九年级数学上册《概率的简单应用》知识点复习浙教版
- 格式:docx
- 大小:58.23 KB
- 文档页数:4
概率的求法及应用--知识讲解【学习目标】1.能运用列举法(包括列表、画树状图)计算简单事件发生的概率;2.理解频率与概率的区别与联系;3.会通过重复试验,估计事件发生的概率;4.学会运用概率知识来解决一些简单的实际问题.【要点梳理】要点一、用列举法求概率常用的列举法有两种:列表法和画树状图法.1.列表法当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)列表法适用于涉及两步试验的随机事件发生的概率.2.画树状图法当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)树形图法同样适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同.3.用列举法求概率的一般步骤(1)列举(列表、画树状图)事件所有可能出现的结果,并判断所有结果发生的可能性是否都相等;(2)如果都相等,再确定所有可能的结果总数n 和事件A 包含其中的结果数m ;(3)用公式计算所求事件A 的概率.即P (A )=n m . 要点二、频率与概率1.定义频率:在相同条件下重复n 次实验,事件A 发生的次数m 与实验总次数n 的比值.概率:事件A 的频率nm 接近与某个常数,这时就把这个常数叫做事件A 的概率,记作P (A ). 2.频率与概率的关系在相同条件下,当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近.因此我们可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.要点诠释:(1)事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值;(2)频率和概率在试验中可以非常接近,但不一定相等;(3)概率是事件在大量重复实验中频率逐渐稳定到的值,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.要点三、利用频率估计概率当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.要点诠释:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.【典型例题】类型一、用列举法求概率1.同时抛掷两枚均匀硬币,正面都同时向上的概率是( )A .13B .14C .12D .34【答案】B.【解析】可能性有(正,正),(正,反),(反,正),(反,反)4种,正面都同时向上的占1种,所以概率为14. 【总结升华】利用树状图法列出所有的可能,看符合题意的占多少.举一反三:【变式1】袋中装有一个红球和一个黄球,它们除了颜色外其余均相同,随机从中摸出一球,记录下颜色放回袋中,充分摇匀后,再随机从中摸出一球,两次都摸到黄球的概率是( )A .13B .12C .14D .34【答案】C.【变式2】随机地掷两次骰子,两次掷得的点数相同的概率是( ).A .13BCD 【答案】D.2.光明中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A :特别熟悉,B :有所了解,C :不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民900人,是估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女各2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.【答案与解析】(1)在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比为:25255520++×100%=25%,该社区对消防知识“特别熟悉”的居民人数估计为900×25%=225(人);(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列表或树状图如下:故恰好选中一男一女的概率为:82 123=.【总结升华】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.类型二、频率与概率3.关于频率和概率的关系,下列说法正确的是()A. 频率等于概率B. 当实验次数很大时,频率稳定在概率附近C. 当实验次数很大时,概率稳定在频率附近D. 实验得到的频率与概率不可能相等【思路点拨】对于某个确定的事件来说,其发生的概率是固定不变的,而频率是随着试验次数的变化而变化的.【答案】B.【解析】事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.【总结升华】概率是频率的稳定值,而频率是概率的近似值.类型三、利用频率估计概率4. (2016•南通一模)在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 大约是( )A .10B .14C .16D .40【思路点拨】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】A .【解析】解:∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,∴=0.4,解得:n=10.故选A .【总结升华】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.5.(2015•本溪)在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球( )A .16个B . 20个C . 25个D .30个【思路点拨】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】A.【解析】设红球有x 个,根据题意得,4:(4+x )=1:5,解得x=16.故选A .【总结升华】用频率估计概率,强调“同样条件,大量试验”.举一反三:【变式1】为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条. 【答案】条 .【变式2】一只箱子里原有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出两个球,用树状图或列表法列举出所有可能并求两次摸出球的都是白球的概率.(2)若从箱子中任意摸出一个球是红球的概率为53,则需要再加入几个红球? 【答案】类型四、概率的简单应用6.(2015•朝阳)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)【思路点拨】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.【答案与解析】解:(1)甲同学的方案公平.理由如下:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.【总结升华】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.举一反三:【变式】不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12.(1)试求袋中蓝球的个数.(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图法,求两次摸到的都是白球的概率.【答案】(1)1个;(2)P(两次摸到白球)=16.。
九年级浙教版数学简单事件的概率知识点你都掌握了吗?简单事件的概率要掌握的是事件的可能性和概率,今天就带大家一起来复习一下简单事件的概率知识点,希望对大家备战期末有帮助。
知识点一、可能性1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;3.确定事件:必然事件和不可能事件都是确定的;4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。
5.一般来说,不确定事件发生的可能性是有大小的。
.二、概率1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。
2.必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。
两步试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。
课后练习某篮球队在平时训练中,运动员甲的3分球命中率是70%,运动员乙的3分球命中率是50%. 在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中. 全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻机会了,若你是这个球队的教练,问:(1)最后一个3分球由甲、乙中谁来投,获胜的机会更大?(2)请简要说说你的理由。
答案:解法一:(1)最后一个三分球由甲来投(2)因甲在平时训练中3分球的命中率较高解法二:(1)最后一个3分球由乙来投(2)因运动员乙在本场中3分球的命中率较高简单事件的概率知识点的全部内容就是这些,,更多的精彩内容会持续为大家更新,预祝大家可以在即将到来期末考试中取得优异的成绩。
九年级数学上册《概率的简单应用》知
识点复习浙教版
知识点
一、求复杂事的概率
1有些随机事不可能用树状图和列表法求其发生的概率,只能用试验、统计的方法估计其发生的概率。
2对于作何一个随机事都有一个固定的概率客观存在。
3对随机事做大量试验时,根据重复试验的特征,我们确定概率时应当注意几点:
尽量经历反复实验的过程,不能想当然的作出判断;
做实验时应当在相同条下进行;
实验的次数要足够多,不能太少;
把每一次实验的结果准确,实时的做好记录;
分阶段分别从第一次起计算,事发生的频率,并把这些频率用折线统计图直观的表示出来;
观察分析统计图,找出频率变化的逐渐稳定值,并用这个稳定值估计事发生的概率,这种估计概率的方法的优点是直观,缺点是估计值必须在实验后才能得到,无法事预测。
二、判断游戏公平
游戏对双方公平是指双方获胜的可能性相同。
三、概率综合运用
概率可以和很多知识综合命题,主要涉及平面图形、统
计图、平均数、中位数、众数、函数等。
常见考法
判断游戏是否公平是概率知识应用的一个重要方面,也是中考热点,这类问题有两类一类是计算游戏双方的获胜理论概率,另一类是计算游戏双方的理论得分;
概率是初中数学的重要知识点之一,命题者经常以摸球、抛硬币、转转盘、抽扑克这些既熟悉又感兴趣的事为载体,设计问题。
后练习
1、骰子是一种正方体玩具,它的六个面上各写有1,2,3,4,,6,每面写一个数,每个数写一面,且相对两面的两个数的和为7用七颗骰子投掷后,规定向上的七个面上的数的和是10时甲胜,如果向上的七个面上的数的和是39时则乙胜则甲乙二人获胜的可能性是
A、甲大
B、乙大
、同样大
D、无法确定谁大
【答案】
【考点】游戏公平性
【解析】解:向上的七个面上的数的和是10的情况有:
1,1,1,1,1,1,4
1,1,1,1,1,2,3
1,1,1,1,2,2,2
向上的七个面上的数的和是39的情况有:
6,6,6,6,6,6,3
6,6,6,6,6,,4
6,6,6,6,,,
∴共有6种情况,其中和为10的有3中情况,和为39的有3中情况
∴P=P=,
∴P=P
故选
【分析】根据题意列出和10与和39的所有可能情况,然后再求出各自的概率就可以求出结论
2、周末,王雪带领小朋友玩摸球游戏:在不透明塑料袋里装有1个白色和2个黄色的乒乓球,摸出两个球都是黄色的获胜小明一次从袋里摸出两个球;小刚左手从袋里摸出一个球,然后右手摸出一个球;小华则先从袋里摸出一个球看一下颜色,又放回袋里,再从袋里摸出一个球这时,小明急了,说:小刚、小华占了便宜,不公平你认为如何
A、不公平,小刚、小华占便宜了
B、公平
、不公平,小华吃亏了
D、不公平,小华占便宜了
【答案】D
【考点】游戏公平性
【解析】解:小明一次从袋里摸出两个球,摸出两个球都是黄色的可能性是
小刚左手从袋里摸出一个球,然后右手摸出一个球,两次都是黄色的可能性为
小华则先从袋里摸出一个球看一下颜色,又放回袋里,再从袋里摸出一个球,两次都是黄色的可能性为
所以小华获胜的可能性大
故选D
【分析】游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等。