材料物理导论总结,推荐文档
- 格式:pdf
- 大小:22.08 KB
- 文档页数:8
大一材料导论知识点总结材料导论是大一学生学习工程材料科学与工程必修课程的第一个核心科目。
在学习过程中,我们掌握了许多重要的知识点,下面将对这些知识点进行总结。
1. 材料的组成和结构材料的组成是指材料所包含的化学元素的种类和相对含量。
而材料的结构则指材料中原子、离子或分子的排列方式。
了解材料的组成和结构有助于我们深入了解材料的性质和功能。
2. 材料的物理性质材料的物理性质包括密度、热膨胀系数、导热性、电导率等。
了解材料的物理性质可以帮助我们选择适合特定应用的材料。
3. 材料的力学性能材料的力学性能是指在外力作用下材料的变形和破坏行为,包括弹性模量、屈服强度、延伸率等。
熟悉材料的力学性能有助于我们设计和优化使用合适材料的结构。
热处理是改变材料组织和性能的一种方法,包括退火、淬火、时效等。
掌握热处理技术可以提高材料的力学性能和耐腐蚀性。
5. 材料的腐蚀与防护材料的腐蚀是指材料在特定环境条件下发生的不可逆的化学、电化学变化。
了解材料的腐蚀行为有助于选择合适的材料和防护措施,延长材料的使用寿命。
6. 材料的结构性能关系材料的结构和性能密切相关,不同结构的材料表现出不同的性能。
研究材料的结构性能关系可以帮助我们设计新型材料,并预测材料在特定应用中的性能。
7. 材料的晶体结构晶体结构是材料中晶粒的排列方式和相互关系。
了解材料的晶体结构有助于我们理解材料的各种性能,例如光学性能、磁性能等。
相图是描述材料在不同温度和成分条件下的相变规律的图表。
研究材料的相图可以为我们合理选择材料和优化材料的加工工艺提供依据。
9. 材料的复合材料复合材料由两种或两种以上的材料组合而成,具有较好的综合性能。
了解复合材料的制备和性能有助于我们应用于各种领域。
10. 材料的可持续发展在材料的选择和利用中,应注重材料的可持续发展性能,包括资源可再生性、环境友好性等。
关注材料的可持续发展可以减少对环境的影响,推动可持续发展。
以上是大一材料导论的一些重要知识点的总结,通过学习和掌握这些知识点,我们能够更好地理解材料科学与工程,并在实践中更好地应用这些知识,为我国材料科学技术的发展做出贡献。
第一章材料是宇宙间可用于制造有用物品的物质,是人类赖以生存的物质基础材料是人类文明的里程碑。
历史学家往往把制造工具的原材料作为社会发展的标志。
石器陶瓷青铜铁水泥钢硅高分子材料复合材料信息功能工程结构能源纳米生物智能化生态新材料技术是工业革命和产业发展的先导材料的发展史就是科学技术的发展史材料的可持续发展战略与生态环境材料材料按物理、化学性质分:金属无机非金属有机高分子复合材料科学与工程(MSE)材料成分-结构-合成与加工-性能-使用效能第二章材料性能:工艺性能是指制造工艺过程种材料适应加工的性能。
使用性能是指材料制成零件或产品后,在使用过程中能适应或抵抗外界对它的力、化学、电池、温度等作用而必须具有的能力。
载荷类型:静载荷、动载荷、变载荷载荷F(力)伸长量ΔL拉伸曲线应力σ应变ε应力-应变曲线名义工程试样能恢复到原状称为弹性形变卸去载荷后,试样不能恢复到原状,即有残余形变试样产生永久残余形变而不断裂的变形为塑性形变弹性极限:材料产生完全弹性形变时所承受的最大应力值弹性模量:金属材料在弹性状态下的应力与应变比值 E=σ/ε Mpa塑性:断裂前材料发生不可逆永久变形的能力断后伸长率:试样拉断后标距的伸长与原始标距之比δ=(L1-L0)/L0 mm断面收缩率:试样拉断后缩颈处横截面积的最大缩减量与原始横截面积的百分比ψ=(S0-S1)/S0 mm2屈服强度:载荷不增加而材料还继续伸长的现象为屈服,材料开始屈服时对应的应力σs 抗拉强度:材料在试样拉断前所承受的最大应力σb硬度是衡量金属材料软硬程度的指标布氏硬度HB(S,W):试应力F 直径D淬火钢球或硬质合金球压入被测金属表面,保持规定时间后卸除试应力,测量压痕直径d,计算出压痕球缺表面积S所承受的平均应力值洛氏硬度HR:工厂中应用最广泛的测试方法。
锥顶角为120的金刚石圆锥体或直径为1.588mm的淬火钢球为压头,在规定载荷作用下压入被测金属表面,测定压痕深度疲劳极限:循环应力应变局部永久性累积损伤突然发生完全断裂蠕变:金属材料在较高温度和应力作用下产生缓慢塑性形变蠕变极限:在T下和规定试验时间t内,使试样产生一定蠕变伸长量的应力冲击吸收功最常用冲击试验方法:摆锤式一次性冲击试验摩擦:两个相互接触的物体或物体与介质间相对运动时出现的阻碍作用磨损:由于摩擦而导致材料表面逐渐损失以致表面损伤的现象电阻率:阻碍电流流动的度量数值上等于单位长度和单位面积的导电体电阻值只与材料性质有关Ωm电导率:电阻率倒数σ=S/m 其值越大,材料导电性能越好超导电性:一定的低温条件下材料突然失去电阻的现象性能指标:临界转变温度Tc 临界磁场Hc 临界电流密度Jc影响材料导电性的因素温度化学成分晶体结构杂质金属电阻率随温度升高而增大锑铋镓反例冷塑性变形是金属电阻率增大合金化对导电性有显著影响磁化:材料中磁矩排列时取向趋于一致而呈现出一定的磁性磁化率:M/H=χ磁导率:B/H=μ抗磁性:材料被磁化后,磁化矢量与外加磁场方向相反顺磁性:………相同磁化曲线:磁感应强度或磁化强度与外加磁场强度的关系曲线磁滞回线:磁化一周得到一个闭合回线磁滞效应:磁感应强度的变化总落后与磁场强度的变化磁滞损耗:回线所包围的面积相当于磁化一周所产生的能量损耗软磁回线:瘦小高磁导率高饱和磁感强度较小矫顽力小磁滞损失硬磁回线:肥大较大矫顽力和剩磁硬磁由称永磁材料热容:在没有相变和化学反应下,材料温度升高1K时所吸收的热量J/K比(质量)热容:单位质量材料的热容J/(kgK) 摩尔热容J/(molK)热膨胀:物体的体积或长度随温度升高而增大的现象线膨胀系数:α温度上升1K,单位长度的伸长量,单位K-1 随温度升高而加大热传导:当固体材料一端的温度比另一端高时,热量就会从热端自动地传向冷端热导率:一定温度梯度下,单位时间通过单位垂直面积的热量J/(mKs)腐蚀是物质的表面因发生化学或电化学反应而受到破坏的现象材料的腐蚀是一种自发进行的过程,是物质由高能态向低能态的转变形式化学腐蚀:金属表面与非电解质直接发生化学反应而引起的破坏电化学腐蚀:金属表面与电解质溶液发生电化学反应引起的破坏老化:外观变化物理性能变化力学性能变化第三章材料结构组成材料原子(或离子,分子)的结构组成材料原子(或离子、分子)间的结合金属离子共价分子组成材料原子(或离子、分子)的排列晶体非晶体混合材料结构内存在缺陷面缺陷线缺陷点缺陷质子数Z决定元素本性核内质子和中子总数决定原子量原子直径埃A为单位A=10-10m 量子力学:微观粒子的波粒两象性海森堡测不准原理薛定谔方程根据结合键的不同状态,可把凝聚态分成五大类:液体液晶橡胶态玻璃态晶态结合键:原子间吸引力和排斥力合力结果离子键:正离子和负离子由于静电引力相互吸引,当它们充分接近时会产生排斥,引力,斥力相等即形成稳定的离子键。
第一章电学性能1。
1 材料的导电性,ρ称为电阻率或比电阻,只与材料特性有关,而与导体的几何尺寸无关,是评定材料导电性的基本参数。
ρ的倒数σ称为电导率。
一、金属导电理论1、经典自由电子理论在金属晶体中,正离子构成了晶体点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此又称为“电子气”。
它们的运动遵循理想气体的运动规律,自由电子之间及它们与正离子之间的相互作用类似于机械碰撞。
当对金属施加外电场时,自由电子沿电场方向作定向加速运动,从而形成了电流。
在自由电子定向运动过程中,要不断与正离子发生碰撞,使电子受阻,这就是产生电阻的原因。
2、量子自由电子理论金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,可以在整个金属中自由运动。
但金属中每个原子的内层电子基本保持着单个原子时的能量状态,而所有价电子却按量子化规律具有不同的能量状态,即具有不同的能级。
0K时电子所具有最高能态称为费密能E F.不是所有的自由电子都参与导电,只有处于高能态的自由电子才参与导电。
另外,电子波在传播的过程中被离子点阵散射,然后相互干涉而形成电阻.马基申定则:,总的电阻包括金属的基本电阻和溶质(杂质)浓度引起的电阻(与温度无关);从马基申定则可以看出,在高温时金属的电阻基本取决于,而在低温时则决定于残余电阻。
3、能带理论能带:由于电子能级间隙很小,所以能级的分布可看成是准连续的,称为能带。
图1—1(a)、(b)、(c),如果允带内的能级未被填满,允带之间没有禁带或允带相互重叠,在外电场的作用下电子很容易从一个能级转到另一个能级上去而产生电流,具有这种能带结构的材料就是导体。
图1—1(d),若一个满带上面相邻的是一个较宽的禁带,由于满带中的电子没有活动的余地,即便是禁带上面的能带完全是空的,在外电场作用下电子也很难跳过禁带,具有这种能带结构的材料是绝缘体.图1—1(e),半导体的能带结构与绝缘体相同,所不同的是它的禁带比较窄,电子跳过禁带不像绝缘体那么困难,满带中的电子受热振动等因素的影响,能被激发跳过禁带而进入上面的空带,在外电场作用下空带中的自由电子产生电流。
材料导论期末考点总结材料导论是一门综合性的学科,广泛涉及材料科学、材料工程以及相关学科的知识体系。
期末考试是对学生对所学知识的综合应用能力的考察,理解和掌握期末考点对于顺利通过考试至关重要。
本文将对材料导论期末考点进行总结,以便学生在复习时有针对性地了解和把握重点内容。
一、晶体和晶体缺陷1.晶体的结构和性质:晶格、晶体结构类型、晶体的性质与晶格结构之间的关系。
2.晶体缺陷的分类和特点:点缺陷、线缺陷、面缺陷的具体分类和特点。
3.晶体缺陷的原因和形成机制:热原子运动、拉伸和压缩等外力、辐射等原因引起晶体缺陷形成的机制。
4.晶体缺陷对材料性能的影响:晶体缺陷对导电性、导热性、塑性、疲劳性等材料性能的影响。
二、金属材料的结构和性能1.金属晶体结构:简单立方、面心立方、体心立方晶体结构的特点和性质。
2.金属的力学性能:塑性和韧性的概念、强度、硬度、延性、弹性模量等力学性能的定义和计算方法。
3.金属的物理性能:导电性、导热性、合金化等物理性能的定义、计算和提高途径。
三、陶瓷材料的结构和性能1.陶瓷晶体结构:离子晶体结构的特点、堆垛方式、层间间隔和离子间离心距的关系。
2.陶瓷的物理性能:绝缘性、压电性、磁性、光学性质等物理性能的定义、计算和提高途径。
3.陶瓷的力学性能:脆性的概念、强度、硬度、韧性等力学性能的定义和计算方法。
四、高分子材料的结构和性能1.高分子链结构:线性链、支化链和交联链的结构特点和分子量对聚合物结构和性能的影响。
2.高分子的物理性能:热稳定性、熔融性、黏度、玻璃化转变温度等物理性能的定义和计算方法。
3.高分子的力学性能:强度、韧性、刚性、弹性恢复性等力学性能的定义和计算方法。
五、复合材料的结构和性能1.复合材料的组成和结构:基体材料、增强材料和界面相的特点和组成关系。
2.复合材料的力学性能:强度、韧性、疲劳性、层间剪切强度等力学性能的定义和计算方法。
3.复合材料的物理性能:导电性、导热性、热稳定性等物理性能的定义和计算方法。
1、组合键:化学键(离子键、共价键、金属键)一主价键氢键一一介于范德华键和主价键之间物理键(范德华键)——次价键2、离子键:正负离子间的静电作用为离子键。
3、决定离子晶体的结构因素:离子半径、球体最紧密堆积程度、配位数、离子的极化4、球体配置情况形成两种空隙:四面体空隙和八面体空隙5、共价键:由两个或者多个原子共同使用它们的外层电子,在理想情况下,达到电子饱和的状态,由此组成较为稳定和坚固的化学结构叫做共价键6、硅酸盐结构特点:结构中Si4+间没有直接的键,而它们是通过02 -连接起来的。
结构是以硅氧四面体为基础的。
每一个02-只能连接2个硅氧四面体。
硅氧四面体的联接方式硅氧四面体可以通过共用顶角02 -而形成不同聚合程度的络合阴离子团7、根据[Si04]间的共顶情况,硅酸盐结构形式:岛状、组群状、链状、层状、架状8、桥氧(非活性氧):部分氧的价键被饱和,如连接两个硅氧四面体,达到饱和的氧;非桥氧(活性氧):价键未被饱和,如两个硅氧四面体连接后,剩余的氧。
9、晶体结构缺陷:点、线、面缺陷形成原因:热缺陷、杂质缺陷、非化学计量缺陷等10、点缺陷:理想晶体中一些原子被外界原子所取代,或者在晶格间隙中掺入原子、或者留有原子空位,从而破坏了晶体结构中质点有规则的周期性排列,引起质点间势场的畸变或者造成结构的不完整或者缺陷。
11、点缺陷分:晶格位置缺陷、组成缺陷和电荷缺陷12、卯伦克尔缺陷:具有能最足够大的质点离开平衡位置后,挤到格了点的间隙中,而在原来位置上形成空位。
特点:①空位与间隙粒子成对出现,数量相等;晶体体积不变;正负离子半径相差大,易形成该缺陷。
13、肖特基缺陷:固体表面层的质点获得较大的能量,但其能量还不足以使它蒸发出去,只是移到表血外新的位置上去,而留下原来位置形成'个:位。
这样晶格深处的质点就依次填入,结果表面上的空位逐渐转移到内部去。
特点:①晶体体积增大;离子晶体,正负离子成对出现;•般离子半径相差不大容易形成。
材料物理导论材料物理导论是一门涵盖了材料科学和物理学的学科,主要研究物质的性质和结构。
下面将分步骤阐述材料物理导论的主要内容。
第一步:物质的基本性质物质的基本性质是材料物理导论中的重要部分。
物质的基本性质包括物质的质量、电荷、电磁力、位移、动量等特性。
对于材料科学来说,物质的基本性质对材料的选择、设计和制造的过程具有重要意义。
第二步:晶体结构晶体结构是材料物理导论中的热点研究议题之一。
晶体结构研究包括元素周期表、晶体的分类、晶体的点阵、晶体的晶格常数、晶体的晶格缺陷以及晶体的相互作用等内容。
晶体结构对于材料特性、材料性能和材料应用具有重要意义。
第三步:物理分析方法物理分析方法是材料物理导论中的重要研究内容。
物理分析方法包括光学显微镜、电子显微镜、X射线衍射、热力学实验、质谱分析等方法。
物理分析方法可以帮助人们更好地认识材料、了解材料的内部结构与外部性能。
第四步:电子结构电子结构是材料物理导论中的重要概念之一。
电子结构研究包括材料的能带结构、能量带隙以及电子状态密度等几个方面。
此外,电子结构也与材料的载流子行为以及各种材料性质的特性密切相关。
第五步:材料特性材料特性是材料物理导论中所关注的重要问题。
材料特性包括材料的热学性质、光学性质、磁学性质、电学性质、机械性质等特征。
对于材料科学来说,了解材料的特性对材料的改性、设计及应用极为重要。
以上便是关于材料物理导论内容的主要介绍。
材料物理导论作为一门交叉学科,结合了材料科学和物理学的研究方法和思想,让人们更好地认识材料的性质和结构。
通过对材料物理导论的深入研究和实践,可以有效地加深我们对材料科学和物理学领域的理解,为材料科学的发展贡献自己的力量。
材料物理要点总结归纳材料物理是研究材料的性质、结构和行为的分支学科,涉及多种材料,如金属、陶瓷、塑料等。
本文将对材料物理的要点进行总结归纳,以帮助读者更好地理解和应用这一学科。
一、晶体结构晶体是具有有序排列的原子、离子或分子的固体。
其晶体结构对于材料的性能具有重要影响。
晶体结构可分为简单晶格和复式晶格。
简单晶格包括立方晶系、正交晶系、单斜晶系、斜方晶系、蜂窝晶系等。
而复式晶格则由多个原子、离子或分子组成。
二、晶体缺陷晶体中存在各种缺陷,如点缺陷、线缺陷和面缺陷。
点缺陷包括空位、插入性杂质和替位杂质。
线缺陷包括位错和螺旋位错。
面缺陷包括晶界和孪晶。
三、材料的力学性能力学性能是材料物理研究的重要内容。
其中包括材料的弹性、塑性、韧性、脆性等性能。
弹性是指材料在外力作用下产生的形变能够消除,其应力-应变关系遵循胡克定律。
塑性是指材料在外力作用下形变能够保留,其应力-应变关系不遵循胡克定律。
四、导电材料导电材料是指能够传导电流的材料,包括金属和半导体。
金属是导电性能最好的材料,其导电机制主要由自由电子贡献。
而半导体的导电性能则可以通过施加杂质或外加电场进行调控。
五、磁性材料磁性材料是指在外磁场作用下产生磁化强度的材料。
根据磁化机制的不同,可将磁性材料分为顺磁性、抗磁性、铁磁性和自旋玻璃等。
六、光学材料光学材料是指能够对光进行传播、转换和控制的材料。
常见的光学材料包括玻璃、晶体、半导体等。
光学材料的性能包括透射率、折射率、吸收系数等,对于光学器件的设计和应用至关重要。
七、材料表面与界面材料的表面和界面结构对于材料的性质和表现具有重要影响。
材料表面的化学和物理性质不同于内部材料,对于材料的附着、润湿性等起着重要作用。
而材料的界面结构和性质则关系到多相材料的稳定性和性能。
八、材料的热学性能材料的热学性能包括热传导性、热膨胀性、热导率等。
热传导性是指材料对热的传导能力,热膨胀性是指材料在温度变化时的尺寸变化。
九、材料的化学性能材料的化学性能包括材料的化学稳定性、化学反应性以及与其他物质的相互作用等。
材料物理基础知识点总结材料物理是研究物质的性质和行为的一个学科,它涉及材料的结构、力学行为、电学行为、热学行为以及光学行为等方面。
在材料科学与工程领域中,材料物理的基础知识是非常重要的。
下面是材料物理基础知识点的总结:1.原子结构:原子是材料的基本单位,它由原子核和围绕核运动的电子组成。
原子核由质子和中子组成,质子带正电荷,中子不带电。
电子带负电荷,质子和电子的数量相等,因此原子是电中性的。
2.原子排列:原子可以通过共价键、离子键或金属键等方式相互结合,从而形成晶体结构。
晶体结构可以分为立方晶系、正交晶系、单斜晶系、斜方晶系、菱方晶系和三斜晶系等不同类型。
3.晶体缺陷:晶体中常常存在一些缺陷,如点缺陷、线缺陷和面缺陷,这些缺陷可以对材料的力学行为、电学行为和热学行为等性质产生重要影响。
4.材料力学行为:材料力学行为主要包括弹性行为、塑性行为和断裂行为。
弹性行为是指材料在受力后能够恢复原来形状和大小的能力;塑性行为是指材料在受力后能够产生变形而不会恢复到原来的形状和大小;断裂行为是指材料在受到过大的力作用时发生破裂。
5.材料电学行为:材料电学行为是指材料在电场或磁场中的行为。
材料可以分为导电材料、绝缘材料和半导体材料等不同类型。
6.材料热学行为:材料热学行为是指材料在温度变化时的行为。
材料的热学性质包括热导率、热膨胀系数和比热容等。
7.材料光学行为:材料光学行为是指材料在光照射下的行为。
材料可以表现出吸光、透光、反射等不同行为。
8.材料的选择和设计:根据材料的物理性质和需求,可以选择合适的材料。
材料的选择和设计要考虑到材料的力学性能、电学性能以及热学性能等方面。
9.材料的制备和加工:材料的制备和加工方法有很多种,如溶液法、凝聚法、熔融法和沉积法等。
选择合适的制备和加工方法可以改变材料的结构和性能。
10.材料的应用:材料学的最终目的是将材料应用于实际生产中。
材料可以应用于机械制造、电子工程、能源技术、医疗器械以及航空航天等领域。
材料物理心得(通用2篇)材料物理心得篇4材料物理是一门引人入胜的学科,它涵盖了从微观到宏观的所有领域,包括材料的性质、制备、应用以及性能优化等。
作为一名材料物理专业的学生,我在学习过程中收获颇丰。
在学习材料物理时,我首先遇到的问题是如何理解并掌握这个领域的概念和原理。
我发现在课程中,材料物理需要大量的数学和计算技能,如量子力学、固体物理学、热力学等。
因此,我花了很多时间在数学和计算技能的学习上,以便更好地理解材料物理的相关概念。
掌握材料物理的实验技能也是一项重要的任务。
我通过实验来探索材料的性质和应用,通过实验数据来验证或反驳理论上的假设。
这些实验不仅锻炼了我的动手能力,还让我更深入地理解了材料物理的性质和应用。
在学习材料物理的过程中,我还发现了一些有趣的事实。
例如,材料物理中的材料性质不仅取决于材料的成分,还取决于材料的结构和制备方法。
此外,材料物理的发展非常迅速,新的材料和制备方法不断涌现,这为材料物理的研究和应用带来了更多的可能性。
总的来说,学习材料物理需要不断地学习和探索。
在这个过程中,我不仅掌握了材料物理的相关知识和技能,还提高了自己的思考和解决问题的能力。
我相信,这些收获将对我未来的工作和生活产生积极的影响。
材料物理心得篇5材料物理是一门引人入胜的学科,它涵盖了从微观到宏观的所有领域,包括材料的性质、制备、应用以及性能优化等。
作为一名材料物理专业的学生,我在学习过程中深刻地体会到了这门学科的魅力和挑战。
在学习材料物理时,我首先遇到了量子力学和统计力学等基础理论。
这些理论虽然抽象,但它们为我们理解材料的微观结构和性质提供了有力的工具。
通过对这些理论的学习和应用,我逐渐掌握了如何预测和解释材料的宏观性质。
实验室里的学习和实践让我对材料物理有了更深刻的理解。
在导师的指导下,我参与了多个材料的制备和表征项目。
在这个过程中,我学会了如何运用各种设备和技术,如材料分析仪、光学显微镜和电子显微镜等,来研究材料的结构和性质。
第一章:材料的力学形变:材料在外力作用下发生形状和尺寸的变化,称为形变力学性能(机械性能):材料承受外力作用,抵抗形变的能力及其破坏规律,称为材料的力学性能或机械性能应力:材料单位面积上所受的附加内力称应力。
法向应力应该大小相等,正负号相同,同一平面上的两个剪切应力互相垂直。
法向应力导致材料的伸长或缩短,剪切应力引起材料的切向畸变。
应变:用来表征材料受力时内部各质点之间的相对位移。
对于各向同性材料,有三种基本的应变类型。
拉伸应变,剪切应变,压缩应变。
拉伸应变:材料受到垂直于截面积的大小相等,方向相反并作用在同一直线上的两个拉伸应力时材料发生的形变。
剪切应变:材料受到平行于截面积的大小相等,方向相反的两剪切应力时发生的形变。
压缩应变:材料周围受到均匀应力P时,体积从起始时的V0变化为V1的形变。
弹性模量:是材料发生单位应变时的应力,表征材料抵抗形变能力的大小,E越大,越不易变形,表征材料的刚度越大。
是原子间结合强度的标志之一。
黏性形变:是指黏性物体在剪切应力作用下发生不可逆的流动形变,该形变随时间的增大而增大。
剪切应力小时,黏度与应力无关,随温度的上升而下降。
牛顿流体:服从牛顿黏性定律的物体称为牛顿流体。
在足够大的剪切应力下或温度足够高时,无机材料中的陶瓷晶界,玻璃和高分子材料的非晶部分均会产声黏性形变,因此高温下的氧化物流体,低分子溶液或高分子稀溶液大多属于牛顿流体,而高分子浓溶液或高分子熔体不符合牛顿黏性定律,为非牛顿流体。
塑性:材料在外应力去除后仍能保持部分应变的特性称为塑性。
晶体塑性形变两种类型:滑移和孪晶。
延展性:材料发生塑性形变而不断裂的能力称为延展性。
μ(泊松比),定义为在拉伸试验中,材料横向单位面积的减少与纵向单位长度的增加率之比。
滑移是指在剪切应力作用下晶体的一部分相对于另一部分发生平移滑动,在显微镜下可观察到晶体表面出现宏观条纹,并构成滑移带。
滑移一般发生在原子密度大和晶向指数小的晶面和晶向上。
材料的滑移系统往往不止一个,滑移系统越多,则发生滑移的可能性越大。
实际晶体材料的滑移是位错缺陷在滑移面上沿滑移方向运动的结果:位错运动所需的剪切应力比使晶体两部分整体相互滑移所需的应力小的多。
蠕变:蠕变是在恒定的应力作用下材料的应变随时间增加而逐渐增大的现象。
影响因素:温度、应力、组分、晶体键型、气孔、晶粒大小、玻璃相等。
无机材料的蠕变理论:位错蠕变理论,扩散蠕变理论,晶界蠕变理论。
黏弹性:材料形变介于理想弹性固体和理想黏性液体之间,既具有固体的弹性又有液体的黏性,称为黏弹性。
时温等效原理力学松弛现象有蠕变,应力松弛(静态力学松弛,滞后和力损耗(动态力学松弛晶界:是结构相同而取向不同晶体之间的界面。
高分子材料的力损耗与温度和频率的关系:1.高分子材料在玻璃化温度Tg以下受到应力时,相应的应变很小,主要由键长和键角的改变引起,速度快到几乎能跟得上应力的变化,因此&很小,tan&也小;温度升高到Tg附近时,以玻璃态向高弹态过渡,链段开始运动,此时材料的粘度很大,链断运动收到的摩擦阻力很大,高弹应变明显落后于应力的变化,因此tan&出现极大值;温度更高时应变大,而且链断运动比较自由,&变小,tan&也小;温度很高时,材料从高弹态向粘流态过渡,分子链段间发生互相滑移,导致力损耗急剧增加,tan&急剧增大。
2.高分子材料在应力变化的频率较低时,分子链断运动基本能跟上应力的变化,tan&很小;频率很高时,分子链断完全跟不上应力的变化,tan&也很小;而当频率中等时,分子链断运动跟不上应力的变化,使tan&出现极大值,此时材料表现出明显的粘弹性。
应力松弛:是指在恒定的应变时,材料内部的应力随时间增长而减小的现象。
机械强度:材料在外力作用下抵抗形变及断裂破坏的能力称为机械强度。
根据外力作用形式,可分为抗拉强度,抗冲强度,抗压强度,抗弯强度,抗剪强度。
材料在低温下大多脆性断裂;高温下大多韧性断裂。
麦克斯韦模型:应变恒定时,应力随时间指数衰减;形变一定,力减小。
(应力松弛)沃伊特模型:应力恒定时,形变随时间增大而增大;力一定,形变增大。
(蠕变)延展性材料拉伸时有可塑性功,可阻碍断裂。
第二章:材料的热学热力学与统计力学的关系:热力学是用宏观的方法,研究热运动在宏观现象上表现出来的一些规律,是从能量转化的观点来研究物质的热性质;而统计力学则从物质的微观结构出发,应用微观粒子运动的力学规律和统计方法来研究物质的热性质。
热力学第二定律:克劳修斯说法不可能把热从低温物体传到高温物体而不引起其他的变化。
开尔文说法不可能从单一热源取热使之完全变为有用的功而不引起其他的变化。
低温时:Cp≈Cv高温时:Cp>Cv,定压加热时,物体除升温外,还会对外做功,升高单位温度需吸更多热量。
经典理论:①定压下单一元素的摩尔热容Cv=25J/(K?mol)②化合物材料摩尔热容等于构成该化合物分子各元素摩尔热容之和。
③1摩尔固体的总能量:E=3NkT=3RT;摩尔热容Cv=3Nk=3R≈25J/(K?mol)晶格热振动:晶体中的原子以平衡位置为中心不停地振动,称其为“晶格热振动”声子:晶格振动的能量是量子化的,以hv为单元来增加或减少能量,称这种能量单元为“声子”。
金属材料的总热容为声子和电子两部分的共同贡献。
固体材料热膨胀的本质:在于晶格点阵实际上在做非简谐运动,晶格振动中相邻质点间的作用力实际上是非线性的,点阵能曲线也是非对称的。
体胀系数近似等于三个线胀系数之和。
热传导:是指材料中的热量自动的从热端传向冷端的现象。
固体材料热传导:主要由晶格振动的格波来实现;高温时还可能由光子热传导。
材料热传导的微观机理: 1.声热子传导 2.光热子传导 3.电子热传导(金属主要)含孔率大的陶瓷热导率小,保温。
热稳定性:是指材料承受温度的急剧变化而不致碎裂破坏的能力。
裂纹的产生和扩展与材料中积存的弹性应变能和裂纹扩展所需的断裂表面能有关。
材料的抗热应力损伤性正比于断裂表面能,反比与弹性应变能释放率。
第三章:材料的电学金属自由电子气模型(费米电子气模型):该模型认为金属材料的原子失去价电子成为带正电的离子实,而价电子在离子实的正电背景下能自由移动,既满足电中性条件,也不会因价电子间的库伦斥力而散开,这种自由电子还服从泡利不相容原理,其能量分布满足费米-狄拉克分布函数能带理论:采用“单电子近似法”来处理晶体中的电子能谱。
单电子近似法:(来处理晶体中电子能谱)①固体原子核按一定周期性固定排列在晶体中②每个电子是固定原子核势场及其它电子的平均势场中运动电子型电导:①导电载流子是电子或空穴(即电子空位)②具有“霍尔效应”③例:硅、锗和砷化镓等晶态半导体材料以及许多导体材料杂质和缺陷的影响:使严格周期性排列原子产生的周期性势场受到破坏,在禁带中引入允许电子所具有的能量状态(即能级);这种禁带中的能级对半导体材料性质有重要的影响。
杂质能级与允带能级的区别:允带能级可容纳自旋方向相反的两个电子。
施主杂志能级只可能有:1.中性施主被一个电子占据 2.电离施主没有被电子占据。
本征是指半导体本身的特征。
半导体的载流子浓度:实际的半导体总含有或多或少的杂质,但当杂质浓度很小或者温度足够高时,由价带到导带的本征激发所产生的载流子可超过杂质电离产生的载流子,这时载流子浓度主要由半导体本征性质所决定,而杂质影响可忽略不计,也称这种半导体为本征半导体。
本征载流子浓度ni随温度T升高呈指数增大,ni随禁带宽度Eg成指数减小。
导带中电子浓度n。
和价带中空穴浓度P。
受温度T和费米能级Ef的影响。
电子型电导:Rh霍尔系数只与材料的载流子种类浓度有关;“磁阻效应”可分为物理磁阻和几何磁阻。
施主和受主杂质同时存在时,半导体的导电类型决定于浓度大的杂质。
本征载流子浓度ni随温度升高呈指数增大,随禁带宽度Eg的增大呈指数减小。
任何非简并半导体中两种载流子浓度的乘积等于本征载流子的浓度的平方与杂质无关。
杂质半导体的杂质能级被电子或空穴占据的情况与允带中的能级有区别:在允带中的能级可以容纳自旋方向相反的两个电子,而施主(或受主)杂质能级上,只可能有如下两种情况:1.中性施主(或受主)被一个电子(或空穴)占据; 2.电离施主(或受主)没有被电子(或空穴)占据。
离子型电导:具有“电解效应”电极附近发生电子得失,伴随着产生新物质。
两种离子载流子:①晶格离子本身因为热振动而离开晶格形成热缺陷的本征离子载流子,它在高温下起主要作用②由于杂质离子等弱联系离子运动而形成的杂质离子载流子,它在低温下起主要作用。
其中的载流子浓度与迁移率都与温度呈指数正比关系。
介电体分子三种极化类型:电子极化、离子极化、偶极子转向极化电损耗来源:①普通无机晶体介质只有位移极化,损耗来源主要为离子电导,tanδ与电导率σ成正比②无定形玻璃:电导损耗、松弛损耗、结构损耗(由Si-O网络的变形引起)③多晶陶瓷:离子电导损耗、松弛损耗、夹层损耗④铁电陶瓷:自发极化超电导性的特征:完全导电性、完全抗磁性、磁通的量子化、约瑟夫逊效应叙述BaTiO3典型电解质中在居里点以下存在的四种极化机制:电子极化:指在外电场作用下,构成原子外围的电子云相对原子核发生位移形成的极化。
建立或消除电子极化时间极短 2.离子极化:指在外电场的作用下,构成分子的离子发生相对位移而形成的极化,离子极化建立核消除时间很短,与离子在晶格振动的周期有相同数量级 3.偶极子转向极化:指极性介电体的分子偶极矩在外电场作用下,沿外施电场方向而产生宏观偶极矩的极化。
4.位移型自发极化:是由于晶体内离子的位移而产生了极化偶极矩,形成了自发极化。
试比较,聚合物介电松弛与力学松弛的异同点:材料的力学松弛包括了静态力学松弛与动态力学松弛:蠕变与应力松弛属于静态力学松弛;滞后和力损耗属于动态力学松弛。
介电松弛指在固定频率下测试聚合物试样的介电系数和介电损耗随温度的变化,或在一定温度下测试试样的介电性质随频率的变化。
两者都反映了聚合物的结构、构型及链段的运动状态。
引起散射的根本原因:半导体内周期势场受到破坏。
电离杂质浓度越高,载流子散射机会越多;温度越高,越不易散射。
温度越高,晶格热振动越激烈,散射概率增大。
散射与迁移呈反比。
导体,半导体和绝缘体的区别:电子全部填满到某个允带,而其上面的允带则完全空着,填满电子的允带称为满带,完全没有电子的允带称为空带,具有这种能带结构的固体称为绝缘体。
能带结构与绝缘体相似,不同点在于禁带宽度Eg较窄,因而,不在很高的温度下,满带中的部分电子受热运动的影响,能够被热激发而越过禁带,进入到上面的空带中去而形成自由电子,从而产生导电能力,具有这种能带结构的固体称为半导体。