2019聚焦中考数学(甘肃省)考点跟踪突破7一元二次方程及其应用
- 格式:doc
- 大小:48.00 KB
- 文档页数:4
2019年甘肃省中考数学试题(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.(2019甘肃省,1,3分)下列四个图案中,是中心对称图形的是( )【答案】A【解析】解:A .此图案是中心对称图形,符合题意; B .此图案不是中心对称图形,不合题意; C .此图案不是中心对称图形,不合题意; D .此图案不是中心对称图形,不合题意; 故选A .【知识点】中心对称图形2. (2019甘肃省,2,3分)在0,2,3-,12-这四个数中,最小的数是( )A .0B .2C .3-D .12-【答案】C【解析】解:∵13022-<-<<,∴最小的数是3-,故选C .【知识点】有理数大小比较3. (2019甘肃省,3,3分)有意义的x 的取值范围是( ) A .4x B .4x >C .4xD .4x <【答案】D【解析】有意义,则40x ->,解得4x <,即x 的取值范围是:4x <,故选D .【知识点】二次根式有意义的条件4. (2019甘肃省,4,3分)计算24(2)a a -的结果是( ) A .64a - B .64aC .62a -D .84a -【答案】B【解析】解:24246(2)44a a a a a -==,故选B . 【知识点】单项式乘单项式;幂的乘方;积的乘方5. (2019甘肃省,5,3分)如图,将一块含有30︒的直角三角板的顶点放在直尺的一边上,若148∠=︒,那么2∠的度数是( )A .48︒B .78︒C .92︒D .102︒【答案】D【解析】解:将一块含有30︒的直角三角板的顶点放在直尺的一边上,若148∠=︒, 231804830102∴∠=∠=︒-︒-︒=︒,故选D .【知识点】平行线的性质6.(2019甘肃省,6,3分)已知点(2,24)P m m +-在x 轴上,则点P 的坐标是( ) A .(4,0) B .(0,4) C .(4,0)- D .(0,4)-【答案】A【解析】解:∵点(2,24)P m m +-在x 轴上, 240m ∴-=,解得2m =, 24m ∴+=,∴点P 的坐标是(4,0). 故选A .【知识点】点的坐标7. (2019甘肃省,7,3分)若一元二次方程2220x kx k -+=的一根为1x =-,则k 的值为( ) A .1- B .0C .1或1-D .2或0【答案】A【解析】解:把1x =-代入方程得2120k k ++=,解得:1k =-,故选A . 【知识点】一元二次方程的解8. (2019甘肃省,8,3分)如图,AB 是O 的直径,点C 、D 是圆上两点,且126AOC ∠=︒,则(CDB ∠=)A .54︒B .64︒C .27︒D .37︒【答案】C【解析】解:∵126AOC ∠=︒,∴18054BOC AOC ∠=︒-∠=︒,∴1272CDB BOC ∠=∠=︒,故选C .【知识点】圆的有关概念及性质9.(2019甘肃省,9,3分)甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是( )A .甲、乙两班的平均水平相同B .甲、乙两班竞赛成绩的众数相同C .甲班的成绩比乙班的成绩稳定D .甲班成绩优异的人数比乙班多 【答案】A【解析】解:A 、甲、乙两班的平均水平相同;正确; B 、甲、乙两班竞赛成绩的众数相同;不正确; C 、甲班的成绩比乙班的成绩稳定;不正确; D 、甲班成绩优异的人数比乙班多;不正确; 故选A .【知识点】平均数,众数,中位数,方差10. (2019甘肃省,10,3分)如图是二次函数2y ax bx c =++的图象,对于下列说法:①0ac >,②20a b +>,③24ac b <,④0a b c ++<,⑤当0x >时,y 随x 的增大而减小,其中正确的是( )A .①②③B .①②④C .②③④D .③④⑤【答案】C【解析】解:①由图象可知:0a >,0c <,0ac ∴<,故①错误; ②由于对称轴可知:12ba-<,20a b ∴+>,故②正确; ③由于抛物线与x 轴有两个交点,∴△240b ac =->,故③正确; ④由图象可知:1x =时,0y a b c =++<,故④正确; ⑤当2bx a>-时,y 随着x 的增大而增大,故⑤错误; 故选C .【知识点】二次函数图象与系数的关系二、填空题(本大题共8小题,每小题3分,共24分)11. (2019甘肃省,11,3分)分解因式:34x y xy -= . 【答案】(2)(2)xy x x +-【解析】解:34x y xy -2(4)xy x =-(2)(2)xy x x =+-. 【知识点】分解因式12. (2019甘肃省,12,3分)不等式组2021x x x -⎧⎨>-⎩的最小整数解是 .【答案】0【解析】解:不等式组整理得21x x ⎧⎨>-⎩,∴不等式组的解集为12x -<,则最小的整数解为0,故答案为0.【知识点】一元一次不等式组的整数解13. (2019甘肃省,13,3分)分式方程3512x x =++的解为 . 【答案】12【解析】解:去分母,得3655x x +=+, 解得12x =, 经检验12x =是分式方程的解.故答案为12. 【知识点】解分式方程14. (2019甘肃省,14,3分)在ABC ∆中90C ∠=︒,tan A ,则cos B = . 【答案】12【解析】解:在Rt ABC ∆中,90C ∠=︒,tan A =,设a =,3b x =,则c =, 1cos 2a B c ∴==. 故答案为12. 【知识点】特殊角的三角函数值15. (2019甘肃省,15,3分)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为 .【答案】2(18cm +【解析】解:该几何体是一个三棱柱,底面等边三角形边长为2cm ,三棱柱的高为3,所以,其表面积为213232218)2cm ⨯⨯+⨯⨯+.故答案为2(18cm +.【知识点】三视图16.(2019甘肃省,16,3分)如图,在Rt ABC ∆中,90C ∠=︒,2AC BC ==,点D 是AB 的中点,以A 、B 为圆心,AD 、BD 长为半径画弧,分别交AC 、BC 于点E 、F ,则图中阴影部分的面积为 .【答案】24π-【解析】解:在Rt ABC ∆中,90ACB ∠=︒,2CA CB ==,AB ∴=45A B ∠=∠=︒,D 是AB 的中点,AD DB ∴=12222224ABC ADES S S π∆∴=-⋅=⨯⨯-=-阴扇形, 故答案为:24π-【知识点】扇形面积17. (2019甘肃省,17,3分)如图,在矩形ABCD 中,10AB =,6AD =,E 为BC 上一点,把CDE ∆沿DE 折叠,使点C 落在AB 边上的F 处,则CE 的长为 .【答案】103【解析】解:设CE x =,则6BE x =-由折叠性质可知,EF CE x ==,10DF CD AB ===, 在Rt DAF ∆中,6AD =,10DF =, 8AF ∴=,1082BF AB AF ∴=-=-=,在Rt BEF ∆中,222BE BF EF +=,即222(6)2x x -+=, 解得103x =, 故答案为103. 【知识点】矩形的性质;翻折变换(折叠问题)18. (2019甘肃省,18,3分)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n 幅图中有2019个菱形,则n = .【答案】1010【解析】解:根据题意分析可得:第1幅图中有1个. 第2幅图中有2213⨯-=个.第3幅图中有2315⨯-=个. 第4幅图中有2417⨯-=个.⋯.可以发现,每个图形都比前一个图形多2个. 故第n 幅图中共有(21)n -个. 当图中有2019个菱形时, 212019n -=, 1010n =,故答案为1010.【知识点】图形变化规律三、解答题(本大题共8小题,满分66分,各小题都必须写出解答过程)19.(2019甘肃省,19,4分)计算:201()(2019)60|3|2π--+-︒--.【思路分析】本题涉及零指数幂、负整数指数幂、绝对值、特殊角的三角函数值等4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解题过程】解:原式413=+1=. 【知识点】实数的运算20. (2019甘肃省,20,4分)如图,在ABC ∆中,点P 是AC 上一点,连接BP ,求作一点M ,使得点M 到AB 和AC 两边的距离相等,并且到点B 和点P 的距离相等.(不写作法,保留作图痕迹)【思路分析】根据角平分线的作法、线段垂直平分线的作法作图即可. 【解题过程】解:如图,点M 即为所求,【知识点】线段垂直平分线的性质;角平分线的性质21. (2019甘肃省,21,6分)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车? 【思路分析】设共有x 人,根据题意列出方程,求出方程的解即可【解题过程】解:设共有x 人, 根据题意,得9232x x -+=, 去分母,得212327x x +=-, 解得39x =, ∴399152-=, ∴共有39人,15辆车. 【知识点】一元一次方程的应用22. (2019甘肃省,22,6分)为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯宽度的范围是260~300mm mm 含(300)mm ,高度的范围是120~150mm mm (含150)mm .如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB ,CD 分别垂直平分踏步EF ,GH ,各踏步互相平行,AB CD =,900AC mm =,65ACD ∠=︒,试问该中学楼梯踏步的宽度和高度是否符合规定.(结果精确到1mm ,参考数据:sin650.906︒≈,cos650.423)︒≈【思路分析】根据题意,作出合适的辅助线,然后根据锐角三角函数即可求得BM 和DM 的长,然后计算出该中学楼梯踏步的宽度和高度,再与规定的比较大小,即可解答本题. 【解题过程】解:连接BD ,作DM AB ⊥于点M , AB CD =,AB ,CD 分别垂直平分踏步EF ,GH , //AB CD ∴,AB CD =,∴四边形ABCD 是平行四边形,C ABD ∴∠=∠,AC BD =, 65C ∠=︒,900AC =, 65ABD ∴∠=︒,900BD =,cos659000.423381BM BD ∴=︒=⨯≈,sin659000.906815DM BD =︒=⨯≈, 3813127÷=,120127150<<,∴该中学楼梯踏步的高度符合规定,8153272÷≈,260272300<<,∴该中学楼梯踏步的宽度符合规定,由上可得,该中学楼梯踏步的宽度和高度都符合规定.【知识点】解直角三角形的应用-坡度坡角问题23. (2019甘肃省,23,6分)在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m ,再从乙袋中摸出一个小球,记下数字为n . (1)请用列表或画树状图的方法表示出所有(,)m n 可能的结果;(2)若m ,n 都是方程2560x x -+=的解时,则小明获胜;若m ,n 都不是方程2560x x -+=的解时,则小利获胜,问他们两人谁获胜的概率大?【思路分析】(1)首先根据题意画出树状图,然后由树状图可得所有可能的结果;(2)画树状图展示所有6种等可能的结果数,再找出数字之积能被2整除的结果数,然后根据概率公式求解. 【解题过程】解:(1)树状图如图所示:(2)m ,n 都是方程2560x x -+=的解,2m ∴=,3n =,或3m =,2n =,由树状图得:共有12个等可能的结果,m ,n 都是方程2560x x -+=的解的结果有2个,m ,n 都不是方程2560x x -+=的解的结果有2个,小明获胜的概率为21126=,小利获胜的概率为21126=, ∴小明、小利获胜的概率一样大.【知识点】概率24. (2019甘肃省,24,4分)良好的饮食对学生的身体、智力发育和健康起到了极其重要的作用,荤菜中蛋白质、钙、磷及脂溶性维生素优于素食,而素食中不饱和脂肪酸、维生素和纤维素又优于荤食,只有荤食与素食适当搭配,才能强化初中生的身体素质.某校为了了解学生的体质健康状况,以便食堂为学生提供合理膳食,对本校七年级、八年级学生的体质健康状况进行了调查,过程如下: 收集数据:从七、八年级两个年级中各抽取15名学生,进行了体质健康测试,测试成绩(百分制)如下:七年级:74 81 75 76 70 75 75 79 81 70 74 80 91 69 82八年级:81 94 83 77 83 80 81 70 81 73 78 82 80 70 50整理数据:6080x<8090x<90100x1041581(说明:90分及以上为优秀,80~90分(不含90分)为良好,60~80分(不含80分)为及格,60分以下为不及格)分析数据:得出结论:(1)根据上述数据,将表格补充完整;(2)可以推断出年级学生的体质健康状况更好一些,并说明理由;(3)若七年级共有300名学生,请估计七年级体质健康成绩优秀的学生人数.【思路分析】(1)由平均数和众数的定义即可得出结果;(2)从平均数、中位数以及众数的角度分析,即可得到哪个年级学生的体质健康情况更好一些;(3)由七年级总人数乘以优秀人数所占比例,即可得出结果.【解题过程】解:(1)七年级的平均数为1(748175767075757981707480916982)76.815++++++++++++++=,八年级的众数为81;故答案为:76.8;81;(2)八年级学生的体质健康状况更好一些;理由如下:八年级学生的平均数、中位数以及众数均高于七年级,说明八年级学生的体质健康情况更好一些;故答案为:八;(3)若七年级共有300名学生,则七年级体质健康成绩优秀的学生人数13002015=⨯=(人).【知识点】统计表,众数,中位数,方差,,25.(2019甘肃省,25,7分)如图,一次函数y kx b=+的图象与反比例函数myx=的图象相交于(1,)A n-、(2,1)B-两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D 与点C 关于x 轴对称,求ABD ∆的面积;(3)若1(M x ,1)y 、2(N x ,2)y 是反比例函数m y x=上的两点,当120x x <<时,比较2y 与1y 的大小关系.【思路分析】(1)利用待定系数法即可解决求问题.(2)根据对称性求出点D 坐标,发现//BD x 轴,利用三角形的面积公式计算即可.(3)利用反比例函数的增减性解决问题即可.【解题过程】解:(1)反比例函数m y x=经过点(2,1)B -, 2m ∴=-, 点(1,)A n -在2y x-=上, 2n ∴=, (1,2)A ∴-,把A ,B 坐标代入y kx b =+,则有221k b k b -+=⎧⎨+=-⎩, 解得11k b =-⎧⎨=⎩, ∴一次函数的解析式为1y x =-+,反比例函数的解析式为2y x=-. (2)直线1y x =-+交y 轴于C ,(0,1)C ∴, D ,C 关于x 轴对称,(0,1)D ∴-,(2,1)B -//BD x ∴轴,12332ABD S ∆∴=⨯⨯=. (3)1(M x ,1)y 、2(N x ,2)y 是反比例函数2y x=-上的两点,且120x x <<, 12y y ∴<.【知识点】反比例函数与一次函数的交点26.(2019甘肃省,26,8分)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG ED⊥交DE 于点F,交CD于点G.(1)证明:ADG DCE∆≅∆;(2)连接BF,证明:AB FB=.【思路分析】(1)依据正方形的性质以及垂线的定义,即可得到90ADG C∠=∠=︒,AD DC=,DAG CDE∠=∠,即可得出ADG DCE∆≅∆;(2)延长DE交AB的延长线于H,根据DCE HBE∆≅∆,即可得出B是AH的中点,进而得到AB FB=.【解题过程】解:(1)四边形ABCD是正方形,90ADG C∴∠=∠=︒,AD DC=,又AG DE⊥,90DAG ADF CDE ADF∴∠+∠=︒=∠+∠,DAG CDE∴∠=∠,()ADG DCE ASA∴∆≅∆;(2)如图所示,延长DE交AB的延长线于H,E是BC的中点,BE CE∴=,又90C HBE∠=∠=︒,DEC HEB∠=∠,()DCE HBE ASA∴∆≅∆,BH DC AB∴==,即B是AH的中点,又90AFH∠=︒,Rt AFH∴∆中,12BF AH AB==.【知识点】全等三角形的判定与性质;正方形的性质27. (2019甘肃省,27,8分)如图,在Rt ABC ∆中,90C ∠=︒,以BC 为直径的O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:A ADE ∠=∠;(2)若8AD =,5DE =,求BC 的长.【思路分析】(1)只要证明90A B ∠+∠=︒,90ADE B ∠+∠=︒即可解决问题;(2)首先证明210AC DE ==,在Rt ADC ∆中,6DC =,设BD x =,在Rt BDC ∆中,2226BC x =+,在Rt ABC ∆中,222(8)10BC x =+-,可得22226(8)10x x +=+-,解方程即可解决问题.【解题过程】解:(1)证明:连接OD , DE 是切线,90ODE ∴∠=︒,90ADE BDO ∴∠+∠=︒,90ACB ∠=︒,90A B ∴∠+∠=︒,OD OB =,B BDO ∴∠=∠,ADE A ∴∠=∠.(2)解:连接CD .ADE A ∠=∠,AE DE ∴=, BC 是O 的直径,90ACB ∠=︒,EC ∴是O 的切线,ED EC ∴=,AE EC ∴=,5DE =,210AC DE ∴==,在Rt ADC ∆中,6DC =,设BD x =,在Rt BDC ∆中,2226BC x =+,在Rt ABC ∆中,222(8)10BC x =+-, 22226(8)10x x ∴+=+-, 解得92x =,152BC ∴==.【知识点】圆周角定理;切线的性质28. (2019甘肃省,28,10分)如图,已知二次函数2y x bx c =++的图象与x 轴交于点(1,0)A 、(3,0)B ,与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【思路分析】(1)用交点式函数表达式,即可求解;(2)分当AB 为平行四边形一条边、对角线,两种情况,分别求解即可;(3)利用()12D E AEBD S AB y y =-四边形,即可求解. 【解题过程】解:(1)用交点式函数表达式得:2(1)(3)43y x x x x =--=-+; 故二次函数表达式为:243y x x =-+;(2)①当AB 为平行四边形一条边时,如图1,则2AB PE ==,则点P 坐标为(4,3),当点P 在对称轴左侧时,即点C 的位置,点A 、B 、P 、F 为顶点的四边形为平行四边形, ∴点(4,3)P 或(0,3);②当AB 是四边形的对角线时,如图2,AB 中点坐标为(2,0)设点P 的横坐标为m ,点F 的横坐标为2,其中点坐标为:22m +, 即:222m +=,解得:2m =, 故点(2,1)P -;故:点(4,3)P 或(0,3)或(2,1)-;(3)直线BC 的表达式为:3y x =-+,设点E 坐标为2(,43)x x x -+,则点(,3)D x x -+, ()22134332D E AEBD S AB y y x x x x x =-=-+-+-=-+四边形, 10-<,故四边形AEBD 面积有最大值, 当32x =,其最大值为94,此时点3(2E ,3)4-. 【知识点】二次函数的解析式;平行四边形的性质。
考点跟踪突破4 分式及其运算一、选择题(每小题6分、共24分)1.(2015·常州)要使分式3x -2有意义、则x 的取值范围是( D ) A .x >2 B .x <2C .x ≠-2D .x ≠22.(2014·凉山州)分式|x|-3x +3的值为零、则x 的值为( A ) A .3 B .-3C .±3D .任意实数3.(2015·山西)化简a 2+2ab +b 2a 2-b 2-b a -b的结果是( A ) A .a a -b B .b a -bC .a a +bD .b a +b4.(2014·杭州)若(4a 2-4+12-a)·w =1、则w =( D ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)二、填空题(每小题6分、共30分)5.(2014·济宁)如果从一卷粗细均匀的电线上截取1米长的电线、称得它的质量为a 克、再称得剩余电线的质量为b 克、那么原来这卷电线的总长度是__(b a+1)__米. 6.(2015·泉州)计算:2a -1a +1a=__2__. 7.(2015·黄冈)计算b a 2-b 2÷(1-a a +b )的结果是__1a -b __. 8.(2015·安徽)已知实数a 、b 、c 满足a +b =ab =c 、有下列结论:①若c ≠0、则1a +1b=1; ②若a =3、则b +c =9;③若a =b =c 、则abc =0;④若a 、b 、c 中只有两个数相等、则a +b +c =8.其中正确的是__①③④__.(把所有正确结论的序号都选上)9.已知三个数x 、y 、z 满足xy x +y =-2、yz y +z =43、zx z +x =-43、则xyz xy +xz +yz=__-4__. 解析:由xy x +y =-2得x +y xy =-12、裂项得1y +1x =-12、同理1z +1y =34、1x +1z =-34、所以1y +1x +1z +1y +1x +1z =-12+34-34=-12、1z +1x +1y =-14、于是xy +yz +zx xyz =1z +1x +1y =-14、所以xyz xy +yz +zx=-4三、解答题(共46分)10.(12分)计算:(1)(2015·佛山)2x -2-8x 2-4; 解:原式=2(x +2)(x +2)(x -2)-8(x +2)(x -2)=2(x -2)(x +2)(x -2)=2x +2(2)(2015·南京)(2a 2-b 2-1a 2-ab )÷a a +b . 解:(2a 2-b 2-1a 2-ab )÷a a +b =[2(a +b )(a -b )-1a (a -b )]×a +b a =[2a a (a +b )(a -b )-a +b a (a +b )(a -b )]×a +b a =2a -(a +b )a (a +b )(a -b )×a +b a =1a 211.(12分)(1)(2015·荆门)先化简、再求值:a 2-b 2a 2-2ab +b 2·a -b a +b -a a -b、其中a =1+3、b =1-3; 解:原式=(a +b )(a -b )(a -b )2·a -b a +b -a a -b =a +b a -b ·a -b a +b -a a -b =1-a a -b =-b a -b、当a =1+3、b =1- 3 时、原式=-1-31+3-1+3=-1-323=3-36(2)(2015·枣庄)先化简、再求值:(x 2-2x +4x -1+2-x)÷x 2+4x +41-x、其中x 满足x 2-4x +3=0.解:原式=x 2-2x +4+(2-x )(x -1)x -1÷(x +2)21-x =x +2x -1·1-x (x +2)2=-1x +2、解方程x 2-4x +3=0得、(x -1)(x -3)=0、x 1=1、x 2=3.当x =1时、原式无意义;当x =3时、原式=-13+2=-1512.(12分)(2015·广州)已知A =x 2+2x +1x 2-1-x x -1.(1)化简A ;(2)当x 满足不等式组⎩⎨⎧x -1≥0,x -3<0,且x 为整数时、求A 的值. 解:(1)A =x 2+2x +1x 2-1-x x -1=(x +1)2(x +1)(x -1)-x x -1=x +1x -1-x x -1=1x -1(2)∵⎩⎨⎧x -1≥0,x -3<0,∴⎩⎨⎧x ≥1,x <3,∴1≤x <3、∵x 为整数、∴x =1或x =2、①当x =1时、∵x -1≠0、∴A =1x -1中x ≠1、∴当x =1时、A =1x -1无意义.②当x =2时、A =1x -1=12-1=1.故A 的值为113.(10分)若abc =1、求a ab +a +1+b bc +b +1+c ca +c +1的值. 分析:本题可将分式通分后、再进行化简求值、但较复杂、下面介绍两种简单的解法. 解法一:因为abc =1、所以a 、b 、c 都不为零.原式=a ab +a +1+a a ·b bc +b +1+ab ab ·c ca +c +1=a ab +a +1+ab abc +ab +a +abc abca +abc +ab=a ab +a +1+ab 1+ab +a +1a +1+ab =a +ab +1ab +a +1=1 解法二:由abc =1、得a =1bc、将之代入原式. 原式=1bc 1bc ·b +1bc +1+b bc +b +1+c c·1bc+c +1=1b +1+bc +b bc +b +1+bc 1+bc +b =1+b +bc 1+b +bc=12016年甘肃名师预测1.分式x 2-1x +1的值为零、则x 的值为__1__. 2.先化简、再求值:a -33a 2-6a ÷(a +2-5a -2)、其中a 2+3a -1=0. 解:原式=a -33a (a -2)÷a 2-4-5a -2=a -33a (a -2)·a -2(a +3)(a -3)=13a 2+9a、当a 2+3a -1=0、即a 2+3a =1时、原式=13。
2019年全国中考数学真题分类汇编:一元二次方程及应用一、选择题1.(2019年山东省滨州市)用配方法解一元二次方程x2﹣4x+1=0时,下列变形正确的是()A.(x﹣2)2=1 B.(x﹣2)2=5 C.(x+2)2=3 D.(x﹣2)2=3【考点】解一元二次方程【解答】解:x2﹣4x+1=0,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,(x﹣2)2=3,故选:D.2. (2019年四川省达州市)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100【考点】一元二次方程的应用【解答】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.3. (2019年广西贵港市)若α,β是关于x的一元二次方程x2-2x+m=0的两实根,且+=-,则m等于()A. B. C. 2 D. 3【考点】一元二次方程根与系数的关系【解答】解:α,β是关于x的一元二次方程x2-2x+m=0的两实根,∴α+β=2,αβ=m,∵+===-,∴m=-3;故选:B.4. (2019年江苏省泰州市)方程2x2+6x-1=0的两根为x1、x2,则x1+x2等于()A .-6B .6C .-3D . 3 【考点】一元二次方程根与系数的关系【解答】试题分析:∵一元二次方程2x 2+6x -1=0的两个实根分别为x 1,x 2,由两根之和可得; ∴x 1+x 2=﹣26=3, 故答案为:C .5. (2019年河南省)一元二次方程(x +1)(x ﹣1)=2x +3的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根【考点】一元二次方程根的判别式【解答】解:原方程可化为:x 2﹣2x ﹣4=0, ∴a =1,b =﹣2,c =﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0, ∴方程由两个不相等的实数根. 故选:A .6. (2019年甘肃省天水市)中国“一带一路”给沿线国家和地区带来很大的经济效益,沿 线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区 居民年人均收入平均增长率为 .(用百分数表示) 【考点】一元二次方程的应用【解答】解:设该地区居民年人均收入平均增长率为x , 20000(1+x )2=39200,解得,x 1=0.4,x 2=﹣2.4(舍去),∴该地区居民年人均收入平均增长率为40%, 故答案为:40%.7. (2019年甘肃省)若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( ) A .﹣1B .0C .1或﹣1D .2或0【考点】一元二次方程的解【解答】解:把x =﹣1代入方程得:1+2k +k 2=0, 解得:k =﹣1, 故选:A .8. (2019年湖北省鄂州市)关于x 的一元二次方程x 2﹣4x +m =0的两实数根分别为x 1、x 2,且x1+3x2=5,则m的值为()A.B.C.D.0【考点】一元二次方程根与系数的关系【解答】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,故选:A.9. (2019年湖北省荆州市)若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【考点】一元二次方程根的判别式【解答】解:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.10. (2019年黑龙江省伊春市)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4 B.5 C.6 D.7【考点】一元二次方程的应用【解答】解:设这种植物每个支干长出x个小分支,依题意,得:1+x+x2=43,解得:x1=﹣7(舍去),x2=6.故选:C.11. (2019年内蒙古包头市)已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,则m的值是()A.34 B.30 C.30或34 D.30或36【考点】一元二次方程根与系数的关系【解答】解:当a=4时,b<8,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8不符合;当b=4时,a<8,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,∴a=8不符合;当a=b时,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=2a=2b,∴a=b=6,∴m+2=36,∴m=34;故选:A.12. (2019年内蒙古赤峰市)某品牌手机三月份销售400万部,四月份、五月份销售量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为x,根据题意列方程为()A.400(1+x2)=900 B.400(1+2x)=900C.900(1﹣x)2=400 D.400(1+x)2=900【考点】一元二次方程的应用【解答】解:设月平均增长率为x,根据题意得:400(1+x)2=900.故选:D.13. (2019年内蒙古呼和浩特市)若x1,x2是一元二次方程x2+x﹣3=0的两个实数根,则x22﹣4x12+17的值为()A.﹣2 B.6 C.﹣4 D.4【考点】一元二次方程的根与系数的关系【解答】解:∵x1,x2是一元二次方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1,x1•x2=﹣3,x12+x1=3,∴x22﹣4x12+17=x12+x22﹣5x12+17=(x1+x2)2﹣2x1x2﹣5x12+17=(﹣1)2﹣2×(﹣3)﹣5x12+17=24﹣5x22=24﹣5(﹣1﹣x1)2=24﹣5(x12+x1+1)=24﹣5(3+1)=4,故选:D.14. (2019年内蒙古通辽市)一个菱形的边长是方程x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为()A.48 B.24 C.24或40 D.48或80【考点】一元二次方程的应用【解答】解:(x﹣5)(x﹣3)=0,所以x1=5,x2=3,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为2=6,∴菱形的面积=×6×8=24.故选:B.15. (2019年新疆)若关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.k≤B.k>C.k<且k≠1D.k≤且k≠1【考点】一元二次方程根的判别式【解答】解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.16.(2019年新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参赛,根据题意,可列方程为()A.x(x﹣1)=36 B.x(x+1)=36C.x(x﹣1)=36 D.x(x+1)=36【考点】一元二次方程的应用【解答】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选:A.二、填空题1.(2019年上海市)如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.【考点】一元二次方程根的判别式【解答】解:由题意知△=1﹣4m<0,∴m>.故填空答案:m>.2. (2019年山东省济宁市)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是.【考点】一元二次方程的根与系数的关系【解答】解:∵x=1是方程x2+bx﹣2=0的一个根,∴x1x2==﹣2,∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为﹣2.3. (2019年山东省青岛市)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【考点】一元二次方程根的判别式【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.4. (2019年山东省枣庄市)已知关于x的方程ax2+2x﹣3=0有两个不相等的实数根,则a的取值范围是.【考点】一元二次方程根的判别式【解答】解:由关于x的方程ax2+2x﹣3=0有两个不相等的实数根得△=b 2﹣4ac =4+4×3a >0, 解得a > 则a >且a ≠0故答案为a >且a ≠05. (2019年四川省资阳市)a 是方程2x 2=x +4的一个根,则代数式4a 2﹣2a 的值是 . 【考点】一元二次方程的解【解答】解:∵a 是方程2x 2=x +4的一个根, ∴2a 2﹣a =4,∴4a 2﹣2a =2(2a 2﹣a )=2×4=8. 故答案为:8.6. (2019年江苏省泰州市)若关于x 的方程x 2+2x +m =0有两个不相等的实数根,则m 的取值范围是 .【考点】一元二次方程根的判别式【解答】∵关于x 的方程x 2+2x +m =0有两个不相等的实数根,∴△=4﹣4m >0 解得:m <1,∴m 的取值范围是m <1. 故答案为:m <1.7. (2019年江苏省扬州市)一元二次方程()22-=-x x x 的根为___.【考点】一元二次方程的解法 【解答】解:()22-=-x x x()()021=--x x x 1=1, x 2=28. (2019年湖北省十堰市)对于实数a ,b ,定义运算“◎”如下:a ◎b =(a +b )2﹣(a ﹣b )2.若(m +2)◎(m ﹣3)=24,则m = .【考点】一元二次方程的解法【解答】解:根据题意得[(m +2)+(m ﹣3)]2﹣[(m +2)﹣(m ﹣3)]2=24, (2m ﹣1)2﹣49=0,(2m ﹣1+7)(2m ﹣1﹣7)=0, 2m ﹣1+7=0或2m ﹣1﹣7=0,所以m 1=﹣3,m 2=4. 故答案为﹣3或4.9. (2019年甘肃省武威市)关于x 的一元二次方程x 2+x +1=0有两个相等的实数根,则m 的取值为 .【考点】一元二次方程根的判别式 【解答】解:由题意,△=b 2﹣4ac =()2﹣4=0得m =4 故答案为410. (2019年辽宁省本溪市)如果关于x 的一元二次方程x 2﹣4x +k =0有实数根,那么k 的取值范围是 .【考点】一元二次方程根的判别式 【解答】解:根据题意得:△=16﹣4k ≥0, 解得:k ≤4. 故答案为:k ≤4.11. (2019年西藏)一元二次方程x 2﹣x ﹣1=0的根是 . 【考点】一元二次方程的解法【解答】解:△=(﹣1)2﹣4×(﹣1)=5, x =,所以x 1=,x 2=.故答案为x 1=,x 2=.三、解答题1.(2019年安徽省)解方程2x 1=4-()【考点】一元二次方程的解法【解答】利用直接开平方法:x-1=2或x-1=-2 ∴ , 2.(2019年北京市)关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.【考点】一元二次方程根的判别式、一元二次方程的解法【解答】∵01222=-+-m x x 有实数根,∴△≥0,即0)12(4)2(2≥---m ,∴1≤m∵m 为正整数,∴1=m ,故此时二次方程为,0122=+-x x 即0)1(2=-x∴121==x x ,∴1=m ,此时方程的根为121==x x3.(2019年乐山市)已知关于x 的一元二次方程04)4(2=++-k x k x . (1)求证:无论k 为任何实数,此方程总有两个实数根; (2)若方程的两个实数根为1x 、2x ,满足431121=+x x ,求k 的值; (3)若Rt △ABC 的斜边为5,另外两条边的长恰好是方程的两个根1x 、2x ,求∆Rt ABC的内切圆半径.【考点】一元二次方程根的判别式、一元二次方程的解法、一元二次方程根与系数关系、内切圆 【解答】(1)证明: 0)4(16816)4(222≥-=+-=-+=∆k k k k k ,∴无论k 为任何实数时,此方程总有两个实数根.(2)由题意得:421+=+k x x ,k x x 421=⋅, 431121=+x x,432121=⋅+∴x x x x ,即4344=+k k , 解得:2=k ;(3)解方程得:41=x ,k x =2,根据题意得:22254=+k ,即3=k , 设直角三角形ABC 的内切圆半径为r ,如图, 由切线长定理可得:5)4()3(=-+-r r ,∴直角三角形ABC 的内切圆半径r =12543=-+;4.(2019年重庆市)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅? (2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,64月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.【考点】一元一次方程的应用与解法、一元二次方程的应用与解法【解答】(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套,由题意得:2(50×2x+80x)=90000,解得x=250答:该小区共有250套80平方米的住宅.(2)参与活动一:50平方米住宅每户所交物管费为100元,有500×40%=200户参与活动一,80平方米住宅每户所交物管费为160元,有250×20%=50户参与活动一;参与活动二:50平方米住宅每户所交物管费为100(1﹣%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1﹣%)元,有50(1+6a%)户参与活动二.由题意得100(1﹣%)•200(1+2a%)+160(1﹣%)•50(1+6a%)=[200(1+2a%)×100+50(1+6a%)×160](1﹣a%)令t=a%,化简得t(2t﹣1)=0∴t1=0(舍),t2=,∴a=50.答:a的值为50.5. (2019年山东省德州市)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.【考点】一元二次方程的应用与解法【解答】解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x )+128(1+x )2=608 化简得:4x 2+12x -7=0 ∴(2x -1)(2x +7)=0, ∴x =0.5=50%或x =-3.5(舍)答:进馆人次的月平均增长率为50%. (2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)3=128×=432<500答:校图书馆能接纳第四个月的进馆人次.6. (2019年四川省攀枝花市)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚 熟芒果远销北上广等大城市。
甘肃省2019年普通高中招生考试试卷数学答案解析一、选择题1.【答案】A【解析】解:A.此图案是中心对称图形,符合题意;B.此图案不是中心对称图形,不合题意;C.此图案不是中心对称图形,不合题意;D.此图案不是中心对称图形,不合题意;故选:A.【考点】中心对称图形的概念.2.【答案】C【解析】解:根据实数比较大小的方法,可得-3<--<0<2,所以最小的数是-3.故选:C.2【考点】实数大小比较的方法.3.【答案】D【解析】解:使得式子有意义,则:4-x>0,解得:x<4,即x的取值范围是:x<4.故选:D.【考点】二次根式有意义的条件.4.【答案】B【解析】解:(-2a)2/=物2a4=4a6.故选:B.【考点】积的乘方运算,同底数幕的乘法运算.5.【答案】D【解析】解:...将一块含有30。
的直角三角板的顶点放在直尺的一边上,Zl=48°,・・・Z2=N3=180°-48°-30°=102。
.【考点】平行线的性质.6.【答案】A【解析】解:・.•点P(m+2,2m-4)在工轴上,2m—4=0,解得:m=2,m+2=4f则点P的坐标是:(4,0).故选:A.【考点】点的坐标.7.【答案】A【解析】解:把x=-l代入方程得:l+2k+A2=0,解得:k=-1,故选:A.【考点】一元二次方程的解.8.【答案】C【解析】解:...£400=126。
,・../BOC=180。
—ZAOC=54°,ZCDB=-ZBOC=27°.2故选:C.【考点】圆周角定理.9.【答案】A【解析】解:A、甲、乙两班的平均水平相同;正确;B、甲、乙两班竞赛成绩的众数相同;不正确;C、甲班的成绩比乙班的成绩稳定;不正确;D、甲班成绩优异的人数比乙班多;不正确;故选:A.【考点】平均数,众数,中位数,方差.10.【答案】C【解析】解:①由图象可知:a>0f c<0,/.ac<0,故①错误;b②由于对称轴可知:-2<1,2a2a+b>Q,故②正确;③由于抛物线与x轴有两个交点,A=t>2-4ac>0,故③正确;④由图象可知:x=l时,y=a+b+c<0,故④正确;b⑤当—时,v随着X的增大而增大,故⑤错误;2a故选:c.【考点】二次函数.二、填空题11.【答案】xv(x+2)(x-2)【解析】解:x y-4xy,=xyi.x1-4),=xy(x+2)(x-2).【考点】解因式.12.【答案】0【解析】解:不等式组整理得:f,[X>~1:.不等式组的解集为-1<x W2,则最小的整数解为0,故答案为:0.【考点】一元一次不等式组的整数解.13.【答案】-2【解析】解:去分母得:3x+6=5x+5,解得:x=L,2经检验%=-是分式方程的解.2故答案为:2【考点】分式方程.14.【答案】-2【解析】解:利用三角函数的定义及勾股定理求解.在RtAABC中,/C=90。
考点07.一元二次方程(精讲)【命题趋势】一元二次方程以考查一元二次方程的相关概念、解一元二次方程、根的判别式、韦达定理(根与系数的关系)、一元二次方程的应用题为主,既有单独考查,也有和二次函数结合考察最值问题,年年考查,分值为15分左右。
预计2024年各地中考还将继续考查,复习过程中要多注意各基础考点的巩固,特别是解法中公式法的公式,不要和后续二次函数顶点坐标的纵坐标公式记混了。
【知识清单】1:一元二次方程的相关概念(☆☆)1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。
2)一般形式:2(0)0ax bx c a ++=≠,其中:a 是二次项系数,b 是一次项系数,c 是常数项。
3)一元二次方程的解:使一元二次方程左右两边相等的未知数的值,就是该一元二次方程的解。
2:一元二次方程的解法(☆☆☆)1)直接开平方法:适合于2()()0x a b b ±=≥或22()()ax b cx d ±=±形式的方程。
2)配方法:(1)化二次项系数为1;(2)移项,使方程左边只含有二次项和一次项,右边为常数项;(3)方程两边同时加上一次项系数一半的平方;(4)把方程整理成2()()0x a b b ±=≥的形式;(5)运用直接开平方法解方程。
3)因式分解法:基本思想是把方程化成()()0ax b cx d ++=的形式,可得0ax b +=或0cx d +=。
4)公式法:(1)把方程化为一般形式,即20ax bx c ++=;(2)确定,,a b c 的值;(3)求出24b ac -的值;(4)将,,a b c 的值代入2b x a-±=即可。
5)根的判别式:一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式。
6)一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根;(2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根;(3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根。
第19讲一元二次方程的有关概念及解法知识能力解读知能解读(一)一元二次方程的有关概念1一元二次方程的定义及一般形式定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫作一元二次方程.点拨对定义的理解抓住三个条件:“一元”“二次”“整式方程”,缺一不可,同时强调二次项的系数不为0.一元二次方程的一般形式是:()200ax bx c a ++=≠,其中2ax 是二次项,a 是二次项系数,bx 是一次项,b 是一次项系数,c 是常数项.使一元二次方程左右两边相等的未知数的值就是这个一元二次方程的解,也叫作一元二次方程的根.判定一个数是否为一元二次方程的解的方法是:只需将这个值代入一元二次方程的左右两边,看方程两边是否相等.若相等,则这个数是方程的解;若不相等,则这个数不是方程的解.知能解读(二)一元二次方程的解法解一元二次方程常用的方法有配方法、公式法和因式分解法.其中因式分解法是特殊解法,而配方法和由配方法推导出来的公式法是一般方法,一般方法对任何一元二次方程者随用.1配方法一般地,对于方程2x p =.(1)当0p >时,根据平方根的意义,方程2x p =有两个不相等的实数根成:1x =2x =(2)当0p =时,方程2x p =有两个相等的实数根120x x ==.(3)当0p <时,因为对任意实数x .都有20x ≥,所以方程2x p =无实数根.如果方程能化成2x p =或x =x =mx n +=通过配成完全平方形式来解一元二次方程的方法,叫作配方法.配方的目的是为了降次,把一个一元二次方程转化成两个一元一次方程来解.用配方法解一元二次方程的一般步骤:(1)化二次项系数为1:可在方程两边都除以二次项系数;(2)移项:使方程左边是二次项和一次项,右边为常数项(移项时注意变号);(3)配方:方程的两边都加上一次项系数一半的平方,使左边配成完全平方形式,把方程化为()()20x m n n +=≥的形式;(4)如果变形后的方程右边的数为非负数,直接开平方解变形后的方程.点拨(1)配方法的一般步骤可简记为:一移,二化,三配,四求解.(2)配方一般先把常数项移到方程右边,再利用等式的性质将方程两边都加上一次项系数一半的平方(二次项系数必须为1).(3)用配方法解一元二次方程,实质就是对一元二次方程变形,转化为开平方所需的形式.配方:是为了降次,利用平方根的意义把一个一元二次方程转化为两个一元一次方程来解.2公式法解一元二次方程时,可以先将方程化为一般形式()200ax bx c a ++=≠,当240b ac ∆=-≥时,方程()200ax bx c a ++=≠的实数根可写成x =的形式,这个式子叫作一元二次方程()200ax bx c a ++=≠的求根公式.解一个具体的一元二次方程时,把各系数直接代入求根公式,可以避免配方过程而直接得出根,这种解一元二次方程的方法叫作公式法.点拨用公式法解一元二次方程的记忆口诀要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数,,a b c ,计算方程判别式.判别式值与零比,有无实根便得知.若有实根套公式,若无实根要告之.3因式分解法通过因式分解,使一元二次方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解一元二次方程的方法叫作因式分懈法.因式分解法体现了将一元二次方程“降次”转化为一元一次方程来解的思想,运用这种方法的步骤:(1)将所有项移到方程的左边,将方程的右边化为0;(2)将方程左边分解为两个一次因式的乘积;(3)令每个因式分别等于零,得到两个一元一次方程;(4)解这两个一元一次方程,他们的解就是原方程的解.方法技巧归纳方法技巧(一)一元二次方程的识别方法判断一个方程是一元二次方程,应抓住它的三个特征:①整式方程;②只含有一个未知数;③未知数的最高次数是2且二次项系数不为0.点拨(1)正确理解掌握定义是解题的关键,尤其是准确掌握20ax bx c ++=中“0a ≠”这一条件.(2)应先把方程化成一般形式()200ax bx c a ++=≠后,再判断该方程是不是一元二次方程.方法技巧(二)用配方法解一元二次方程配方法解方程的关键在于配方,即先把方程整理成2x bx c +=的形式,然后在方程两边都加上一次项系数一半的平方,使左边配成完全平方形式.点拨(1)用配方法解一元二次方程必须先把二次:项系数化为1才能配方,这是关键的一步.(2)配方的重要步骤是在方程两边同时加上一次项系数一半的平方,配方的目的是根据()2222a ab b a b ±+=±,将一般形式的一元二次方程化为()()20x a b b +=≥的形式,然后再用直接开平方法求解.方法技巧(三)用公式法解一元二次方程用公式法解一元二次方程的一般步骤如下:(1)把方程化为一般形式;(2)确定,,a b c 的值,注意各项系数包括它们前面的符号;(3)计算24b ac -的值;(4)当时240b ac -≥,把,,a b c 及24b ac -的值代入一元二次方程的求根公式,求得方程的根;当240b ac -<时,方程无实数根.点拨用公式法解方程注意三点:一是将方程化为一般形式;二是熟记求根公式()2402b x b ac a-=-≥;三是掌握用此法解方程的步骤(前面已讲). 方法技巧(四)用因式分解法解一元二次方程用因式分解法解一元二次方程的关键有三点:一是要将方程的右边化为0;二是熟练掌握因式分解的方法(提公因式法和公式法);三是切忌方程两边同时除以含未知数的整式.注意(1)用因式分解法解一元二次方程时,方程右边必须为0.(2)第(2)题中的方程()()()1222x x x -+=+两边不能同除以()2x +,这样容易丢掉根2x =-.遇到此类情形要先移项把方程一边化为0.(3)第(4)题中()220x -=,得出122x x ==,不能只写成2x =.方法技巧(五)一元二次方程中的阅读理解题点拨本题体现了换元法在解高次方程中的应用,突出了解方程中的降次思想和转化思想. 方法技巧(六)含字母系数的方程的解法注意由于原方程对a 的取值没有限制条件,所以它不一定是一元二次方程,显然当0a =或1a =时,方程分别是不同的一元一次方程,当0a ≠且1a ≠时,方程才是一元二次方程,这种分类讨论思想要注意掌握.易混易错辨析易混易错知识对一元二次方程的定义理解不透或思维不严谨,易出现错解.如判定一元二次方程时忽略“0a ≠”的条件.易混易错(一)忽略一元二次方程20ax bx c ++=中“0a ≠”的条件易混易错(二)用求根公式时未化成一般形式致错易混易错(三)解一元二次方程时丢根易混易错(四)配方时未将系数化为1易混易错(五)乱用因式分解中考试题研究中考命题规律本讲的主要考点有一元一次方程的一般形式和一元二次方程的解法等,题型有填空题、选择题、解答题,近几年部分地区中考出现了阅读理解题、开放题等新题型,应予以关注.中考试题(一)对一元二次方程相关概念的理解点拨已知一元二次方程的根求未知系数或有关代数式的值时,常把方程的根代入一元二次方程中求解.中考试题(二)解一元二次方程(1)用配方法解方程(2)用公式法解方程点拨用公式法求解,先把一元二次方程化为一般形式,再计算24b ac -,最后代入公式求解.(3)用因式分解法解方程中考试题(三)一元二次方程的探究创新第20讲一元二次方程根的判别式和根与系数的关系知识能力解读知能解读(一)一元二次方程根的判别式及应用1一元二次方程根的判别式将()200ax bx c a ++=≠配方成222b b x a a -±⎛⎫+= ⎪⎝⎭240b ac -≥时,方程才有实数根,这样24b ac -的值就决定着一元一次方程根的情况.一般地,式子24b ac -叫作一元二次方程()200ax bx c a ++=≠根的判别式,通常用“∆”2相等的实数根时,0∆=;当方程没有实数根时,0∆<.注意(1)24b ac ∆=-只适用于一元二次方程.只有确定是一元二次方程时,才能确定a 、b 、c,求出∆.(2)使用时,要先将一元二次方程化为一般形式后,才能确定a 、b 、c ,求出∆.(3)当240bac ∆=-≥时,方程有实数根.2一元二次方程根的判别式的应用一元二次方程根的判别式主要有以下应用:①不解一元二次方程,判别根的情况;②根据方程根的情况,确定方程中字母系数的取值范围.知能解读(二)一元二次方程根与系数的关系及应用1内容若一元二次方程()200ax bxc a ++=≠有实数根,设这两个实数根分别为12,x x ,由求根公式得)240x b ac =-≥,令1a c x =,2x =.由此可得1222b b b b x x a a---+=+==-,1222b b x x a a--=⋅=()()()22222244442b b b ac ac c a a a a ----===.所以12b x x a +=-,12c x x a =.即对于一元二次方程()200ax bx c a ++=≠来说,若12,x x 是它的两个实数根,则12b x x a +=-,12c x x a =. 这一结论可表述为:一元一次方程两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比.此结论称为一元二次方程根与系数的关系.注意(1)根与系数的关系是在方程()200ax bx c a ++=≠有根的前提下(即240b ac -≥)才能够成立的,运用根与系数的关系解题时首先要检验24b ac -是否非负.(2)根与系数的关系的应用:①不解方程,求与方程的根有关的代数式的值;②已知方程一根,求方程的另一根;③与根的判别式相结合,解决一些综合题.2应用(1)验根:不解方程,利用一元二次方程根与系数的关系,可以检验两个数是不是一元二次方程的两根.(2)已知方程的一个根,求另一根及未知系数.(3)不解方程,利用一元二次方程根与系数的关系,求关于12,x x 的对称式的值.(4)已知方程的两根满足某种关系,确定方程中字母系数的值.3拓展(1)与两根有关的几个代数式的变形:①()2221212122x x x x x x +=+-; ②12121211x x x x x x ++=; ③()()()2121212x a x a x x a x x a ++=+++; ④12x x -===(3)以12,x x 为根的一元二次方程(二次项系数为1)为12120x x x x x x -++=.方程技巧归纳方法技巧(一)一元二次方程根的判别式的应用一元二次方根根的判别式24b ac ∆=-阐明了根的存在性与系数的内在联系,它的应用非常广泛,现举例说明如下:1不解方程,判断方程根的情况解题时,一般分两步:(1)先求出24b ac ∆=-的值;(2)由24b ac -与零的关系判断方程根的情况.点拨判断一元二次方程根的情况要根据24b ac -的值是大于0,小于0还是等于0来判断.当240b ac ->时,方程有两个不相等的实数根;当240b ac -<时,方程没有实数根;当240b ac -=时,方程有两个相等的实数根.2根据方程根的情况确定待定系数的取值注意方程有两个实数根,则0∆≥;方程有两个不相等的实数根,则0∆>,解题时一定要注意两者的区别.方法技巧(二)一元二次方程根与系数的关系的应用一元二次方程根与系数的关系不仅提供了方程两根与系数之间的内在联系,也为我们处理有关一元二次方程问题提供了重要思路和方法.方法技巧(三)根的判别式和根与系数关系的综合应用易混易错辨析易混易错知识1.利用实数根的个数确定字母的取值范围时忽略0a ≠.2.关于x 的方程20ax bx c ++=有两个实数根的大前提是原方程为一元二次方程,所以必须保证二次项系数0a ≠,这个隐含条件常常成为命题设置的“陷阱在应用一元二次方程根与系数的关系时易出错.要注意其成立的两个前提条件:(1)在一元二次方程条件下,注意二次项系数0a ≠;(2)存在实数根的条件下,注意根的判别式0∆≥.两者缺一不可.解题时,常常因为忽略某一方面导致出错.易混易错(一)根据一元二次方程根的情况确定未知系数取值范围时忽略“0a ≠”的条件)易错易混(二)二次项系数0a ≠或0∆≥考虑不周致错中考试题研究中考命题规律本讲的主要考点有根的判别式及根与系数的关系的简单应用,近年来,直接考查根的判别式及根与系数的关系的题目明显增加,题型以选择题、填空题为主,有时出现与解直角三角形、四边形、二次函数有关的综合题,题型有解答题和开放探究题.中考试题(一)利用判别式方程根的情况中考试题(二)根据方程根的情况求字母的取值范围中考试题(三)已知方程的一个根,求另一个根及字母的值中考试题(四)求关于方程两根的代数式的值中考试题(五)已知两根关系,求某个字母的值中考试题(六)一元二次方程的综合应用第21讲实际问题与一元二次方程(实践与探究)知识能力解读知能解读(一)列一元一次方程解应用题得方法步骤列一元二次方程解应用题是列一元一次方程解应用题的拓展,两者的解题方法类似,但由于一元二次方程有两个实数解,所以要注意检验得出的方程的 解是否符合实际意义.其步骤如下:(1)审:读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系.(2)设:选用适当的方式设未知数(直接设未知数或间接设未知数),不要漏写单位,用含未知数的代数式表示题目中涉及的量.(3)列:根据题目中的等量关系,用含未知数的代数式表示其他未知数,列出含未知数的等式.注意等号两边量的单位必须一致.(4)解:解所列方程,求出未知数的值.(5)验:一是检验得到的未知数的值是否为方程的解,二是检验方程的解是否符合题意.(6)答:怎么问就怎么答,注意不要漏写单位.知能解读(二)主要题型列一元二次方程解应用题在日常生活、生产、科技等方面有着广泛的应用,如增长率(降低率)问题、利息问题、数字问题、利润问题、动点问题等.方法技巧归纳方法技巧(一)增长率(降低率)问题的解题方法(1)增长量=原产量×增长率;(2)增产后的产量=原产量×(1+增长率).点拨增长率问题:若设基数为a ,平均增长率为x ,则增长n 次后的值为()1na x +.方法技巧(二)利息问题的解题方法解答此类问题的关键是理解实际生活中的一些概念,如本金、利率、利息等.注意对于存款利息问题,解题时一定要注意每次增长的基础量是否相同.方法技巧(三)数字问题的解题方法解答此类问题的关键是掌握好数的表示方法和设法.如:(1)两位数=十位数字×10+个位数字,三位数=百位数字×100+十位数字×10+个位数字;(2)三个连续整数可设为1,,1x x x -+,三个连续奇数(或偶数)可设为2,,2x x x -+等.点拨(1)解决有关多位数的问题时,一般不直接设出这个多位数,而是间接设某个数位上的数字,再用代数式表示其余数位上的数字.(2)正确列出方程的关键是熟练掌握用未知数表示多位数的方法,如:两位数=十位数字×10+个位数字.方法技巧(四)利润问题的解题方法解决利润问题的关键是弄清标价、售价、成本价的实际意义及利润的两个等量关系:(1)利润=售价-成本价(进货价);(2)利润率=利润成本价(进货价)×100%. 点拨利润=售价-进价,所以每千克核桃降价x 元后获利()6040x --元,每天卖出核桃100202x ⎛⎫+⨯ ⎪⎝⎭千克,这是解题的关键,注意根据最大让利原则x 应取6,而不取4. 方法技巧(五)动点问题的解题方法动点问题关键是根绝动点运动时的起点和终点等条件列出方程求解.点拨通过分析这类问题,可以培养同学们的抽象思维能力.用“静”的方法来处理“动”的问题是解决运动型数学问题的基本思维技巧.如此题中的“静”就是指PQ 的长度为.方法技巧(六)图形面积问题的解题方法图形面积问题多涉及三角形全等、勾股定理、三角形三边关系及各种规则图形的面积公式,多考查矩形面积问题.点拨(1)列方程解应用题得关键是认真读题,找出题中的等量关系.(2)本题中的墙的长度对于方程的解有限制作用.易混易错辨析易混易错知识忽略检验,导致结论错误.列一元二次方程解决实际问题,是一元二次方程的一个重要应用.由于一般情况下一元二次方程有两个实数解,所以应注意检验得到的未知数的值是否符合题意及实际问题的意义.易混易错(一)列一元二次方程解应用题时因忽视隐含条件而致误易混易错(二)在解决有关比赛等问题时,因理解题意而致误中考试题研究中考命题规律本讲的主要考点有列一元二次方程解决图形面积问题、增长率(降低率)问题和与市场经济有关的利润问题等实际问题.题型有选择题、填空题和解答题.中考试题(一)图形面积问题中考试题(二)增长率(降低率)问题点拨(1)有关百分率的问题常应用公式()1n a x b +=求解,其中a 是基数,x 是增长率或降低率,n 是变化次数,b 是经过n 次变化后的结果.(2)应用一元二次方程解应用题时要注意舍去不合题意的解.中考试题(三)利润问题点拨本题考查了一元二次方程的应用,找到等量关系准确地列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.。
考点跟踪突破7一元二次方程及其应用
一、选择题(每小题6分,共24分)
1.(2018·重庆)一元二次方程x2-2x=0的根是(D)
A.x1=0,x2=-2 B.x1=1,x2=2
C.x1=1,x2=-2 D.x1=0,x2=2
2.(2018·锦州)一元二次方程x2-2x+1=0的根的情况为(A)
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D.没有实数根
3.(2018·宁夏)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是(C)
A.x2+9x-8=0 B.x2-9x-8=0
C.x2-9x+8=0 D.2x2-9x+8=0
4.(2018·烟台)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为(B)
A.9 B.10 C.9或10 D.8或10
解析:∵三角形是等腰三角形,∴①a=2,或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b 是关于x的一元二次方程x2-6x+n-1=0的两根,∴x=2,把x=2代入x2-6x+n-1=0得,22-6×2+n -1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b时,方程x2-6x+n-1=0有两个相等的实数根,∴Δ=(-6)2-4(n-1)=0解得:n=10.故选B
二、填空题(每小题6分,共24分)
5.(2018·泰安)方程(2x+1)(x-1)=8(9-x)-1的根为__-8或4.5__.
6.(2018·吉林)若关于x的一元二次方程x2-x+m=0有两个不相等的实数根,则m的值可能是__0__(写出一个即可).
7.(2018·南昌)已知一元二次方程x2-4x-3=0的两根为m,n,则m2-mn+n2=__25__.
8.(2018·巴彦淖尔)某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间
等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为__1
2x(x
-1)=2×5__.
三、解答题(共52分)
9.(10分)(1)(2018·宿迁)解方程:x2+2x=3;
解:由原方程,得x2+2x-3=0,整理,得(x+3)·(x-1)=0,则x+3=0或x-1=0,解得x1=-3,x2=1
(2)用配方法解方程:2x 2-4x -1=0.
解:二次项系数化为1得:x 2-2x =12,x 2-2x +1=12+1,(x -1)2=32,x -1=±62,∴x 1=62
+1,x 2=1-62
10.(10分)(2018·梅州)已知关于x 的方程x 2+2x +a -2=0.
(1)若该方程有两个不相等的实数根,求实数a 的取值范围;
(2)当该方程的一个根为1时,求a 的值及方程的另一根.
解:(1)∵b 2-4ac =(-2)2-4×1×(a -2)=12-4a >0,解得:a <3.∴a 的取值范围是a <3 (2)设方程的
另一根为x 1,由根与系数的关系得:⎩⎨⎧1+x 1=-2,1·x 1
=a -2,解得:⎩⎨⎧a =-1,x 1=-3,则a 的值是-1,该方程的另一根为-3
11.(10分)(2018·咸宁)已知关于x 的一元二次方程mx 2-(m +2)x +2=0.
(1)证明:不论m 为何值时,方程总有实数根;
(2)m 为何整数时,方程有两个不相等的正整数根.
解:(1)Δ=(m +2)2-8m =m 2-4m +4=(m -2)2,∵不论m 为何值时,(m -2)2≥0,∴Δ≥0,∴方程总有实数根 (2)解方程得,x =
m +2±(m -2)2m ,x 1=2m ,x 2=1,∵方程有两个不相等的正整数根,∴m =1或2,m =2不合题意,∴m =1。