高速拉制光纤时影响光纤质量的因素
- 格式:pdf
- 大小:140.18 KB
- 文档页数:4
拉丝工艺对光纤性能的影响一、拉丝工艺的基本原理拉丝工艺是指将玻璃棒料通过一系列的加热、拉伸、冷却等工艺进行加工,最终得到光纤的过程。
其主要原理是将玻璃棒料在高温下拉伸成细的光纤,并在拉伸的同时控制其直径和形状,以及控制拉伸的速度和温度,从而得到符合要求的光纤产品。
二、拉丝工艺对光纤性能的影响因素1. 温度控制:拉丝过程中的温度是一个非常关键的因素。
过高或过低的温度都会导致玻璃的形变或者结晶,从而影响光纤的机械性能和光学性能。
2. 拉伸速度:拉伸速度直接影响着光纤的直径和形状。
如果拉伸速度过快,会导致光纤直径不均匀,从而影响其光学性能。
3. 真空度:在拉伸过程中,保持一定的真空度可以防止氧化发生,保证玻璃的纯度,从而保证光纤的光学性能。
4. 玻璃成分:不同的玻璃成分对拉丝工艺的影响也不同。
一些特殊的玻璃成分可以使光纤具有特殊的性能,比如增加抗拉强度或者增加光纤的耐高温性能。
三、拉丝工艺对光纤性能的影响1. 光损耗:拉丝工艺影响着光纤的表面平整度和质量,进而影响光的传输损耗。
通过优化拉丝工艺可以降低光纤的光传输损耗,提高光纤的传输效率。
2. 机械性能:拉丝工艺影响着光纤的拉伸强度和弯曲性能,通过合理的拉丝工艺可以提高光纤的机械性能,增加其使用寿命。
3. 调制带宽:拉丝工艺影响着光纤的直径和表面质量,进而影响着光的调制带宽。
通过优化拉丝工艺可以提高光纤的调制带宽,使其更适用于高速通信应用。
拉丝工艺对于光纤的性能有着重要的影响,通过优化拉丝工艺可以有效提高光纤的性能,使其更符合现代通信的要求。
在未来的研究中,可以进一步探讨新材料的应用和新工艺的创新,从而推动光纤通信技术的发展。
光纤拉丝工艺ppt xx年xx月xx日CATALOGUE目录•引言•光纤拉丝工艺发展历程•光纤拉丝工艺的生产流程•光纤拉丝工艺的技术特点•光纤拉丝工艺的应用领域•光纤拉丝工艺的前景展望01引言光纤拉丝工艺是指利用高温高压技术将高纯度玻璃或塑料光纤预制件拉制成细直径的工艺方法。
光纤拉丝工艺是光通信领域中的关键技术之一,被广泛应用于光缆、光器件和光通讯网络等领域。
光纤拉丝工艺简介光纤拉丝工艺流程选取高纯度玻璃或塑料作为预制件材料,经过高温高压处理制作成预制件。
光纤预制件制作拉丝机安装与调试拉丝过程涂覆与测试安装拉丝机并对其进行精确调试,确保拉丝过程中各项参数的稳定。
将预制件送入拉丝机的高温炉中加热至软化点,通过牵引轮和收线轮相互配合将光纤拉制成细直径。
对拉制好的光纤进行涂覆保护,并进行性能测试以确保符合要求。
1光纤拉丝工艺的重要性23光纤拉丝工艺制成的光纤具有低损耗、高带宽等特点,能够实现长距离、高速率的光通信。
实现长距离光通信光纤拉丝工艺作为光通信产业的基础技术,对光通信产业的发展起着至关重要的作用。
促进光通信产业发展光纤拉丝工艺的广泛应用有助于提升国家信息基础设施的水平,促进信息技术的快速发展。
提升国家信息基础设施水平02光纤拉丝工艺发展历程03初步应用虽然技术尚未成熟,但在一些特定领域,如航空航天、军事等领域开始尝试应用。
第一阶段:起步期01技术引入光纤拉丝工艺起源于20世纪70年代,最初由美国Corning公司引入。
02初步研究在起步期,研究人员开始探索光纤拉丝的基本原理和控制方法。
进入21世纪初,随着技术不断发展,光纤拉丝工艺逐渐转型。
技术突破光纤拉丝工艺逐渐实现规模化生产,生产效率和技术水平显著提高。
生产规模化光纤拉丝工艺逐渐应用于通信、医疗、工业控制等领域。
应用扩展近年来,随着科技的不断进步,光纤拉丝工艺不断创新。
技术创新新型光纤材料不断涌现,如玻璃纤维、碳纤维等,具有更高的强度和更轻的重量。
拉丝工艺对光纤性能的影响
光纤的拉丝工艺对其性能有很大影响。
光纤是一种细长的、柔软的、透明的纤维,用来传输光信号。
光纤通常由两个主要部分组成:纤芯和包层。
纤芯是光信号传输的核心区域,包层则用来保护纤芯并提供光线的反射和折射。
光纤的拉丝工艺是将光纤前驱材料(通常为二氧化硅)通过高温熔融,然后在拉伸机上拉制成长纤维的过程。
拉丝工艺对光纤的直径、形状和性能都有显著影响。
拉丝工艺对光纤的直径有重要影响。
光纤的直径直接影响着光的传输效率和损耗。
通过控制拉丝的机械参数如拉伸率、拉丝温度和拉丝速度,可以控制光纤的直径。
通常,通过减小拉丝速度和增加拉丝温度可以制备出较细直径的光纤,从而减小传输损耗。
拉丝工艺对光纤的形状也有重要影响。
光纤的形状指的是纤芯和包层的相对位置和几何形状。
通过控制拉丝工艺参数,可以调节纤芯和包层的相对位置以及纤芯和包层的直径比例,从而控制光线的传播特性。
可以通过调节拉丝温度来改变纤芯和包层的相对位置,从而实现单模光纤或多模光纤的制备。
拉丝工艺还对光纤的性能指标如损耗、带宽等有影响。
拉丝工艺中的拉丝温度、拉丝速度和拉伸率会影响光纤的材料结构和微观组织,从而影响光纤的性能。
适当的拉伸可以改善光纤的结晶度和晶界状态,从而提高光纤的光学性能和机械强度。
光纤的拉丝工艺对其性能具有决定性影响。
通过合理地控制拉丝工艺参数,可以制备出优质的光纤产品,以满足不同应用领域对光纤性能的需求。
拉丝工艺对光纤性能的影响
光纤拉丝工艺是制备光纤的重要工艺之一,对光纤的性能有着重要的影响。
光纤拉丝工艺主要包括预制棒准备、预拉丝、拉丝、退火和包衬等步骤。
预制棒准备是指选择适当的材料制备光纤的预制棒。
预制棒的质量直接决定了光纤的质量,对光纤的性能有着重要影响。
如果预制棒的质量不佳或存在杂质,会导致光纤存在缺陷和不均匀性,进而影响光纤的传输性能。
预拉丝是将预制棒通过加热和拉伸使其尺寸逐渐变细的过程。
预拉丝能够提高光纤拉丝的效率和质量,减小光纤直径的误差和不均匀性。
适当的预拉丝过程可以使光纤的尺寸变得更加均匀,从而提高光纤的传输性能。
拉丝是指将预拉丝的棒材进一步拉细,形成光纤的过程。
拉丝是光纤拉丝工艺中最关键的步骤之一,对光纤的性能影响较大。
在拉丝过程中,需要控制光纤的直径、圆度和椭圆度等尺寸参数,以及光纤的光波导性能。
合理的拉丝工艺可以使光纤的损耗降低,带宽增加,传输性能更好。
退火是将拉丝得到的光纤加热到一定温度,使其具有更好的机械和光学性能。
退火可以提高光纤的抗折强度和传输性能,并减小光纤中的损耗和非线性效应。
合适的退火温度和时间可以使光纤的微观结构重新排列,从而提高光纤的性能。
包衬是将退火后的光纤放入外包层中,形成完整的光纤。
包衬材料的选择和包衬工艺的优化对光纤性能也有重要影响。
合适的包衬材料可以提高光纤的抗弯曲性能、机械强度和耐用性。
影响高速铝大拉拉线速度及质量的因素分析关键 高速铝大拉 拉丝质量 循环过滤系统 热交换系统 拉丝润滑油1 引言随着现代化生产管理的需要,提高设备使用率,提高产品质量,降低成本是立足之本,积蓄式非滑动铝拉机已很不适应线缆行业的需要。
在保证铝单线制品质量的前提下,采用高速铝大拉设备,高效的拉丝润滑液,良好的润滑油循环过滤系统,达到使铝单线表面净洁、并改善工作环境、提高劳动生产率以及降低能耗已成为提升企业能力的标志。
我厂通过近两年的技术改造,引进了五条高速铝大拉生产线,产品质量及生产能力得到了大幅度的提高,其中有一台东方电工机械厂的,有三台上海电工机械厂制造的,一台上海鸿得利制造的高速铝大拉。
在生产过程中,五台高速铝大拉我们使用了三种不同的拉线润滑油,一家为新疆本地焉吉生产的拉丝润滑油,一家为吉林化工厂的拉丝润滑油,一家为进口好富顿高速拉丝液,通过一段时间的生产运作,五台设备在拉丝速度及拉丝质量上表现出不同的效果,在保证单线具有良好外观的前提下,相同直径为φ2.16mm的铝单线,东电工高速铝大拉拉线速度最高每秒约21米,其次为使用好富顿润滑油的高速铝大拉每秒19米,使用吉化润滑油的高速铝大拉每秒15米,使用新疆本地产的润滑油的高速铝大拉每秒13米秒,从铝单线表面质量上来看,使用好富顿润滑油拉线表面光洁度最好,而东电工高速铝大拉生产效率最高。
在设备调试阶段,五台不同厂家的高速铝大拉出现了诸多的问题,如高速拉线时单线出现道子,表面光洁度不够理想发黑发乌,及断线频繁,铝线强度损失大等一系列问题,生产厂家发现问题往往从拉丝模具及配模上找问题,忽视了设备本身存在的不足,结果问题并没有得到根本的解决,对此我们对各设备进行对比,对可能出现问题的各个环节进行了分析,发现影响拉丝速度和质量的主要因素和设备自身的热交换系统、过滤系统及润滑油的质量密切相关,通过逐一排除存在的问题,使设备使用情况得到了很好的改善,达到了设备设计目标,满足了生产及工艺的要求。
拉丝工艺对光纤性能的影响1. 引言1.1 拉丝工艺对光纤性能的影响拉丝工艺是光纤制备过程中的关键环节,对光纤的性能具有重要影响。
通过不同的拉丝工艺参数的调控,可以调整光纤的力学性能、传输特性以及光学性能。
具体来说,拉丝工艺对光纤的拉伸强度影响主要体现在拉拔过程中拉伸的力度和速度,这会直接影响光纤的强度和耐力。
而对光纤的抗弯性能影响则是通过控制拉丝工艺中的拉拔方式和温度等参数来实现的,这会影响光纤在安装和使用中的稳定性和可靠性。
拉丝工艺还会影响光纤的传输损耗、色散特性和光学非线性效应,这些参数的控制需要在拉丝工艺中精心设计和调整。
拉丝工艺是影响光纤性能的重要因素,对光纤的性能表现有着直接而重要的影响。
通过不断优化和改进拉丝工艺,可以提高光纤的性能表现,满足不同领域对光纤性能的要求。
2. 正文2.1 拉丝工艺对光纤的拉伸强度影响拉丝工艺是影响光纤性能的重要因素之一,其中对光纤的拉伸强度影响尤为重要。
在光纤的制作过程中,拉丝工艺可以直接影响到光纤的拉伸强度。
拉丝工艺的优化可以提高光纤的拉伸强度,从而延长光纤的使用寿命并提高其可靠性。
首先,拉丝工艺会影响光纤的内部结构。
通过控制拉丝过程中的拉伸速度和温度,可以使光纤内部的晶格结构更加均匀和致密。
这样的内部结构可以提高光纤的抗拉伸性能,使其能够承受更大的拉力而不容易断裂。
其次,拉丝工艺还会影响光纤的表面光滑度。
拉丝过程中,如果拉伸速度过快或拉丝机器不稳定,可能导致光纤表面出现凹凸不平或者表面裂纹,从而降低光纤的拉伸强度。
因此,在拉丝工艺中需要注意控制拉伸速度和保持设备稳定,以保证光纤表面的光滑度。
总的来说,拉丝工艺对光纤的拉伸强度影响是非常显著的。
通过优化拉丝工艺,可以提高光纤的拉伸强度,进而提高其使用性能和可靠性。
因此,在光纤制作过程中,拉丝工艺的重要性不可忽视。
2.2 拉丝工艺对光纤的抗弯性能影响拉丝工艺是光纤制备过程中至关重要的一环,对光纤的性能有着直接的影响。
高速拉制光纤时影响光纤质量的因素
现在通信用的A类多模光纤和B类单模光纤都是由石英玻璃制造的。
石英玻璃光纤在制作的过程中玻璃基体不可避免地存在微小的不均匀性、高温熔融骤冷拉丝使表面形成应力分布不均匀、及环境尘埃、机械损伤等致使光纤表面产生一些微裂纹。
这些微裂纹在高速拉丝中,承受较大的拉丝张力,会产生进一步的扩张,导致光纤强度降低。
随着目前拉丝速度的不断提高,如何在保证光纤强度成为人们比较关心的问题。
本文从工艺的角度探讨了预制棒、炉子温度、涂覆工艺和拉丝环境对光纤强度的影响。
一、预制棒对光纤强度的影响
光纤在生产过程中出现低强度断裂主要是由光纤存在的缺陷引起的。
这些缺陷大致可分为内部缺陷和表面缺陷,内部缺陷主要预制棒中夹杂的气泡和杂质。
表面缺陷主要形式是微裂纹和微尘沾污,它与预制棒表面损伤,拉丝炉和环境的洁净度,涂覆质量等因素有密切关系。
为进一步说明这些因素对光纤强度的影响,以下分别进行讨论和分析:
1.1内部缺陷的影响
预制棒的生产过程中,不可避免的存在气泡和杂质。
对于预制棒内部一定直径的气泡,在拉丝过程中可能发生破裂,或者缩小成极细小的气线而对光纤强度产生严重的影响。
而对于内部杂质造成的缺陷,拉丝过程中不仅无法使其愈合和缩小,相反这类杂质大都是天然石英原料中夹杂的高熔点金属氧化物,由于其膨胀系数与玻璃体存在较大的差异,因此在高温融化时,杂质和玻璃体界面产生裂纹。
裂纹在拉丝过程中会不断地增长,裂纹尺寸远远大于杂质本身的尺寸,因此这些杂质对光纤强度的危害要比气泡之类的影响大得多。
预制棒中存在的气泡和杂质对于光纤拉丝来说,是不可避免,如果预制棒质量不好,就无法通过拉丝工艺提高强度。
因此,预制棒质量时影响光纤强度的主要因素。
1.2表面缺陷的影响
表面缺陷主要为微裂纹和表面沾污。
预制棒表面的微裂纹,在拉制过程中不可避免的会转变成光纤表面较小的微裂纹。
当光纤受到外部应力作大于这些小的微裂纹扩展临界应力时,小的微裂纹逐渐增大,最终导致光纤断裂。
而表面沾污会降低裸光纤表面与内涂涂料的结合紧密度。
由于内涂涂料和裸光纤之间有空隙,当受到一定外力时,涂层处首先发生断裂,进而引起裸光纤断裂。
目前对于表面缺陷主要有两种处理方法:一为火焰抛光,二为HF酸处理。
火焰抛光可以有效地治愈预制棒表面的微裂纹,HF酸可以洗去附着在预制棒表面的杂质。
因此在实际生产中,对预制棒进行HF酸洗和火焰抛光进行二次处理,从而提高光纤强度。
我们对未处理预制棒和处理后预制棒拉制光纤的强度进行了统计,结果如表所示:
筛选张力预制棒光纤长度断点数
9.0N未处理1000KM14
9.0N处理1000KM8
表1预制棒表面处理对光纤强度的影响
从表1可以看出,经过二次处理后的预制棒,拉制的光纤的强度明显提高。
需要注意,HF酸洗时一定要控制好酸洗的时间,如果酸洗时间过长,微裂纹会产生明显的扩张。
并且火焰抛光时,要控制好火焰燃烧气体的纯净度和环境的洁净度,防止抛光时产生二次污染。
二、炉子温度对光纤强度的影响
高温拉丝过程中发生点缺陷将导致光纤机械强度劣化,已发现的最重要的点缺陷之一E′缺陷是Si-O链断裂产生的,Si-O链断裂和重新链合时动态变化的,E缺陷的浓度取决于Si-O链断裂和重新链合的平衡结果。
E缺陷的浓度随拉丝炉加热区长度增加而增加,随拉丝速度增加而降低,加热区长导致预制棒在高温区时间加长,从而导致Si-O链断裂产生的频率更高。
有研究表明,当加热炉温度从2200K增加到3000K时,刚从加热炉出来的裸光纤的缺陷浓度就会增加二个数量级。
同时由于高温下,炉中的石墨件挥发产生如下反应:
反应生成的SiC是一种硬度较高的微粒,在加热炉内若裸光纤被SiC微粒碰的,光纤表面会产生缺陷和裂纹。
而当加热炉内温度越高,反应生成的SiC微粒的数量就越多,所以裸光纤表面被碰伤的机率就越高,光纤表面产生的缺陷越多,光纤强度就越低。
三、涂覆和固化对强度影响
3.1涂覆的影响
光纤涂层的作用是保护光纤表面不会受到机械损伤和潮气的影响并保持其原有的强度,若涂层太薄或偏心就会失去机械保护的作用。
涂层的同心度在拉丝过程中容易变化,因此在拉丝中需时刻注意。
下图为根据实际拉丝统计出的涂层同心度不同对光纤强度的影响。
图一涂层同心度不同对光纤强度的影响
根据上图所示,当涂层的同心度小于8时,每1000KM光纤的断点数在10左右,在筛选中不会对光纤强度造成太大影响影响。
而当光纤同心度达为10时,断点数为15.5。
因此,光纤的同心度小于8,可以有效地减少因涂层偏心而引起光纤强度的降低。
涂覆过程中,另一个影响光纤强度的因素是涂层中的气泡。
气泡的产生主要是因为拉丝中,光纤在模具中位置发生偏移,使得涂料形成的半月型液面发生倾斜,角度较小侧受到压力增加,气体容易被光纤带入涂层中;或者涂料温度变化,涂覆压力波动等因素都会在涂层产生气泡。
涂层中的气泡,降低了涂层和涂层之间以及涂层和裸光纤之间的结合力。
并且气泡的存在增加了涂层在受到拉力情况下,产生裂纹的可能性,最终导致光纤强度降低。
3.2固化系统的影响
根据实际光纤生产方法,目前广泛使用光聚作用的技术方法。
利用UV辐射使得光引发剂激发成活性体(自由基或阳离子)。
该活性体与预聚物和单体中的C=C双键反应,形成增长链。
该增长链进一步反应,形成更长聚合物链。
若有多管能度聚合物或单体存在,就会产生交联结构,最后活性体的耦合与歧化使反应终止。
随着技术的提高,目前生产中拉丝速度已经提高的20m/s~30m/s,光纤在固化炉的停留时间仅为0.1s~0.2s。
为保证涂覆后光纤的固化效果,要求固化炉能够提供足够的紫外光能,满足光引发剂激活成活性体所需要的能量。
同时,在固化炉内通入一定比例的惰性气体,防止氧气对聚合物链增长的抑制,提高固化效果。
图二与图三
图2和图3对不同固化度光纤和由于氧气含量过高而引起光纤表面发粘发光纤的强度进行的统计。
从图看出,当光纤的固化度的高于80%时,光纤的强度没有随着光纤固化度的升高而升高,而是呈随机性的分布。
而图中,固化炉中氧含量过高造成的表面发粘的光纤,与正常光纤相比,每1000KM的断点数由12.1个升高到12.8个,没有出现较大的升高。
四、环境等其它因素对强度影响
在预制棒的运输过程和拉丝时预制棒不够准直的情况下,都有可能引起预制棒表面擦伤。
当涂覆不良时,裸光纤表面也容易被涂覆口所擦伤。
但一般来说,这些机械损伤在操
作细心的情况下,是可以有效地避免。
除了上述的机械损伤外,另一个影响光纤强度的重要因素是环境中的灰尘以及石墨拉丝炉中的挥发物。
这些灰尘不仅能粘附在预制棒和裸光纤表面,甚至会在炉子中形成小的颗粒,撞击预制棒的融化区,产生较大的缺陷。
因此在拉丝炉中除了采用高温时挥发小的高纯石墨材料外,还必须用高纯氩气强制排气,保证炉子局部保持一定得清洁度。
对于拉丝环境,除了保证整个拉丝车间的洁净度外,在拉丝塔上安装空气过滤装置保证局部100级左右的净化区域。
五、总结
通过对预制棒,拉丝炉子,涂覆固化和环境等其它因素对光纤强度的分析,可以看出,影响光纤强度的主要因素是预制棒的质量。
通过对光棒表面的处理可以明显地提高光纤的强度,稳定的拉丝炉子温度,较好的涂覆质量以及良好的固化度可以提高光纤的强度。
在拉丝的生产中保持拉丝环境的洁净,加强生产操作为规范,选用质量可靠的生产辅助材料,防止这些隐性的因素对光纤强度产生影响。