的某一点的任何方向都无应变,则该点无位移。
(N )4. 切应变是变形后构件后构件内任意两条微线段之间夹角的变化量。
(N )5. 胡克定律适用于弹性变形范围内。
(Y )6. 材料的延伸率与试件的尺寸有关。
(Y )7. 一般情况下,脆性材料的安全系数要比塑性材料的大些。
(Y )8. 受扭圆轴的最大切应力出现在横截面上。
(Y )9. 受扭圆轴的最大拉应力的值和最大剪应力的值相等。
(N )10.受扭杆件的扭矩,仅与杆件受到的外力偶矩有关,而与杆件的材料及横截面积的大小、形状无关。
(N )11.平面图形对某轴的静矩等于零,则该轴比为此图形的对称轴。
. (N )12.在一组平行轴中,平面图形对心轴的惯性矩最小。
(Y )13.两梁的跨度、承受的载荷以及支撑都相同,但材料和横截面积不同,则它们的剪力图和弯矩图不一定相同。
(N )14.最大弯矩必然发生在剪力为零的横截面上。
(N )15.若在结构对称的梁上,作用有反对称载荷,则该梁具有对称的剪力图和反对称的弯矩图。
(Y )16.控制梁弯曲强度的主要因素是最大弯矩值。
(N )17.在等截面梁中,正应力绝对值的最大值︱σ︱max比出现在弯矩值︱M︱max最大截面上。
(N )18.梁上弯矩最大的截面,挠度也最大;弯矩为零的截面,转角也为零。
(N )19.平面弯矩梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线。
(Y )20.有正应力作用的方向上,必有线应变;没有正应力作用的方向上,必无线应变。
(N )21.脆性材料不会发生塑性屈服破坏,塑性材料不会发生脆性断裂破坏。
(N )22.纯剪切单元体属于单向应力状态。
(N )23.脆性材料的破坏形式一定是脆性断裂。
(N )24.材料的破坏形式由材料的种类和所处的应力状态而定。
第一章绪论§1.1 材料力学的任务二、基本概念1、构件:工程结构或机械的每一组成部分。
(例如:行车结构中的横梁、吊索等)理论力学—研究刚体,研究力与运动的关系。
材料力学—研究变形体,研究力与变形的关系。
2、变形:在外力作用下,固体内各点相对位置的改变。
(宏观上看就是物体尺寸和形状的改变)弹性变形—随外力解除而消失塑性变形(残余变形)—外力解除后不能消失刚度:在载荷作用下,构件抵抗变形的能力3、内力:构件内由于发生变形而产生的相互作用力。
(内力随外力的增大而增大)强度:在载荷作用下,构件抵抗破坏的能力。
4、稳定性:在载荷作用下,构件保持原有平衡状态的能力。
强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承载能力的一门科学。
三、材料力学的任务材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件,提供必要的理论基础和计算方法若:构件横截面尺寸不足或形状不合理,或材料选用不当—不满足上述要求,不能保证安全工作.若:不恰当地加大横截面尺寸或选用优质材料—增加成本,造成浪费研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。
因此在进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。
四、材料力学的研究对象构件的分类:杆件、板壳*、块体*材料力学主要研究杆件﹜直杆——轴线为直线的杆曲杆——轴线为曲线的杆等截面杆——横截面的大小形状不变的杆变截面杆——横截面的大小或形状变化的杆等截面直杆——等直杆§1.2 变形固体的基本假设在外力作用下,一切固体都将发生变形,故称为变形固体。
在材料力学中,对变形固体作如下假设:1、连续性假设:认为整个物体体积内毫无空隙地充满物质灰口铸铁的显微组织球墨铸铁的显微组织22、均匀性假设:认为物体内的任何部分,其力学性能相同普通钢材的显微组织 优质钢材的显微组织3 4如右图,δ不计。
计算得到很大的简化。
材料力学复习资料(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--材料力学复习一一、选择题1. 图中所示三角形微单元体,已知两个直角截面上的切应力为0τ,则斜边截面上的正应力σ和切应力τ分别为 。
A 、00,στττ==;B 、0,0σττ==;C 、00,στττ=-=;D 、0,0σττ=-=。
2.构件中危险点的应力状态如图所示,材料为低碳钢,许用应力为[]σ,正确的强度条件是 。
A 、[]σσ≤;B 、[]στσ+≤;C 、[],[][]/2σσττσ≤≤=;D []σ≤。
3. 受扭圆轴,当横截面上的扭矩不变而直径减小一半时,该横截面上的最大切应力原来的最大切应力是 。
A 、2倍B 、4倍C 、6倍D 、8倍4. 两根材料相同、抗弯刚度相同的悬臂梁I 、II 如图示,下列结论中正确的是 。
梁和II 梁的最大挠度相同 梁的最大挠度是I 梁的2倍 梁的最大挠度是I 梁的4倍 梁的最大挠度是I 梁的1/2倍P题1-4 图5. 现有两种压杆,一为中长杆,另一为细长杆。
在计算压杆临界载荷时,如中长杆误用细长杆公式,而细长杆误用中长杆公式,其后果是 。
A 、两杆都安全; B 、两杆都不安全;C 、中长杆不安全,细长杆安全;D 、中长杆安全,细长杆不安全。
6. 关于压杆临界力的大小,说法正确的答案是 A 与压杆所承受的轴向压力大小有关; B 与压杆的柔度大小有关;C 与压杆所承受的轴向压力大小有关;D 与压杆的柔度大小无关。
4545题 1-1 图二、计算题(共5题,共70分)1、如图所示矩形截面梁AB ,在中性层点K 处,沿着与x 轴成45方向上贴有一电阻应变片,在载荷F 作用下测得此处的应变值为6451025.3-︒⨯-=ε。
已知200E GPa =,0.3μ=,求梁上的载荷F 的值。
2.(16分)圆杆AB 受力如图所示,已知直径40d mm =,112F kN =,20.8F kN =,屈服应力240s MPa σ=,安全系数2n =。
一基本概念
1.工程构件正常工作必须满足强度、刚度和稳定性的要求。
杆件的强度代表了杆件抵抗破坏的能力;
杆件的刚度代表了杆件抵抗变形的能力;
杆件的稳定性代表了杆件维持原有平衡形态的能力。
2.变形固体的基本假设是连续性假设、均匀性假设、各向同性假设。
连续性假设认为固体所占据的空间被物质连续地充满而毫无空隙;
均匀性假设认为材料的力学性能是均匀的;
各向同性假设认为材料沿各个方向具有相同的力学性质。
3.截面法的三个步骤是截取、代替和平衡。
4.杆件变形的基本形式有:拉压,扭转,剪切,弯曲。
5.截面上一点处分布内力的集度,称为该截面该点处的应力。
6.截面上的正应力方向垂直于截面,切应力的方向平行于截面。
7.在卸除荷载后能完全消失的变形称为弹性变形,不能消失而残留下来的变形称为塑性变
形。
8.低碳钢受拉伸时,变形的四个阶段为弹性阶段、屈服阶段、强化阶段和局部变形阶段。
9.由杆件截面骤然变化而引起的局部应力骤增的现象称为应力集中。
10.衡量材料塑性的两个指标是伸长率和断面收缩率。
11.受扭杆件所受的外力偶矩的作用面与杆轴线垂直。
12.低碳钢圆截面试件受扭转时,沿横截面破坏;铸铁圆截面试件受扭转时,沿45度角截
面破坏。
13.梁的支座按其对梁在荷载作用平面的约束情况,可以简化为三种基本形式,即固定端、
固定铰支座、可(活)动铰支座。
14.工程上常用的三种基本形式的静定梁是:简支梁、悬臂梁、外伸梁。
15.平面弯曲梁的横截面上有两个内力分量,分别为剪力和弯矩。
16.拉(压)刚度、扭转刚度和弯曲刚度的表达式分别是EA、GI p和EI z。
17.当梁上有横向力作用时,梁横截面上既有剪力又有弯矩,该梁的弯曲称为横力弯曲。
梁横截面上没有剪力(剪力为0),弯矩为常数,该梁的弯曲称为纯弯曲。
18.在弯矩图发生拐折处,梁上必有集中力的作用。
19.在集中力偶作用处,剪力图将不变。
20.梁的最大正应力发生在最大弯矩所在截面上离中性轴最远的点处。
21.在一组平行轴中,截面对中性轴的惯性矩最小。
22.度量梁变形后横截面位移的两个基本量是挠度和转角。
23.在小变形条件下,梁的挠度w和转角θ的关系是'tan
wθ
=。
24.纯弯曲梁的中性层上的正应力σ为零,切应力τ也为零。
W,从大到25.横截面积相同的矩形、圆形、工字形截面,按照它们各自的弯曲截面系数
z 小按顺序排列,分别是:工字形>矩形>圆形。
26.按正应力强度条件,梁的合理截面应该使截面的材料分布尽可能远离中性轴。
27.等强度梁各横截面上的最大正应力相等。
28.矩形截面梁的弯曲剪应力在截面的上下边缘处数值为0 。
29.采用近似微分方程积分求解简支梁的变形时,梁两端的边界条件为w = 0。
二 基本公式的简单应用
1
已知纵向线应变ε和横向线应变ε’
求泊松比ν:'εν
ε
=
2 拉压杆轴力和应力的关系:N
F A
σ=
3 拉压杆的伸长计算:N F l
l EA ∆=;1n
Ni i i
F l l EA ∆=∑ 4
拉压杆的强度计算:max []σσ≤ -> 三种类型强度计算
5 圆轴扭转时横截面上切应力的分布规律:p
T I ρ
τ=
6 扭转轴横截面上的最大切应力计算公式:max P
T W τ=
实心圆轴:432
p I D π
= ; 316
p W D π
=
空心圆轴:()44132
p I D π
α=
- ; ()34116
p W D π
α=
-
7. 圆轴的扭转角计算公式 p Tl
GI ϕ=;1n
i i pi
T l GI ϕ=∑
8. 扭转轴的强度计算:max []ττ≤ -> 三种类型强度计算 9. 弯曲梁横截面上正应力计算公式:z
My
I σ=
10弯曲梁横截面上最大正应力计算公式:max z
M W σ=
矩形截面:312z bh I = 2
6
z bh W =
实心截面:464
z I D π
= 332
z W D π
=
空心截面:()44164
z I D π
α=
- ()34132
z W D π
α=
-
11 组合截面形心计算公式:Ci
i
C
i
x A x A
=
∑∑;计算惯性矩的平行移轴公式:2z zC I I b A =+
12 梁的强度计算公式:max []σσ≤ -> 三种类型强度计算 13 梁横截面上的最大切应力计算公式:*
,max max
max S z F S I b
τ=;max S
F A
τ=Γ
圆形:43Γ=
矩形:3
2
Γ= 薄壁圆:2Γ= 14 应变能的计算公式。
拉压杆:2
2N F l V EA
ε=;1
2v εσε=
扭转轴:22p
T l
V GI ε=;12v ετγ=;弯曲梁:2()2z M x V dx EI ε=⎰;22z M l V EI ε=
15挠曲线近似微分方程:()
''z
M x w EI =-
或者''()z EI w M x =- 积分两次可以得到挠曲线方程。
由边界条件确定积分常数。
16 尽可能记住上课时提到的那4种简单荷载作用下的梁的位移公式,以便在使用叠加原理时使用。
三 作图
画轴力图:
画扭矩图:
F
画剪力图和弯矩图:
4 kN •m
4 kN •m
10kN
C
四计算题(综合)
1 等截面杆AD的横截面积为200mm2,弹性模量E=200GPa,许用应力为[σ]=170MPa。
杆的受力如下图所示。
(1)画出杆的轴力图;(2)校核杆的强度;(3)求出杆的总伸长;
2 如图所示结构,AB 杆为钢杆,横截面积A 1=100mm 2,许用拉(压)应力 [σ]1=100MPa ,BC 杆为木杆,A 2=2000mm 2,许用拉(压)应力[σ]2=5MPa 。
B 处作用载荷P =10kN 。
(1) 试校核该结构的强度; (2)
3 如右图所示受扭圆轴,AB 段为空心圆截面,外径D =80mm ,内径d =40mm ,BC 段为实心圆截面,直径D =80mm 。
圆轴所受外力偶如图所示,各段材料的剪切模量G =80GPa ,许用切应力为[τ]=50MPa(1) 试校核该轴的强度;(2) 试求AC 段的总扭转角。
4 kN •m
P
C
4右图所示一等截面圆轴,已知其直径d =40mm ,a =400mm ,剪切模量G =80GPa ,B 截面相对于D 截面的扭转角φBD =1o ,试求:(1)外力偶矩Me 和轴内的最大切应力;(2)截面A 相对于D 的扭转角。
5 外伸梁AC 的荷载如下图所示,其截面是由两块mm mm 20030*的矩形所组成的T 型
截面。
钢材的许用正应力MPa 170][=σ,许用切应力MPa 100][=τ。
不计自重,试校核该钢梁的强度。
C
6 铸铁梁的载荷和横截面尺寸如下图所示,已知截面形心C 到截面上边缘的距离是
172.5mm y =,整个截面对中性轴z 的惯性矩6460.110mm z I =⨯,铸铁的许用拉应力[]40MPa t σ=,许用压应力[]160MPa c σ=。
(1)试按正应力强度条件校核梁的强度;
(2)若载荷不变,但将T 形横截面倒置,即翼缘在下变成⊥形,是否合理?
7等截面悬臂梁受力和尺寸如右图所示,若已知梁的惯性矩为10-
6m 4, 弹性模量E =200GPa ,用积分法求梁中点的转角和端点B 的挠度。
8 等截面简支梁受力和尺寸如右图所示, 若已知梁的惯性矩为10-
6m 4,弹性模量E =200GPa ,用积分法求A 点的转角和梁中点的挠度。
9 梁AB因强度和刚度不足需要加固。
现采用同样材料、同样截面的一根短梁CD进行加固,见下图所示。
F为多少?
请问:(1)两梁接触处的压力
D
(2)加固后梁AB的最大弯矩和最大挠度各减少了多少?
F
B。