抽象函数专题
- 格式:doc
- 大小:210.38 KB
- 文档页数:3
抽象函数周期性的探究(教师版)抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难 ,所以特探究一下抽象函数的周期性问题.利用周期函数的周期求解函数问题是基本的方法 .此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x) 是周期函数.(1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期.(2)函数y=f(x)满足f(x+a)=1f(x),则f(x)是周期函数,且2a是它的一个周期.(3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期.命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.(1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期.(2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.(3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.(4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期.命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x) 是周期函数.(1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a 是它的一个周期.(2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a 是它的一个周期.我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3 (1),其他命题的证明基本类似.设条件A: 定义在R上的函数f(x)是一个偶函数.条件B: f(x)关于x=a对称条件C: f(x)是周期函数,且2a是其一个周期.结论: 已知其中的任两个条件可推出剩余一个.证明: ①已知A、B→ C (2001年全国高考第22题第二问)∵f(x)是R上的偶函数∴f(-x)=f(x)又∵f(x)关于x=a对称∴f(-x)=f(x+2a)∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期②已知A、C→B∵定义在R上的函数f(x)是一个偶函数∴f(-x)=f(x)又∵2a是f(x)一个周期∴f(x)=f(x+2a)∴f(-x)=f(x+2a) ∴ f(x)关于x=a对称③已知C、B→A∵f(x)关于x=a对称∴f(-x)=f(x+2a)又∵2a是f(x)一个周期∴f(x)=f(x+2a)∴f(-x)=f(x) ∴f(x)是R上的偶函数T由命题3(2),我们还可以得到结论:f(x)是周期为T的奇函数,则f( )=02基于上述命题阐述,可以发现,抽象函数具有某些关系.根据上述命题,我们易得函数周期,从而解决问题,以下探究上述命题在解决抽象函数问题中的运用.1.求函数值例1:f(x) 是R上的奇函数f(x)=- f(x+4) ,x∈[0,2]时f(x)=x,求f(2007) 的值解:方法一∵f(x)=-f(x+4) ∴f(x+8) =-f(x+4) =f(x)∴8是f(x)的一个周期∴f(2007)= f(251×8-1)=f(-1)=-f(1)=-1方法二∵f(x)=-f(x+4),f(x)是奇函数∴f(-x)=f(x+4) ∴f(x)关于x=2对称又∵f(x)是奇函数∴8是f(x)的一个周期,以下与方法一相同.例2:已知f(x)是定义在R上的函数,且满足f(x+2)[1-f(x)]=1+f(x),f(1)=2,求f(2009) 的值解:由条件知f(x)1,故f (x + 2) =:f (x + 4) = = 1f(x)类比命题1可知,函数f(x)的周期为8,故f(2009)= f(251×8+1)=f(1)=22. 求函数解析式例3:已知f(x)是定义在R上的偶函数, f(x)= f(4-x),且当x[2,0]时, f(x)=-2x+1,则当x [4,6]时求f(x)的解析式解:当x [0,2]时x [2,0] ∴f(-x)=2x+1∵f(x)是偶函数∴f(-x)=f(x) ∴f(x)=2x+1当x [4,6]时 4 + x [0,2] ∴f(-4+x)=2(-4+x)+1=2x-7又函数f(x)是定义在R上的偶函数, f(x)= f(4-x),类比命题3 (1)知函数f(x)的周期为4故f(-4+x)=f(x)∴当x [4,6]时求f(x)=2x-73.判断函数的奇偶性例4:已知f(x)是定义在R上的函数,且满足f(x+999)=1f(x),f(999+x)=f(999-x),试刘云汉判断函数f(x)的奇偶性.解:由f(x+999)=一1f(x),类比命题1可知,函数f(x)的周期为1998即f(x+1998)=f(x);由f(999+x)=f(999-x)知f(x)关于x=999对称,即f(-x)=f(1998+x)故f(x)=f(-x) :f(x)是偶函数 4.判断函数的单调性例5:已知f(x)是定义在R 上的偶函数, f(x)= f(4-x),且当x =[一2,0]时, f(x)是减函数, 求证当x =[4,6]时f(x)为增函数解:设4 共 x < x 共 6 则一2 共 一x + 4 < 一x + 4 共 01 2 2 1∵ f(x)在[-2,0]上是减函数∴ f (一x + 4) > f (一x + 4)2 1又函数f(x)是定义在R 上的偶函数, f(x)= f(4-x),类比命题3 (1)知函数f(x)的周期为 4故f(x+4)=f(x ) ∴ f (一x ) > f (一x ) ∵ f(-x)=f(x) ∴ f (x ) > f (x )2 1 2 1故当 x =[4,6]时f(x)为增函数例6:f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a ∈ [5,9]且f(x) 在[5,9]上单调.求a 的值.解:∵ f(x)=-f(6-x ) ∴f(x)关于(3,0)对称∵ f(x)= f(2-x ) ∴ f(x)关于x=1对称∴根据命题2 (4)得8是f(x)的一个周期 ∴f(2000)= f(0) 又∵f(a) =-f (2000) ∴f(a)=-f(0)又∵f(x) =-f(6-x) ∴f(0)=-f(6) ∴f(a)=f(6)∵a∈[5,9]且f(x)在[5,9]上单调∴a =6 5.确定方程根的个数例7:已知f(x)是定义在R 上的函数, f(x)= f(4-x),f(7+x)= f(7-x),f(0)=0, 求在区间[-1000,1000]上f(x)=0至少有几个根?解:依题意f(x)关于x=2,x=7对称,类比命题2 (2)可知f(x)的一个周期是10故f(x+10)=f(x ) ∴f(10)=f(0)=0 又f(4)=f(0)=0即在区间(0,10]上,方程f(x)=0至少两个根又f(x)是周期为10的函数,每个周期上至少有两个根,因此方程f(x)=0在区间[-1000,1000]上至少有1+2人200010=401个根.两类易混淆的函数问题:对称性与周期性已知函数 y = f (x ) (x ∈R)满足 f (5+x ) = f (5-x ),问: y = f (x )是周期函数吗它的图像是不是轴对称图形已知函数 y = f (x ) (x ∈R)满足 f (5+x ) = f (5-x ),问: y = f (x )是周期函数吗它的图像是不是轴对称图形这两个问题的已知条件形似而质异。
专题8 抽象函数一、单选题1.函数()f x 是R 上的增函数,点()0,1A −,()3,1B 是其图象上的两点,则()11f x +<的解集为( ) A .()[),14,−∞−+∞ B .()[) ,12,−∞−+∞ C .1,2D .()1,42.已知函数()f x 在定义域R 上单调,且(0,)x ∈+∞时均有(()2)1f f x x +=,则(2)f −的值为( ) A .3B .1C .0D .1−3.单调增函数()f x 对任意,x y R ∈满足()()()f x y f x f y +=+,若()()33920x x xf k f ⋅+−−<恒成立,则k 的取值范围是( )A .()1− B .()1−∞C .(1⎤⎦D .)1,⎡+∞⎣4.定义在R 上的奇函数()f x 满足()()2f x f x −=,当(]0,1x ∈,()2log f x x x =−,则20212f ⎛⎫= ⎪⎝⎭( )A .32B .12C .12−D .32−5.已知定义在R 上的函数()f x 满足()()()f x y f x f y −=−,且当0x <时,()0f x >,则关于x 的不等式()()()()2222f mx f m f m x f x +>+(其中0m << )A .2x m x m ⎧⎫<<⎨⎬⎩⎭B .{|x x m <或2}x m > C .2x x m m ⎧⎫<<⎨⎬⎩⎭D .{|x x m >或2}x m<6.已知函数()f x 是R 上的偶函数,且()f x 的图象关于点()1,0对称,当[]0,1x ∈时,()22xf x =−,则()()()()0122020f f f f ++++的值为( )A .2−B .1−C .0D .17.已知奇函数()f x 的定义域为R ,若()2f x +为偶函数,且()11f −=−,则()()20172016f f += A .2−B .1−C .0D .18.已知函数()f x 是定义在R 上的奇函数,当0x >时,()2f x x x =+,则不等式()()ln 1f x f <−的解集为( ) A .()0,e B .1,e ⎛⎫−∞ ⎪⎝⎭C .(10,e ⎛⎫⎪⎝⎭D .1,e⎛⎫+∞ ⎪⎝⎭二、多选题9.已知函数()f x 满足x R ∀∈,有()(6)f x f x =−,且(2)(2)f x f x +=−,当[1,1]x ∈−时,)()lnf x x =,则下列说法正确的是( )A .(2021)0f =B .(2020,2022)x ∈时,()f x 单调递增C .()f x 关于点(1010,0)对称D .(1,11)x ∈−时,方程()sin 2f x x π⎛⎫=⎪⎝⎭的所有根的和为30 10.已知()f x 是定义在R 上的偶函数,()()11f x f x −=−+,且当[]0,1x ∈时,()22f x x x =+−,则下列说法正确的是( )A .()f x 是以4为周期的周期函数B .()()201820212f f +=−C .函数()2log 1y x =+的图象与函数()f x 的图象有且仅有3个交点D .当[]3,4x ∈时,()2918f x x x =−+11.已知函数()f x 的定义域为R ,且在R 上可导,其导函数记为()f x '.下列命题正确的有( ) A .若函数()f x 是奇函数,则()f x '是偶函数 B .若函数()'f x 是偶函数,则()f x 是奇函数 C .若函数()f x 是周期函数,则()f x '也是周期函数 D .若函数()f x '是周期函数,则()f x 也是周期函数12.已知函数()y f x =是R 上的奇函数,对于任意x ∈R ,都有(4)()(2)f x f x f +=+成立,当[)0,2x ∈时,()21=−x f x ,给出下列结论,其中正确的是( )A .(2)0f =B .点(4,0)是函数()y f x =的图象的一个对称中心C .函数()y f x =在[6,2]−−上单调递增D .函数()y f x =在[6,6]−上有3个零点 三、填空题13.写出一个满足()()2f x f x =−的奇函数()f x =______.14.已知函数()f x 是R 上的奇函数,且()y f x =的图象关于1x =对称,当[0,1]x ∈时,()21x f x =−,计算(0)(1)(2)(3)(2021)f f f f f +++++=________.15.函数()f x 为定义在R 上的奇函数,且满足()(2)f x f x =−,若(1)3f =,则(1)(2)(50)f f f +++=__________.16.设()f x 是定义在R 上的函数,且()()2f x f x =+,在区间[)1,1−上,(),102,015x a x f x x x +−≤<⎧⎪=⎨−≤<⎪⎩,其中a ∈R .若5922f f ⎛⎫⎛⎫−= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是________.四、解答题17.已知定义在R 上的函数()f x ,()g x 满足: ①()01f =;②任意的x ,R y ∈,()()()()()f x y f x f y g x g y −=−.(1)求()()22f xg x −的值;(2)判断并证明函数()f x 的奇偶性.18.已知函数()f x 满足对,x y R ∀∈,都有()()()f x y f x f y +=+,且(1)2f =. (1)求(0)f 与(2)f −的值;(2)写出一个符合题设条件的函数()f x 的解析式(不需说明理由),并利用该解析式解关于x 的不等式(21)1()1f x f x +≥−.19.如果存在一个非零常数T ,使得对定义域中的任意的x ,总有f x Tf x 成立,则称()f x 为周期函数且周期为T .已知()f x 是定义在R 上的奇函数,且()y f x =的图象关于直线x a =(0a ≠,为常数)对称,证明:()f x 是周期函数.20.已知函数()()y f x x =∈R .(1)若()f x 满足(1)y f x =+为R 上奇函数且(1)=−y f x 为R 上偶函数,求(3)(5)f f −+的值;(2)若函数()()y g x x =∈R 满足1(3)2g x +=x ∈R 恒成立,函数()()()h x f x g x =+,求证:函数()h x 是周期函数,并写出()h x 的一个正周期;(3)对于函数()y f x =,()()y k x x =∈R ,若(())()f k x f x =对x ∈R 恒成立,则称函数()y f x =是“广义周期函数”, ()k x 是其一个广义周期,若二次函数2()(0)f x ax bx c a =++≠的广义周期为()k x (()k x x =不恒成立),试利用广义周期函数定义证明:对任意的12,x x ∈R ,12x x ≠,()()12f x f x =成立的充要条件是12b x x a+=−.参考答案1.C【解析】解法一:因为()f x 是R 上的增函数,()0,1A −,()3,1B 是其图象上的两点,所以函数()f x 的草图如图所示.由图象得,()()11111013f x f x x +<⇔−<+<⇔<+<,即12x −<<.解法二:因为()f x 是R 上的增函数,()0,1A −,()3,1B 是其图象上的两点,所以当03x ≤≤时,()11f x −≤≤.又已知()11f x +<,即()111f x −<+<, 所以013x <+<,解得12x −<<. 故选:C2.A【解析】根据题意,函数()f x 在定义域R 上单调,且(0,)x ∈+∞时均有(()2)1f f x x +=, 则()2f x x +为常数,设()2f x x t +=,则()2f x x t =−+,则有()21f t t t =−+=,解可得1t =−,则()21f x x =−−,故(2)413f −=−=; 故选:A. 3.B【解析】因为()()()f x y f x f y +=+,所以()()3392(3392)0x x x x x xf k f f k ⋅+−−=⋅+−−<又对任意,x y R ∈满足()()()f x y f x f y +=+, 所以(0)(0)(0)f f f =+, 解得(0)0f =,由()f x 为R 上单调增函数可得33920x x x k ⋅+−−<,令30x t =>,即2(1)20k t t +−−<恒成立, 即21k t t+<+,而2t t +≥,当且仅当2t t=,即t =所以1k +<1k <, 故选:B 4.D【解析】因为()f x 满足()()2f x f x −=,所以()f x 的图像关于x=1对称. 又()f x 为定义在R 上的奇函数,所以()()()22f x f x f x =−=−−, 所以()()()42f x f x f x +=−+=, 所以()f x 为周期函数,且周期T =4. 所以2021552524222f f f ⎛⎫⎛⎫⎛⎫=⨯+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,而25511132log 222222f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=−=−=−−− ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以20212f ⎛⎫= ⎪⎝⎭32−.故选:D 5.A【解析】任取12x x <,由已知得()120f x x −>,即()()120f x f x −>,所以函数()f x 单调递减.由()()()()2222f mx f m f m x f x +>+可得()()()()2222f mx f x f m x f m −>−,即()22f mx x f −>()22m x m −,所以2222mx x m x m −<−,即()22220mx m x m −++<,即()()20mx x m −−<,又因为0m << 所以2m m>,此时原不等式解集为2x m x m ⎧⎫<<⎨⎬⎩⎭.故选:A 6.D【解析】因为()f x 是R 上的偶函数,所以()()f x f x −=, 又()f x 的图象关于点()1,0对称,则()(2)f x f x =−−,所以()(2)f x f x −=−−,则()(2)f x f x =−+,得(4)(2)()f x f x f x +=−+=, 即(4)()f x f x +=−,所以()f x 是周期函数,且周期4T =,由[]0,1x ∈时,()22xf x =−,则(0)1,(1)0f f ==,(2)(0)1f f =−=−,(3)(3)(1)0f f f =−==,则(0)(1)(2)(3)0f f f f +++=, 则()()()()0122020f f f f ++++(0)5050(0)1f f =+⨯==故选:D 7.D【解析】奇函数()f x 的定义域为R ,若(2)f x +为偶函数, (0)0f ∴=,且(2)(2)(2)f x f x f x −+=+=−−,则(4)()f x f x +=−,则(8)(4)()f x f x f x +=−+=, 则函数()f x 的周期是8,且函数关于2x =对称, 则(2017)(25281)f f f =⨯+=(1)(1)(1)1f =−−=−−=,(2016)(2528)(0)0f f f =⨯==,则(2017)(2016)011f f +=+=, 故选D . 8.C【解析】因为当0x >时,()2f x x x =+,且函数()f x 是定义在R 上的奇函数,所以0x <时,()()()()22f x f x x x x x ⎡⎤=−−=−−+−=−+⎣⎦, 所以()22,0,0x x x f x x x x ⎧−+<=⎨+>⎩,作出函数图象:所以函数()f x 是()+−∞∞,上的单调递增, 又因为不等式()()ln 1f x f <−,所以ln 10x x <−⎧⎨>⎩,即10x e <<,故选:C. 9.CD【解析】由题设知:2221()ln(1)lnln(1)()1f x x x x x f x x x−=++==−+−=−+−,故()f x 在[1,1]x ∈−上为奇函数且单调递减,又(2)(4)(2)f x f x f x +=−=−,即关于21x k =+、(2,0)k ,k Z ∈对称,且最小周期为4, A :(2021)(50541)(1)ln(21)0f f f =⨯+==−≠,错误;B :(2020,2022)x ∈等价于(0,2)x ∈,由上易知:(0,1)上递减,(1,2)上递增,故()f x 不单调,错误;C :由上知:()f x 关于(2,0)k 对称且k Z ∈,所以()f x 关于(1010,0)对称,正确;D :由题意,只需确定()f x 与sin 2xy π=在(1,11)x ∈−的交点,判断交点横坐标的对称情况即可求和,如下图示,∴共有6个交点且关于5x =对称,则16253410x x x x x x +=+=+=, ∴所有根的和为30,正确. 故选:CD 10.ACD【解析】对于A 选项,由已知条件可得()()()()1113f x f x f x f x +=−−=−−=−, 所以,函数()f x 是以4为周期的周期函数,A 选项正确;对于B 选项,()()()2018202f f f ==−=,()()202110f f ==,则()()201820212f f +=,B 选项错误;对于C 选项,作出函数()2log 1y x =+与函数()f x 的图象如下图所示:当[]0,1x ∈时,()[]221922,024f x x x x ⎛−=+⎫−=−∈− ⎪⎝⎭,结合图象可知,()22f x −≤≤.当3x >时,()2log 12x +>,即函数()2log 1y x =+与函数()f x 在()3,+∞上的图象无交点, 由图可知,函数()2log 1y x =+与函数()f x 的图象有3个交点,C 选项正确; 对于D 选项,当[]3,4x ∈时,[]41,0x −∈−,则[]40,1x −∈,所以,()()()()()2244442918f x f x f x x x x x =−=−=−+−−=−+,D 选项正确. 故选:ACD. 11.AC【解析】解:由导数的定义:()()()=lim x f x x f x f x x ∆→+∆−∆'选项A :()()()()()()00=lim=lim=x x f x x f x f x f x x f x f x xx∆→∆→−+∆−−−−∆∆∆''−,即()f x '是偶函数,故A 正确;选项B :如()sin 1f x x =+不是奇函数,而()cos f x x '=为偶函数;故B 错误, 选项C :()()()()()()00=lim=limx x f x T x f x T f x x f x f x T f x xx∆→∆→++∆−++∆−=∆∆''+即()f x '也是周期函数,故C 正确;选项D :如()sin f x x x =+不是周期函数,但()1cos f x x '=+是周期函数;故D 错误, 故选:AC. 12.AB【解析】在(4)()(2)f x f x f +=+中,令2x =−,得(2)0f −=,又函数()y f x =是R 上的奇函数,所以(2)(2)0f f =−=,(4)()f x f x +=,故()y f x =是一个周期为4的奇函数,因(0,0)是()f x 的对称中心,所以(4,0)也是函数()y f x =的图象的一个对称中心,故A 、B 正确;作出函数()f x 的部分图象如图所示,易知函数()y f x =在[6,2]−−上不具单调性,故C 不正确;函数()y f x =在[6,6]−上有7个零点,故D 不正确. 故选:AB 13.πsin2x (答案不唯一) 【解析】取()sin2f x x π=,下面为证明过程:显然,其定义域为R ; 由()sin sin ()22f x x x f x ππ⎛⎫⎛⎫−=−=−=− ⎪ ⎪⎝⎭⎝⎭,故()sin 2f x x π=为奇函数;又()(2)sin 2sin sin ()222f x x x x f x ππππ⎡⎤⎛⎫−=−=−== ⎪⎢⎥⎣⎦⎝⎭.故答案为:sin 2x π(答案不唯一).14.1【解析】由题意,()()f x f x −=−且(2)()f x f x −=,∴()(2)()(2)(2)f x f x f x f x f x −=+=−=−−=−,即()(4)f x f x =+, ∴()f x 是周期为4的函数.令10x −≤<,则01x <−≤,而[0,1]x ∈时()21x f x =−,∴1()()(21)12xxf x f x −=−−=−−=−, ∴(0)(2)0,(1)1,(3)(1)1f f f f f ====−=−,即(0)(1)(2)(3)0f f f f +++=, 而(0)(1)(2)(3)(2021)505[(0)(1)(2)(3)]f f f f f f f f f +++++=⨯+++(5054)f +⨯(50541)f +⨯+(0)(1)1f f =+=.故答案为:115.3【解析】()(2)f x f x =−,(2)()f x f x ∴+=−,又()f x 为奇函数,(2)()(),(4)(2)()f x f x f x f x f x f x ∴+=−=−+=−+=()f x ∴是周期为4的周期函数,()f x 是定义在R 上的奇函数,(0)0,(4)(0)0f f f ∴=∴==,(2)(0)0,(3)(1)(1)3f f f f f ===−=−=−(1)(2)(3)(4)0f f f f ∴+++=,()()()()()12...50012123f f f f f ∴+++=⨯++=.故答案为:3.16.25− 【解析】因为()()2f x f x =+, 所以511222f f a ⎛⎫⎛⎫−=−=−+ ⎪ ⎪⎝⎭⎝⎭,9112210f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以11210a −+=,解得35a =, 所以()()()25315f a f f ==−=−. 故答案为:25− 17.(1)1;(2)偶函数,证明见解析.【解析】(1)依题意,()()()()()()22f x g x f x f x g x g x −=−()()01f x x f =−==.(2)由(1)知()()22001f g −=,∴()()220010g f =−=,即()00g =,∴()()()()()()()000f x f x f f x g g x f x −=−=−=,又因为()f x 的定义域为R ,所以函数()f x 为偶函数.18.(1)(0)0f =,(2)4f −=−;(2)31(,](,)22−∞−+∞(答案不唯一). 【解析】(1)由()()()f x y f x f y +=+,令0x y ==,得(0)2(0)f f =,所以(0)0f =,令1,1x y ==−,得(0)(1)(1)f f f =+−,因为(1)2f =,所以(1)2f −=−,令1x y ==−,得(2)(1)(1)4f f f −=−+−=−,(2)答案不唯一,例如:()2f x x =满足条件.由(21)1()1f x f x +≥−,得2(21)2(21)23110212121x x x x x x +++≥⇔−=≥−−−, 解得:32x ≤−或12x >, 故解集为31(,](,)22−∞−+∞ 19.证明见解析【解析】∵()f x 是定义在R 上的奇函数,∴()()f x f x −=−,∵()y f x =的图象关于直线x a =(0a ≠,为常数)对称,所以()()f a x f a x +=−,∴(2)[()][()]()()f a x f a a x f a a x f x f x +=++=−+=−=−.从而(4)(2)()f a x f a x f x +=−+=.∴()f x 是周期函数,且周期为4a .20.(1)0;(2)证明见解析,正周期为24;(3)证明见解析.【解析】(1)因为()f x 满足(1)y f x =+为R 上奇函数,所以(1)(1)f x f x −=−+,所以()(2)0f x f x −++=,又因为()f x 满足(1)=−y f x 为R 上偶函数,所以(1)(1)f x f x −−=−,所以()(2)f x f x −=−,所以有(2)(2)0f x f x −++=,所以(2)(2)f x f x +=−−,所以(4)()f x f x +=−,所以(8)(4)()f x f x f x +=−+=,所以()f x 的一个周期为8,所以(3)(5)2(5)f f f −+=,在()(2)0f x f x −++=中令1x =−,得(1)(1)0f f +=,所以(1)0f =,在(4)()f x f x +=−中令1x =,得(5)(1)f f −=,所以(5)(1)0f f =−=,所以(3)(5)0f f −+=;(2)因为11(3)22g x +=≥,所以1(6)2g x +=12=因为[]11(3)1(3)122g x g x ⎡⎡+−+=+−⎢⎢⎣⎣ 21()()4g x g x =−+ 21()2g x ⎡⎤=−⎢⎥⎣⎦,所以111(6)()222g x g x +==+−()g x =,所以函数()g x 的一个周期为6,因为()()()h x f x g x =+,所以(24)(83)(64)()()()h x f x g x f x g x h x +=+⨯++⨯=+=,所以()h x 是周期函数,一个正周期为24;(3)充分性:当12b x x a +=−时,12b x x a=−−, 此时()()221222222b b b f x f x a x b x c ax bx c f x a a a ⎛⎫⎛⎫⎛⎫=−−=−−+−−+=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以充分性满足;必要性:因为二次函数2()(0)f x ax bx c a =++≠的广义周期为()k x ,所以(())()f k x f x =,所以22(())()a k x bk x c ax bx c ++=++,所以22()[()]0a k x x b k x x ⎡⎤−+−=⎣⎦,又因为()k x x =不恒成立,所以[()]0a k x x b ++=,所以()b k x x a =−−,又因为()()12f x f x =,且()()()11f k x f x =,所以()()()21f k x f x =,因为12x x ≠,所以1212()b b k x x x x a a +=−−+≠−, 所以()12k x x =,即12b x x a −−=,也即12b x x a +=−, 所以必要性满足.所以:对任意的12,x x ∈R ,12x x ≠,()()12f x f x =成立的充要条件是12b x x a +=−.。
抽象函数专题(1)抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊条件的函数 抽象函数知识点:1、抽象函数的定义域:①已知()f x 的定义域,求[]()f g x 的定义域②已知[]()f g x 的定义域,求()f x 的定义域2、抽象函数表达式与函数值3、抽象函数的模型构造①线性函数型抽象函数f (x )=kx (k ≠0)----f (x ±y )=f (x )±f (y )②指数函数型的抽象函数f (x )=a x ---- f (x +y )=f (x )f (y );f (x -y )=)()(y f x f ③对数函数型的抽象函数f (x )=lo g a x (a >0且a ≠1)-f (x ·y )=f (x )+f (y );f (yx )= f (x )-f (y ) ④幂函数型的抽象函数2()f x x = ---------()()()f xy f x f y =,()()()xf x f y f y =; 练习题:1、已知函数)(x f 对任意实数x ,y ,均有)()()(y f x f y x f +=+,且当0>x 时,0)(>x f ,2)1(-=-f ,求)(x f 在区间[-2,1]上的值域。
2、定义在R 上的函数)(x f 满足:对任意实数,m n ,总有)()()(n f m f n m f ⋅=+,且当0x >时,1)(0<<x f .(1)试求)0(f 的值;(2)判断)(x f 的单调性并证明你的结论;(3)试举出一个满足条件的函数)(x f .3、已知函数)(x f 满足定义域在),0(+∞上的函数,对于任意的),0(,+∞∈y x ,都有)()()(y f x f xy f +=,当且仅当1>x 时,0)(<x f 成立,(1)设),0(,+∞∈y x ,求证)()()(x f y f xy f -=; (2)设),0(,21+∞∈x x ,若)()(21x f x f <,试比较1x 与2x 的大小;(3)解关于x 的不等式[]01)1(2>+++-a x a x f4.已知定义在()()-,00,+∞⋃∞上的函数f(x)对任何x,y 都有f(xy)=f(x)f(y),且f(x)>0,当x>1时,有f(x)<1.(1)判断f(x)的奇偶性(2)判断并证明f(x)在(0,+∞)上的单调性.(3)求解不等式f (23-4x x )≥1抽象函数问题(2)1、下列结论:①函数y =2y =是同一函数;②函数(1)f x -的定义域为[1,2],则函数2(3)f x 的定义域为;③函数22log (23)y x x =+-的递增区间为(1,)-+∞;④若函数(21)f x -的最大值为3,那么(12)f x -的最小值就是3-其中正确的个数为 ( )A. 0个B. 1个C. 2个D. 3个2、定义在R 上的函数()f x 满足1(0)0,()(1)1,()()52xf f x f x f f x =+-==,且当1201x x ≤<≤时,12()()f x f x ≤,则1()2007f 等于( ) A. 12 B. 116 C. 132 D. 1643、已知()f x 是定义在R 上的函数,且3()[1()]1()2f x f x f x +-=+,(2)2f =,则()2009f 值为( )A. 2+B. 22 D. 2-4、已知(1)(1),()(2)f x f x f x f x +=-=-+,方程()0f x =在[0,1]内有且只有一个根12x =,则()0f x =在区间[]0,2013内根的个数为( ) A. 2011 B. 1006 C. 2013 D. 1007 5、已知函数()f x 对任意实数x ,y 满足()()()f x y f x f y +=+,且(1)2f ≥.若存在整数m ,使得2(2)40f m m ---+= ,则m 取值的集合为______.6、定义在R 上的函数()f x 满足:(2)()0f x f x ++=,且函数(1)f x +为奇函数,对于下列命题:①函数()f x 满足(4)()f x f x +=;②函数()f x 图象关于点(1,0)对称;③函数()f x 的图象关于直线2x =对称;④函数()f x 的最大值为(2)f ;⑤(2009)0f =. 其中正确的序号为_________.7、定义在R 上的函数()f x ,(0)0f ≠,当0x >时,()1f x >,且对任意实数,a b ,有()()()f a b f a f b +=⋅,求证:(1)(0)1f = (2)证明:()f x 是R 上的增函数;(3)若2()(2)1f x f x x ⋅->,求x 的取值范围.8、已知()f x 是定义在(0,)+∞上的增函数,且满足 ()()()f xy f x f y =+, 1()12f =- (1)求证:(2)1f = (2)求不等式()(3)1f x f x -->的解集.9、已知函数f (x )对任意实数x 、y 均有f (x +y )+2=f (x )+f (y ),且当x >0时,f (x )>2,f (3)= 5,求不等式3)22(2<--a a f 的解.。
抽象函数浅谈对于抽象函数,一直是高中学生遇到的一个难点,现我们对抽象函数进行简单的分析。
题型一:一次函数模型①正比例函数:kx x f y f x f y x f y f x f y x f =⇔⎭⎬⎫-=-+=+)()()()()()()(。
(2019地二,高一月考,T12)例题:已知函数)(x f 对任意的y x ,,都满足函数)()()(y f x f y x f +=+,且满足0>x ,0)(<x f ,试求函数)(x f 的单调性和奇偶性。
②一次函数b kx x f b y f x f y x f +=⇔-+=+)()()()(。
变式题:已知函数)(x f 对任意的y x ,,都满足2)()()(-+=+y f x f y x f ,且满足0>x ,2)(>x f ,求函数的单调性。
题型二:指数函数模型①指数函数模型:x a x f y f x f y x f y f x f y x f =⇔⎪⎭⎪⎬⎫=⋅=+)()()(()()()(。
②指数类函数模型:[]t a x f t t y f x f t y f x f y x f x +=⇔+++-⋅=+)()()()()()(2。
题型三:对数函数模型①对数函数模型:x x f y f x f y x f y f x f y x f a log )()()()()()()(=⇔⎪⎭⎪⎬⎫-=+=⋅。
②对数类函数模型:t x x f t y f x f y x f a +=⇔-+=⋅log )()()()(。
题型四:幂函数模型①幂函数模型:a x x f y f x f y x f y f x f y x f =⇔⎪⎭⎪⎬⎫=⋅=⋅)()()()()()()(。
②幂函数类函数模型:[]t x x f t t y f x f t y f x f y x f a +=⇔+++-⋅=⋅)()()()()()(2。
(2018杭高,高三月考,T22)例题:已知函数)(x f 的定义域是{}0>x x ,并且满足:当1>x 时,2)(>x f ;),0(,21+∞∈∀x x ,都有2)()()()()(212121+--=x f x f x f x f x x f 。
2025高三一轮加强专题4:抽象函数一、单选题1.定义在R 上的函数()f x 满足对任意实数,x y 都有()()()1f x y f x f y +=+-,若0x >时,()1f x >,则()f x ()A .先单调通淢后单调递增B .在R 上单调递增C .在R 上单调通减D .单调性不确定2.已知函数()f x 的定义域为R ,()()()f a f b f a ab b -=-,则()A .()00f =B .()12f =C .()1f x -为偶函数D .()1f x -为奇函数3.已知定义在R 上的函数()f x 满足()()()()2f x y f x y f x f y +-=+,且()00f ≠,则下列结论中错误的是()A .()01f =B .()y f x =为奇函数C .()y f x =不存在零点D .()()2f x f x =4.已知函数()f x 的定义域为R ,且()()2222f f x y x y y f f x +-⎛⎫⎛⎫⋅=- ⎪ ⎪⎝⎭⎝⎭,122f x ⎛⎫+ ⎪⎝⎭的图像关于直线12x =对称,()11f =,()f x 在[]1,0-上单调递增,则下列说法中错误的是()A .()()240f f +=B .()f x 的一条对称轴是直线32x =C .()202342f f ⎛⎫> ⎪⎝⎭D .()202411k f k ==∑5.已知函数()f x 的定义域为R ,函数()()()11F x f x x =+-+为偶函数,函数()()231G x f x =+-为奇函数,则下列说法错误的是()A .函数()f x 的一个对称中心为()2,1B .()01f =-C .函数()f x 为周期函数,且一个周期为4D .()()()()12346f f f f +++=6.已知函数()f x 定义域为R ,且()()()22yf x xf y xy y x -=-,下列结论成立的是()A .()f x 为偶函数B .()22f =-C .()f x 在[]1,2上单调递减D .()f x 有最大值二、多选题7.已知定义在(,0)(0,)-∞+∞ 上的函数()f x 满足()()1()f x f y f xy y x xy--=++,则()A .()f x 是奇函数B .()f x 在(,0)-∞上单调递减C .()f x 是偶函数D .()f x 在(0,)+∞在上单调递增8.定义在R 上的非常数函数()f x 的导函数为()f x ',若()2f x +为偶函数且()()23f x f x ++=.则下列说法中一定正确的是()A .()f x 的图象关于直线2x =对称B .6是函数()f x 的一个周期C .()312f =D .()f x '的图象关于直线3x =对称9.已知函数()f x 及其导函数()f x '的定义域都是R ,若函数()f x 的图象关于点31,2⎛⎫ ⎪⎝⎭对称,()f x '为偶函数,则()A .312f ⎛⎫= ⎪⎭'⎝B .()()12123f x f x -++=C .()f x '的图象关于直线1x =对称D .()f x '的最小周期是110.已知函数()f x 的定义域为R ,且()10f =,若()()()2f x y f x f y +=++,则下列说法正确的是()A .()14f -=-B .()f x 有最大值C .()20244048f =D .函数()2f x +是奇函数11.已知()f x ,()g x 都是定义在R 上的函数,对任意实数x ,y 满足()()()()2f x y f x y g x f y +--=,()()210f f +=且()()210f f ⋅≠,则下列结论正确的是A .()00f =B .()112g =-C .()f x 为奇函数D .()202412024n f n ==∑12.已知函数()f x (()f x 不恒为零),其中()f x '为()f x 的导函数,对于任意的,x y ∈R ,满足()()()()22f x y f x y f x f y +-=-,且()()11,20f f ==,则()A .()f x 是偶函数B .()1f x '+关于直线1x =对称C .()20,f n n =∈ND .81()1k f k ==-∑13.已知函数()f x 的定义域为R ,()11f =,()()()()()f x y f x f y f x f y +=++,则()A .()01f =-B .()()0f x f x -≤C .()()2f x y f x =+为奇函数D .115212122k k f =-⎛⎫< ⎪⎝⎭∑参考答案:1.B【分析】利用函数单调性的定义即可判断.【详解】任取12x x <,令211,x x x y x =-=,则()()()()212111f x f x f x x x f x -=-+-()()()()21112111f x x f x f x f x x =-+--=--,因为210x x ->,所以()211f x x ->,所以()()210f x f x ->,所以()f x 在R 上单调递增.故选:B.2.D【分析】对于A ,令0b =,可求出(0)f 进行判断,对于B ,令1a b ==,可求出(1)f 进行判断,对于CD ,令0,a b x ==,可求出()f x ,从而可求出()1f x -,进而可判断其奇偶性.【详解】对于A ,令0b =,则()()()00f a f f a -=,得()()010f a f -=⎡⎤⎣⎦,所以()0f a =或()01f =,当()0f a =时,()()()f a f b f a ab b -=-不恒成立,所以()01f =,所以A 错误,对于B ,令1a b ==,则()()()1110f f f -=,得(1)[(1)1]0f f -=,所以()10f =,或()11f =,由选项A 可知()10f ≠,所以()11f =,所以B 错误,对于CD ,令0,a b x ==,则()()()00f f x f x -=-,由选项A 可知()01f =,所以()1f x x =-,所以()111f x x x -=--=-,令()()1g x f x x =-=-,则()()g x x g x -==-,所以()g x 为奇函数,即()1f x -为奇函数,所以C 错误,D 正确,故选:D 3.B【分析】根据题意,结合抽象函数的赋值法,列出方程,逐项判定,即可求解.【详解】对于A 中,由2()()()()f x y f x y f x f y +-=+,令0x y ==,可得22(0)2(0)f f =,因为(0)0f ≠,所以(0)1f =,所以A 不符合题意;对于B 中,函数()f x 的定义域为全体实数,由(0)1f =,显然不符合()()f x f x -=-,所以函数()f x 不是奇函数,所以B 符合题意;对于C 中,由2()()()()f x y f x y f x f y +-=+,令0y =,可得22()()(0)f x f x f =+,即22()()10f x f x --=,解得()1f x =或1()2f x =-,所以函数()y f x =没有零点,所以C 不符合题意;对于D 中,由2()()()()f x y f x y f x f y +-=+,令y x =,可得2(2)(0)()()f x f f x f x =+,所以2(2)2()f x f x =,即(2)()f x f x =,所以D 不符合题意.故选:B .4.D【分析】令0x y ==,可求得()00f =,令x y =-,可得()()f x f x -=-,利用已知可得()f x 关于32x =对称,可判断B ;可求得函数的周期为6,()f x 关于()3,0对称,计算可判断AD ;由题意可得()f x 在[]2,4上单调递减,可判断C.【详解】()()2222x y x y f x f y f f +-⎛⎫⎛⎫⋅=- ⎪ ⎪⎝⎭⎝⎭,令0x y ==,可得()()2200000022f f f f +-⎛⎫⎛⎫⋅=- ⎪ ⎪⎝⎭⎝⎭,解得()00f =;令x y =-,()()2222x x x x f x f x f f -+⎛⎫⎛⎫⋅-=- ⎪ ⎪⎝⎭⎝⎭,则()()()2f x f x f x ⋅-=-,∴()()f x f x -=-,∴()f x 为奇函数;∵122f x ⎛⎫+ ⎪⎝⎭的图像关于12x =对称,()()11332121222222f x f x f x f x ⎛⎫⎛⎫⎛⎫⎛⎫-+=++⇒-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,∴()f x 关于32x =对称,故B 正确;∴3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,∴()()3()f x f x f x -=+=-,∴()6(3)()f x f x f x +=-+=,即()f x 的周期为6,∵()f x 关于32x =对称,可得()f x 关于()3,0对称∴()()600f f ==,()()511f f =-=-,()()411f f =-=-,()30f =,()()211f f ==,所以()()240f f +=,2024()337[(1)(2)(3)(4)(5)(6)](1)(2)2f k f f f f f f f f =+++++++=∑小,故A 正确,D 错误;∵202377(1686)222f f f ⎛⎫⎛⎫=+⨯= ⎪⎪⎝⎭⎝⎭,又()f x 在[]1,0-上单调递增∴()f x 在[]2,4上单调递减,所以7(4)2f f ⎛⎫> ⎪⎝⎭,即()202342f f ⎛⎫> ⎪⎝⎭,故C 正确.故选:D.5.C【分析】对于A ,由()G x 为奇函数,则()()G x G x -=-,再将()()231G x f x =+-代入化简可求出对称中心;对于B ,由选项A 可得(2)1f =,再由()F x 为偶函数可得(1)(1)2f x f x x +--=,令1x =可求出(0)f ;对于C ,由()f x 的图象关于点(2,1)对称,结合(0)1f =-求出(4)f 进行判断;对于D ,利用赋值法求解判断.【详解】对于A ,因为()()231G x f x =+-为奇函数,所以()()G x G x -=-,即(23)1[(23)1]f x f x --=-+-,所以(23)(23)2f x f x -++=,所以(2)(2)2f x f x -++=,所以函数()f x 的图象关于点(2,1)对称,所以A 正确,对于B ,在(2)(2)2f x f x -++=中,令0x =,得2(2)2f =,得(2)1f =,因为函数()()()11F x f x x =+-+为偶函数,所以()()F x F x -=,所以()()()()1111f x x f x x ---=+-+,所以(1)(1)2f x f x x +--=,令1x =,则(2)(0)2f f -=,所以1(0)2f -=,得(0)1f =-,所以B 正确,对于C ,因为函数()f x 的图象关于点(2,1)对称,(0)1f =-,所以(4)3f =,所以(0)(4)f f ≠,所以4不是()f x 的周期,所以C 错误,对于D ,在(2)(2)2f x f x -++=中令1x =,则(1)(3)2f f +=,令2x =,则(0)(4)2f f +=,因为(0)1f =-,所以(4)3f =,因为(2)1f =,所以()()()()12346f f f f +++=,所以D 正确,故选:C【点睛】关键点点睛:此题考查抽象函数的奇偶性、对称性和周期性,解题的关键是由已知条件化简后利用赋值法分析判断,考查计算能力,属于较难题.6.D【分析】利用题设结合赋值法可得出()()2112221f x x f x ⎡⎤+⎢⎥⎣=⎦-+,进而结合二次函数性质一一判断各选项,即可得答案.【详解】由于函数()f x 的定义域为R ,且()()()22yf x xf y xy y x -=-,令2y =,则()()()24222f x xf x x -=-,得()()2112221f x x f x ⎡⎤+⎢⎥⎣=⎦-+,2x =时,()()2212222f f +⎡⎤⎣⎦=-⨯+恒成立,无法确定()22f =-,B 不一定成立;由于()22f =-不一定成立,故()()2112221f x x f x ⎡⎤+⎢⎥⎣=⎦-+不一定为偶函数,A 不确定;由于()()2112221f x x f x ⎡⎤+⎢⎥⎣=⎦-+的对称轴为()1212x f =⋅+⎡⎤⎣⎦与[]1,2的位置关系不确定,故()f x 在[]1,2上不一定单调递减,C 不确定,由于()()2112221f x x f x ⎡⎤+⎢⎥⎣=⎦-+表示开口向下的抛物线,故函数()f x 必有最大值,D 正确.故选:D【点睛】关键点睛:解答本题的关键是利用赋值法确定函数()()2112221f x x f x ⎡⎤+⎢⎥⎣=⎦-+,进而结合二次函数性质求解.7.AB【分析】令1x y ==-,求出()1f ,令1x y ==,求出()1f -,再分别令1y =-和1y =,即可求出函数()f x 的解析式,进而可得函数性质.【详解】定义在(,0)(0,)-∞+∞ 上的函数()f x 满足()()1()f x f y f xy y x xy--=++,令1x y ==-,则()()1211f f =-+,所以()113f =,令1x y ==,则()()1211f f =-+,所以()113f -=-,令1y =-,则()()()()()1111233f f x f x f x f x xx x x x-=--+-=--+-=---,所以()13f x x-=-,令1y =,则()()()111111333f f x f x xx x x x x-=-++=--+=,所以()13f x x =,因为()()13f x f x x-=-=-,且定义域关于原点对称,所以函数()f x 是奇函数,由反比例函数的单调性可得函数()13f x x=在(,0)-∞和(0,)+∞上单调递减.故选:AB.8.ACD【分析】根据偶函数的性质即可求解A ,根据4是函数()f x 的一个周期,利用反证法即可求解B ,由赋值法求解C ,求导,即可判断D.【详解】对于A :因为()2f x +是偶函数,所以()()22f x f x -+=+,即()f x 的图象关于直线2x =对称,所以A 正确;对于B :由()()23f x f x ++=得()()243f x f x +++=,所以()()4f x f x =+,即4是函数()f x 的一个周期,若6也为函数()f x 的一个周期,则2为函数()f x 的一个周期,那么()()()232f x f x f x ++==,即()32f x =为常数函数,不合题意,所以B 错误;对于C :由A 可知()()13f f =,对于()()23f x f x ++=可令1x =得()()133f f +=,所以()312f =,所以C 正确;对于D :由A 可得()()22f x f x -+=+,求导可得()()220f x f x ''++-=即()()40f x f x ''+-=,对于()()23f x f x ++=求导可得()()20f x f x '+'+=,所以()()42f x f x -='+',即函数()f x '的图像关于直线3x =对称,所以D 正确;故选:ACD.9.BC【分析】用举反例的方法得选项A ,D 错误,再由对称性和对称性与周期性之间的关系对剩余选项逐一分析即可.【详解】因为()f x '为偶函数,函数()f x 的图象关于点31,2⎛⎫⎪⎝⎭对称,对于函数() 1.5f x x =,显然其图象关于点31,2⎛⎫⎪⎝⎭对称,且() 1.5f x '=,故() 1.5f x '=为偶函数,即() 1.5f x x =满足条件()f x '为偶函数,且其图象关于点31,2⎛⎫⎪⎝⎭对称,但33122f ⎛⎫=⎪⎭'≠ ⎝,故A 错误;()f x '的最小正周期不是1,D 错误;函数()f x 的图象关于点31,2⎛⎫⎪⎝⎭对称,()()113f t f t ∴-++=,令2t x =,得()()12123f x f x -++=,故B 正确;函数()f x 的图象关于点31,2⎛⎫⎪⎝⎭对称,()(2)3f x f x ∴=--+,两边求导得:()()2f x f x ''=-,()f x ∴'的图象关于直线1x =对称,故C 正确;故选:BC.10.AD【分析】根据题意,利用抽象函数的性质,及赋值法并结合选项,即可逐项判定,从而求解.【详解】对于A 中,令0x y ==,可得()02f =-,令1,1x y ==-,则()()()11112f f f -=-++,解得()14f -=-,所以A 正确;对于B 中,令121,x x y x x ==-,且12x x <,则()()()1211212f x x x f x f x x +-=+-+,可得()()()21212f x f x f x x -=-+,若0x >时,()2f x >-时,()()210f x f x ->,此时函数()f x 为单调递增函数;若0x <时,()2f x <-时,()()210f x f x -<,此时函数()f x 为单调递减函数,所以函数()f x 不一定有最大值,所以B 错误;对于C 中,令1y =,可得()()()()1122f x f x f f x +=++=+,即()()12f x f x +-=,所以()()()()()()()2024202420232023202232f f f f f f f ⎡⎤⎡⎤⎡⎤=-+-++-⎣⎦⎣⎦⎣⎦ ()()()2112023204046f f f ⎡⎤+-+=⨯+=⎣⎦,所以C 错误;对于D 中,令y x =-,可得()()()02f f x f x =+-+,可得()()220f x f x ++-+=,即()()22f x f x +=--+⎡⎤⎣⎦,所以函数()2f x +是奇函数,所以D 正确;故选:AD.【点睛】关键点点睛:本题主要是对抽象函数利用赋值法,去求解出()14f -=-,及证明函数()2f x +是奇函数.11.ABC【分析】令0y =即可判断A ;令1x y ==即可判断B ;令1x =可得()(1)(1)f x f x f x =--+,结合奇函数的定义即可判断C ;由选项C ,令1x x =-可得(1)()(2)f x f x f x -=+-,求出()f x 的周期即可求解.【详解】()()2()()f x y f x y g x f y +--=.A :令0y =,得()()2()(0)0f x f x g x f -==,则(0)0f =,故A 正确;B :令1x y ==,得(2)(0)2(1)(1)f f g f -=,即(2)2(1)(1)f g f =,又(2)(1)0f f +=且(2)(1)0f f ≠,所以2(1)(1)(1)0g f f +=,解得1(1)2g =-,故B 正确;C :令1x =,得(1)(1)2(1)()f y f y g f y +--=,即(1)(1)()f y f y f y +--=-,得()(1)(1)f y f y f y =--+,所以()(1)(1)f x f x f x =--+,得()(1)(1)f x f x f x -=+--,所以()()0f x f x +-=,则()f x 为奇函数,故C 正确;D :由选项C 知()(1)(1)f x f x f x =--+,又(1)(1)f x f x -+=--,得()(1)(1)f x f x f x =-+--①,令x 替换成1x -,得(1)()(2)f x f x f x -=+-②,①②相加,得(1)(2)0f x f x --+-=,则(2)(1)(1)f x f x f x -=---=+,得()(3)f x f x =+,即()f x 的周期为3,所以(0)(3)0f f ==,因为(1)(2)(3)0,202467432f f f ++==⨯+,所以20241()(1)(2)(3)(2024)(1)(2)0n f n f f f f f f ==++++=+=∑ ,故D 错误.故选:ABC【点睛】思路点睛:对于含有,x y ,的抽象函数的一般解题思路是:观察函数关系,发现可利用的点,以及利用证明了的条件或者选项;抽象函数一般通过赋值法来确定、判断某些关系,特别是有,x y 双变量,需要双赋值,可以得到一个或多个关系式,进而得到所需的关系.此过程中的难点是赋予哪些合适的值,这就需要观察题设条件以及选项来决定.12.BCD【分析】对于A :结合赋值法与函数奇偶性的定义计算;对于B :结合复合函数导数公式与对称性可对于CD :借助赋值法结合周期性分析求解.【详解】因为()f x 的定义域为R对于选项A :令0x y ==,可得()()()()2200000f f f f =-=,即()00f =,令0x =,可得()()()()()2220f y f y f f y f y -=-=-,且()f y 不恒为零,则()()f y f y -=-,即()()f x f x -=-,所以()f x 是奇函数,故A 错误;对于选项B :令11x ty t=+⎧⎨=-⎩,可得22(2)(2)(1)(1)0f f t f t f t =+--=,即22(1)(1)f x f x +=-,即22()(2)f x f x =-,可得()(2)f x f x =±-,令2x =,可得2(2)(2)()f y f y f y +-=-,即2(2)(2)()f x f x f x +-=-,当()(2)0f x f x =-≠时,有()()()2f x f x f x +=-=-,所以(2)(2)()()0f x f x f x f x ++-=-+=;当()(2)0f x f x =--≠,有(2)()f x f x +=,可得(2)(2)()()0f x f x f x f x ++-=-=,当()(2)0f x f x =-=,结合()()f x f x -=-,有()(2)f x f x -=--,可得()(2)0f x f x =-+=,所以(2)(2)0f x f x ++-=;综上所述:(2)(2)0f x f x ++-=,两边同时求导可得(2)(2)f x f x +=-'',可知()f x '关于直线2x =对称,所以(1)f x '+关于直线1x =对称,故B 正确;对于选项C :由选项B 可知:()(2)f x f x =±-,若()()(2)2f x f x f x =-=--,即()(2)f x f x +=-,可得()()(4)2f x f x f x +=-+=,可知4为()f x 的周期;若()()(2)2f x f x f x =--=-,即()(2)f x f x +=,可得()()(4)2f x f x f x +=+=,可知4为()f x 的周期;综上所述:4为()f x 的周期.且()()200f f ==,所以()20,f n n =∈N ,故C 正确;对于选项D :由选项B 可知:(2)(2)0f x f x ++-=,令1x =,可得(3)(1)0f f +=,可得()()()()12340f f f f +++=,结合周期性可得()()()81()1011k f k f f f =-=-+=-=-∑,故D 正确.故选:BCD.【点睛】方法点睛:函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.13.BCD【分析】利用赋值法求得()0f 即可判断A ;利用赋值可得()2222x x f x f f ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,并且判断出()1f x ≠-,由不等式的性质可得()10f x +>,即可判断B ;利用函数的奇偶性以及()0g 的值即可判断C ;利用等比数列的判定可得()f n的通项公式,利用等比数列的求和公式可得1152121252k k f =-⎛⎫= ⎪⎝⎭∑,即可判断D .【详解】令1x =,0y =,则()()()()()11010f f f f f =++,将()11f =代入得()200f =,即()00f =,故A 错误;由()00f =,令y x =-可得()()()()0f x f x f x f x =+-+-,若存在x 使得()1f x =-,则上式变为01=-,显然不成立,所以()1f x ≠-,又()2221122222x x x x x f x f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,因为()1f x ≠-,所以()1f x >-,将()()()()0f x f x f x f x =+-+-整理为()()()()1f x f x f x -+=-,因为()1f x >-,即()10f x +>,所以()()0f x f x -≤,故B 正确;令()()()()R 2f x g x x f x =∈+,则()()()()()()()()()()()()()()()202222f x f x f x f x f x f x g x g x f x f x f x f x +-+--+-=+==+-++-+,且()()()00002f g f ==+,所以()g x 为奇函数,故C 正确;当*n ∈N 时,()()()()()()11121f n f n f f n f f n +=++=+,()()1121f n f n ++=+,所以(){}1f x +是以2为首项,2为公比的等比数列,所以()12n f n +=,由()2112x f x f ⎛⎫+=+ ⎪⎝⎭可知2122n n f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,因为12n f ⎛⎫>- ⎪⎝⎭,所以()*221N 2n n f n ⎛⎫=-∈ ⎪⎝⎭,所以)521111155222111221215252212k k k k f -==-⎛⎫-⎛⎫=-=-=-< ⎪ ⎪-⎝⎭⎝⎭∑∑,故D 正确;故选:BCD .【点睛】关键点点睛:关键是充分利用函数的奇偶性,等比数列的判定与证明以及等比数列的前n 项和进行分析,由此即可顺利得解.。
专题 抽象函数一、求抽象函数定义域1.已知函数f (21x -)定义域为[]1,3-, 求f (x )的定义域2.函数f(x)的定义域为[0,2],则函数f(x +1)的定义域是________.3.已知函数f [ 0,3 ],求f (x )的定义域二.求抽象函数解析式求函数解析式的常用方法:待定系数法、配凑法、换元法、方程组、特殊值法(1)若f [ f (x )] = 4x+3,求一次函数f (x )的解析式(2)已知f (x )= 22x x -,求f (1x -)的解析式(3) 已知f (x )-2 f (-x )= x ,求函数f (x )的解析式(4)设对任意数x ,y 均有()()222233f x y f y x xy y x y +=++-++,求f (x )的解析式.练习:1.已知f (x )是二次函数,且()()211244f x f x x x ++-=-+,求f (x )2.已知2 f (x )- f (-x )= x+1 ,求函数f (x )的解析式3.已知2 f (x )-f 1x ⎛⎫⎪⎝⎭ = 3x ,求函数f (x )的解析式4.已知对一切x ,y ∈R ,()()()21f x y f x x y y -=--+都成立,且f (0)=1,求f (x )的解析式.5.若x x f x f 4)1()(3=-,则)(x f =_____________________三、解抽象不等式1.已知:f (x)是定义在[-1,1]上的增函数,且f(x-1)<f(x 2-1),求x 的取值范围.2.已知f(x)是定义在(0,)+∞上的函数,满足条件f(x y)=f(x)+f(y);f(2)=1。
求:(1)证(8)3f = ;(2)求不等式()(2)3f x f x -->的解集。
3.函数()f x 对任意的,a b R ∈,都有()()()1f a b f a f b +=+-,并且当0x >时()1f x >.(1)求证:()f x 是R 上的增函数;(2)若(4)5f =,解不等式2(32)3f m m --<专题 函数的奇偶性【知识梳理】1. 偶函数定义:一般地,设函数)(x f y =的定义域为A ,如果对于任意的A x ∈,都有,那么称函数)(x f y =是偶函数。
抽象函数经典综合题33例(含详细解答)抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。
抽象函数问题既是教学中的难点,又是近几年来高考的热点。
本资料精选抽象函数经典综合问题33例(含详细解答)1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。
解 (1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴)(1)(x f x f =- 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0)(1)(>-=x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0(3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴1)()()()()(121212>-=-⋅=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x)又1=f(0), f(x)在R 上递增∴由f(3x-x 2)>f(0)得:3x-x 2>0 ∴ 0<x<3 2.已知函数()f x ,()g x 在R 上有定义,对任意的,x y R ∈有()()()()()f x y f x g y g x f y -=- 且(1)0f ≠(1)求证:()f x 为奇函数(2)若(1)(2)f f =, 求(1)(1)g g +-的值解(1)对x R ∈,令x=u-v 则有f(-x)=f(v-u)=f(v)g(u)-g(v)f(u)=f(u-v)=-[f(u)g(v)- g(u)f(v)]=-f(x)(2)f(2)=f{1-(-1)}=f(1)g(-1)-g(1)f(-1)=f(1)g(-1)+g(1)f(1)=f(1){g(-1)+g(1)} ∵f(2)=f(1)≠0∴g(-1)+g(1)=13.已知函数)(x f 对任意实数y x ,恒有)()()(y f x f y x f +=+且当x >0,.2)1(.0)(-=<f x f 又(1)判断)(x f 的奇偶性;(2)求)(x f 在区间[-3,3]上的最大值; (3)解关于x 的不等式.4)()(2)(2+<-ax f x f ax f解(1)取,0==y x 则0)0()0(2)00(=∴=+f f f取)()()(,x f x f x x f x y -+=--=则)()(x f x f -=-∴对任意R x ∈恒成立 ∴)(x f 为奇函数. (2)任取2121),(,x x x x <+∞-∞∈且, 则012>-x x0)()()(1212<-=-+∴x x f x f x f),()(12x f x f --<∴ 又)(x f 为奇函数 )()(21x f x f >∴ ∴)(x f 在(-∞,+∞)上是减函数. ∴对任意]3,3[-∈x ,恒有)3()(-≤f x f而632)1(3)1()2()12()3(-=⨯-==+=+=f f f f f 6)3()3(=-=-∴f f ∴)(x f 在[-3,3]上的最大值为6(3)∵)(x f 为奇函数,∴整理原式得 )2()()2()(2-+<-+f ax f x f ax f进一步可得)2()2(2-<-ax f x ax f而)(x f 在(-∞,+∞)上是减函数,222->-∴ax x ax.0)1)(2(>--∴x ax∴当0=a 时,)1,(-∞∈x当2=a 时,}1|{R x x x x ∈≠∈且当0<a 时,}12|{<<∈x ax x当20<<a 时, }12|{<>∈x a x x x 或 当a>2时,}12|{><∈x ax x x 或4.已知f (x )在(-1,1)上有定义,f (21)=-1,且满足x ,y ∈(-1,1)有f (x )+f (y )=f (xyy x ++1) ⑴证明:f (x )在(-1,1)⑵对数列x 1=21,x n +1=212nn x x +,求f (x n ); ⑶求证252)(1)(1)(121++->+++n n x f x f x f n(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x )∴f (x )为奇函数 (Ⅱ)解:f (x 1)=f (21)=-1,f (x n +1)=f (212n n x x +)=f (nn n n x x x x ⋅++1)=f (x n )+f (x n )=2f (x n ) ∴)()(1n n x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列∴f (x n )=-2n -1 (Ⅲ)解:)2121211()(1)(1)(11221-++++=+++n nx f x f x f 2212)212(21121111->+-=--=---=--n n n而2212)212(252-<+--=++-=++-n n n n ∴252)(1)(1)(121++->+++n n x f x f x f n5.已知函数N x f N x x f y ∈∈=)(,),(,满足:对任意,,,2121x x N x x ≠∈都有)()()()(12212211x f x x f x x f x x f x +>+;(1)试证明:)(x f 为N 上的单调增函数; (2)n N ∀∈,且(0)1f =,求证:()1f n n ≥+;(3)若(0)1f =,对任意,m n N ∈,有1)())((+=+n f m f n f ,证明:∑=<-ni if 141)13(12. 证明:(1)由①知,对任意*,,a b a b ∈<N ,都有0))()()((>--b f a f b a ,由于0<-b a ,从而)()(b f a f <,所以函数)(x f 为*N 上的单调增函数. (2)由(1)可知n N ∀∈都有f(n+1)>f(n),则有f(n+1)≥f(n)+1 ∴f(n+1)-f(n)1≥, ∴f(n)-f(n-1)1≥ ∙∙∙ ∴ f(2)-f(1)1≥∴f(1)-f(0)1≥由此可得f(n)-f(0)≥n ∴f(n)≥n+1命题得证(3)由任意,m n N ∈,有1)())((+=+n f m f n f 得()1f m = 由f(0)=1得m=0 则f(n+1)=f(n)+1,则f(n)=n+121)311(21311)311(31313131)13(121<-=--=+∙∙∙++=-∑=n n n ni if6.已知函数()f x 的定义域为[]0,1,且同时满足:(1)对任意[]0,1x ∈,总有()2f x ≥; (2)(1)3f =(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-. (I)求(0)f 的值; (II)求()f x 的最大值;(III)设数列{}n a 的前n 项和为n S ,且满足*12(3),n n S a n N =--∈.求证:123112332()()()()2n n f a f a f a f a n -⨯++++≤+-.解:(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥max ()(1)3f x f ∴==(III)*12(3)()n n S a n N =--∈1112(3)(2)n n S a n --∴=--≥1111133(2),10n n n n a a n a a --∴=≥=≠∴= 111112113333333()()()()()23()4n n n n n n nn f a f f f f f -∴==+≥+-≥-+ 111143333()()n n f f -∴≤+,即11433())(n n f a f a +≤+。
抽象函数专题研究抽象函数,即为给解析式的函数。
对于此类型的问题,应注意多从函数的奇偶性,单调性出发。
思想方法:数形结合,赋值法等。
做题时应该多猜想,多尝试,也就是数学中我们常说的,大胆猜测,小心求证。
【归纳拓展】抽象函数在高中数学中常常考查,解决的方法一般是赋值法,如果能知道与抽象函数相对应的具体函数,在解题中可以起到事半功倍的效果。
常见的抽象函数形式有如下几种:抽象函数 具体函数模型(1)()()()f x y f x f y +=+ 正比例函数 ()(0)f x kx k =≠(2)()()()f x y f x f y +=⋅ 指数函数 x y a =(0a >且1a ≠)(3)()()()f x y f x f y ⋅=+ 对数函数 log a y x = (0a >且1a ≠)(4)()()()f x y f x f y ⋅=⋅ 幂函数 a y x =★与单调性,奇偶性相关的题目(1)已知偶函数()f x 在区间[0,)+∞上单增,则满足(21)f x -<13()f 的x 的取值范围是 A. 1233(,) B.1233[,) C. 1223(,) D.1223[,)(2) 定义在R 上的偶函数()f x ,满足(2)()f x f x +=,且在区间[1,0]-上为增函数,则A.(3)(2)f f f <<B.(2)(3)f f f <<C.(3)(2)f f f <<D.(3)(2)f f f <<(3)若()f x 在[5,5]-上是奇函数,在区间[0,5]上是单调函数,且(3)(1)f f <,则判断(1),(3),(0),(1),(5)f f f f f ---的大小(4)已知()f x 是定义在[1,1]-上的奇函数,且()f x 单减 ①求函数(1)y f x =-的定义域②若(2)(1)0f x f x -+-<,求x 的取值范围★利用赋值法解决的相关问题(1)已知函数()f x ,当,x y R ∈时恒有()()()f x y f x f y +=+ ①求(0)f ②证()f x 为奇函数(2)若()f x 满足12()()3x f x f x +=,求①(1)f ,(2)f ②()f x 的解析式(3)已知()f x 的定义域为(0,)+∞,()()()f xy f x f y =+且12()1f =,若对于0<x<y都有()()f x f y >①求(1)f ②解不等式()(3)2f x f x -+-≥(4)已知定义在R 上的函数()f x ,对任意,x y R ∈都有()()()f x y f x f y +=+,且x>0时,()0f x <,(1)2f =-求①(1)f -②判断()f x 的奇偶性, 并证明你的结论③求()f x 在区间[3,3]-上的最值(6)已知函数()f x 的定义域(2,2)-,()0f x ≠,且对任意实数啊,a,b (2,2)∈-均满足()()2()()f a b f a b f a f b ++-=①求(0)f 的值②判断()f x 的奇偶性并说明理由③当(2,0)x ∈-时,()f x 为增函数,若(1)()f m f m -<成立,求m 的取值范围。
抽象函数的单调性专题突破或例1、 ()f x 对任意,x y R ∈都有:()()()f x y f x f y +=+,当0,()0x f x ><时,又知(1)2f =-,求()f x 在[]3,3x ∈-上的值域。
例2、()f x 对任意实数x 与y 都有()()()2f x f y f x y -=--,当0x >时,()2f x >(1)求证:()f x 在R 上是增函数; (2)若5(1)2f =,解不等式(23)3f a -<【专练】:1、已知函数f x ()对任意x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集。
2、定义在R 上的函数()f x 满足:对任意x ,y ∈R 都有()()()f x y f x f y -=-,且当0,()0x f x <<时(1)求证()f x 为奇函数; (2)若f(k ·3x)+f(3x-9x-2)<0对任意x ∈R 恒成立,求实数k 的取值范围.或例1、()f x 是定义在x>0的函数,且f(xy) = f(x) + f(y);当x>1时有f(x)<0;f(3) = -1. (1) (1)f 和1()9f 的值;(2)证明f(x)在x>0上是减函数;(3)解不等式f(x) + f(2-x) < 2。
例2、定义在(0,)+∞上函数()y f x =对任意的正数,a b 均有:()()()a f f a f b b=-,且当1x <时,()0f x >,(I )求(1)f 的值;(II )判断()f x 的单调性,【专练】:1、定义在(0,)+∞上的函数f(x)对任意的正实数,x y 有)()()(y f x f yxf -=且当01x <<时,()0f x <. 求:(1))1(f 的值. (2)若1)6(=f ,解不等式2)1()3(<-+xf x f ;2、 函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有1212()()()f x x f x f x ⋅=+,且当1x >时()0,(2)1f x f >=又, (1)求证:()f x 是偶函数;(2)()f x 在(0,)+∞上是增函数(3)解不等式2(21)2f x -<3、设()f x 是定义在(0,)+∞上的函数,对任意,(0,)x y ∈+∞,满足()()()f xy f x f y =+且当1x >时,()0f x >。
抽象函数专题几类抽象函数模型练习题1.定义域为(0,+ )的函数f (x )满足f (xy )=f (x )+f (y ),假设f (4)=2,则f (2)的值为_________. 答案:12.解:因为f (4)=f (2)+f (2),f (2)=f (2)+f (2), 所以f (4)=4 f (2),f (2)=12.2.函数f (x )满足f (x +y 2)=f (x )+2[f (y )]2且f (1)≠0,则f (2018)的值为_______. 答案:1009.解:f (0)=0,f (1)=12,f (x +1)=f (x )+12,f (2018)=f (1)+2017×12=1009.3.(1)函数f (x )满足f (x +y )=f (x )+f (y )+x y +1,假设f (1)=1,则f (8)= A .-1 B .1C .19D .43答案:D . 解:因为f (1)=1,y =1代入f (x +y )=f (x )+f (y )+x y +1,得 f (x +1)-f (x )=x +2,因此: f (2)-f (1)=3 f (3)-f (2)=4 ……… f (8)- f (7)=9累加,得f (8)=43.(2)函数f (x)满足f (x+y)=f (x)+f (y)+xy+1,假设f (1)=1,则f (-8)=A.-1 B.1 C.19 D.43答案:C.解:因为f (1)=1,y=1代入f (x+y)=f (x)+f (y)+xy+1,得f (x+1)-f (x)=x +2,因此:f (1)-f (0)=2f (0)-f (-1)=1f (-1)-f (-2)=0f (-2)-f (-3)=-1f (-3)-f (-4)=-2f (-4)-f (-5)=-3f (-5)-f (-6)=-4f (-6)-f (-7)=-5f (-7)-f (-8)=-6累加,得f (-8)=19.另外:f (x-x)=f (x)+f (-x)-x 2+1f (0)=f (x)+f (-x)-x 2+1f (x)+f (-x)=x 2-24.定义在R上的函数f (x)满足f (x1+x2)=f (x1)+f (x2)+1,则以下说法正确的选项是A.f (x)为奇函数B.f (x)为偶函数C.f (x)+1为奇函数D.f (x)+1为偶函数答案:C解:x1=x2=0代入f (x1+x2)=f (x1)+f (x2)+1,得f (0)=-1.x1=x,x2=-x代入f (x1+x2)=f (x1)+f (x2)+1,得f (x)+f (-x)=-2,f (x)图象关于点(0,-1)对称,所以f (x)+1为奇函数.5.设f (x)是定义在(0,+∞)上的单调增函数,满足f (xy)=f (x)+f (y),f (3)=1,当f (x)+f (x -8)≤2时x的取值范围是A.(8,+∞) B.(8,9]C.[8,9]D.(0,8)答案:B 解:2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x ) 是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.6.定义在[0,1]上的函数f (x )满足f (0)=0,f (x )+f (1-x )=2,f (x 5)=12 f (x ),当0≤ x 1< x 2≤1时,f (x 1)≤f (x 2),则f (325)的值为 .答案:127.(1)已知函数f (x )满足2xf (x )-3f (-x )-x +1=0,求f (x )的表达式. 解:因为2xf (x )-3f (-x )-x +1=0①,所以-2xf (-x )-3f (x )+x +1=0②. ①×2x 得4x 2f (x )-6 x f (-x )-2 x 2+2 x =0; ②×3得-6xf (-x )-9f (x )+3x +3=0②. 相减得4x 2f (x )+9f (x )-2 x 2+2 x -3x -3=0,所以f (x )=2 x 2+x +34x 2+9.(2)设函数f (x )满足f (x )-2f (1x )=x (x ≠0),求证:|f (x )|≥223.证明:因为f (x )-2f (1x )=x ①,所以f (1x )-2f (x )=1x ②.②×2得2f (1x )-4f (x )=2x③.①+③得f (x )=-x 3 -23x , |f (x )|=|x |3 +23|x|≥223.8.(12分)定义在R 上的单调函数f (x )满足f (x +y )=f (x )+f (y ),设f (3)=log 23. (1)判断函数()f x 的奇偶性;(2)假设f (k ⋅3x )+f (3x -9x -4)<0,求实数k 的取值范围. 解:(1)取x =y =0代入f (x )+f (y )=f (x +y ),得f (0)=0. 取y =-x 代入f (x )+f (-x )=f (0),得f (-x )=-f (x ). 所以f (x )为奇函数.(2)奇函数,(0)0f =,2(3)log 3f =,所以(3)(0)f f >, ()f x 是定义在R 上的单调函数,所以函数()f x 在R 上的单调递增函数,奇函数,不等式(3)(394)0x x x f k f ⋅+--<等价于(3)(394)x x x f k f ⋅<-++,因此3394x x x k ⋅<-++,即4133x xk <-++,因为413133x x -++≥-+=,当3log 2x =取等号,所以实数k 的取值范围是(,3)-∞. 9.(12分)已知定义在R 上的函数f (x )满足f (x )+f (y )=f (x +y ),当x >0时,f (x )<0,且f (1)=-23. (1)判断f (x )为奇偶性;(2)求证:f (x )在R 上是减函数;(3)求f (x )在[-3,6]上的最大值与最小值. 解:(1)取x =y =0代入f (x )+f (y )=f (x +y ),得f (0)=0. 取y =-x 代入f (x )+f (-x )=f (0),得f (-x )=-f (x ). 所以f (x )为奇函数.(2)设x 1,x 2∈R ,△x =x 2-x 1>0,那么△y =f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1)=f (△x ). 因为△x >0,所以△y <0,所以f (x )在R 上是减函数. (3)因为f (1)=-23,所以f (2)=f (1)+f (1)=-43;f (3)=f (1)+f (2)=-2;f (-3)=- f (3)=2;f (6)=f (3)+f (3)=-4.由(2)知f (x )在[-3,6]上,所以求f (x )在[-3,6]上的最大值为f (-3)=2,最小值为f (6)=-4. 10.(12分)已知定义在区间(0,+∞)上的函数f (x )满足f (x 2x 1)=f (x 2)-f (x 1),且当x >1时,f (x )<0.(1)证明:f (x )为单调递减函数.(2)假设f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)设x 1,x 2∈(0,+∞),△x =x 2-x 1>0,那么△y =f (x 2)-f (x 1)=f (x 2x 1).因为当x >1时,f (x )<0,x 2x 1>1,所以f (x 2x 1)<0,△y >0,所以f (x )为单调递减函数.(2)因为f (x )在(0,+∞)上是单调递减函数,所以f (x )在[2,9]上的最小值为f (9).由f (x 1x 2)=f (x 1)-f (x 2)得,f (93)=f (9)-f (3),而f (3)=-1,所以f (9)=-2.所以f (x )在[2,9]上的最小值为-2. 11.(12分)定义域为(-∞,0)∪(0,+∞)的函数f (x )满足f (x )+f (y )=f (xy ). (1)求证:f (1x )=-f (x );(2)求证:f (x )为偶函数;(3)当x >1时,f (x )>0,求证:f (x )在(-∞,0)上单调递减. 解:(1)取x =y =1代入f (x )+f (y )=f (xy ),得f (1)=0.取y =1x 代入f (x )+f (y )=f (xy ),得f (x )+f (1x )=0,故f (1x )=-f (x ).(2)取y =-1代入f (x )+f (y )=f (xy ),得f (x )+f (-1)=f (-x ).取x =y =-1代入f (x )+f (y )=f (xy ),f (-1)+f (-1)=f (1),所以f (-1)=0. 所以f (x )=f (-x ),f (x )为偶函数. (3)解法1:设x 1,x 2∈(0,+∞),△x =x 2-x 1>0,那么 △y =f (x 2)-f (x 1)=f (x 2)+f (1x 1 )=f (x 2x 1).因为x 2x 1>1,所以f (x 2x 1)>0,△y >0,所以f (x )在(0,+∞)上单调递增.由(2)知f (x )为偶函数,所以f (x )在(-∞,0)上单调递减. 解法2:设x 1,x 2∈(-∞,0),△x =x 2-x 1>0,那么 △y =f (x 2)-f (x 1)=f (x 2)+f (1x 1 )=f (x 2x 1 )=-f (x 1x 2).因为x 1x 2>1,所以f (x 1x 2)>0,△y <0,所以f (x )在(-∞,0)上单调递减.12.(12分)设定义在R 上的函数y =f (x )满足f (a +b )=f (a )·f (b ).当x >0时,f (x )>1,且f (0)≠0. (1)求证:f (0)=1; (2)求证:f (x )>0;(3)求证:f (x )是R 上的增函数;(4)假设f (x )·f (2x -x 2)>1,求x 的取值范围. 解:(1)取a =b =0代入f (a +b )=f (a )·f (b ),得f (0)2=f (0),因为f (0)≠0,所以f (0)=1. (2)a =x ,b =-x 代入f (a +b )=f (a )·f (b ),得f (0)=f (x )·f (-x ),即f (x )=1 f 〔-x 〕 .当x >0时,f (x )>1; x =0时,f (x )=1;当x <0时,-x >0,f (-x )>1,所以f (x )=1f 〔-x 〕 ∈(0,1).综上,f (x )>0.(3)设x 1,x 2∈R ,△x =x 2-x 1>0,那么 △y =f (x 2)-f (x 1)=f (x 1+△x )-f (x 1) =f (x 1)f (△x )-f (x 1)=f (x 1)[f (△x )-1] .因为 △x =x 2-x 1>0,所以f (△x )>1,故△y >0,f (x )是R 上的增函数.(4)f (x )·f (2x -x 2)=f (x +2x -x 2)=f (3x -x 2),1=f (0),所以不等式f (x )·f (2x -x 2)>1可化为f (3x -x 2)> f (0).由(2)知3x -x 2>0,得x 的取值范围为(0,3). 13.(12分)已知定义在R 上的不恒为零的函数f (x )满足 f (xy )=y f (x )+x f (y ). (1)判断f (x )的奇偶性;(2)假设f (2)=2,*n ∈N ,设a n = f 〔2n 〕2n ,b n = f 〔2n 〕n,求证数列{a n }为等差数列,数列{b n }为等比数列. 解:(1)取x =y =1代入f (xy )=y f (x )+x f (y ),得f (1)=0. 取x =y =-1代入f (xy )=y f (x )+x f (y ),得f (-1)=0.取y =-1代入f (-x )=-f (x )+x f (-1),得f (-x )=-f (x ) ,所以f (x )为奇函数. (2)因为f (2n +1)=f (2·2n )=2 f (2n )+2n f (2),所以f (2n +1)=2 f (2n )+2n +1.同除以2n +1,得 f 〔2n+1〕2n+1 = f 〔2n 〕2n+1,即a n +1-a n =1,所以数列{a n }为等差数列.a 1 = f 〔2〕2 =1,所以 a n =a 1+(n -1)×1=n ,所以f (2n )=2n .因为b n +1b n=2,所以数列{b n }为等比数列.14.(12分)定义在(0,+∞)上的函数f (x )满足:①对任意实数m ,f (x m )=mf (x );②f (2)=1. (1)求证:f (xy )=f (x )+f (y );(2)求证:f (x )是(0,+∞)上的单调增函数; (3)假设f (x )+f (x -3)≤2,求x 的取值范围. 解:(1)因为x ,y 均为正数,根据指数函数性质可知,总有实数m ,n 使得x =2m ,y =2n . 于是f (xy )=f (2m 2n )=f (2m +n )=(m +n )f (2)=m +n .而m =m f (2) =f (2m ) =f (x ), n =n f (2) =f (2n ) =f (y ),所以f (xy )=f (x )+f (y ). (2)取x =y =1代入f (xy )=f (x )+f (y ),得f (1)=0. 取y =1x 代入f (1)=f (x )+f (1x ),得-f (x )=f (1x ).设x 1,x 2∈(0,+∞),△x =x 2-x 1>0,那么 △y =f (x 2)-f (x 1)=f (x 2)+f (1x 1)=f (x 2x 1).因为x 2x 1>1,根据指数函数性质可知,总有正实数r ,使得x 2x 1 =2r ,所以△y =f (2r )=r >0.因此f (x )是(0,+∞)上的单调增函数.(3)由(1)知假设f (x )+f (x -3)=f (x 2-3 x ),2 =f (2)+f (2)=f (4). 所以不等式f (x )+f (x -3)≤2即f (x 2-3 x )≤f (4). 由⎩⎪⎨⎪⎧x 2-3 x ≤4x >0x -3>0得x 的取值范围为(3,4] 15.(12分)定义在[0,1]上的函数f (x )满足f (x ) ≥0,f (1)=1.当x 1 ≥0,x 2 ≥0,x 1+x 2 ≤1时,f (x 1+x 2)≥ f (x 1)+f (x 2) .(1)求f (0); (2)求f (x )最大值;(3)当x ∈[0,1]时,4[f (x )]2-4(2-a )f (x )+5-4a 0≥,求实数a 的取值范围. 解:(1)因为f (x ) ≥0,所以f (0) ≥0.取x 1=x 2=0代入f (x 1+x 2) ≥f (x 1)+f (x 2)得f (0) ≤0,因此f (0)=0. (2)设x 1,x 2∈[0,1],△x =x 2-x 1>0,则△x ∈[0,1],所以f (△x ) ≥0. △y =f (x 2)-f (x 1)=f (x 1+△x ) -f (x 1) ≥f (x 1 )+f (△x ) -f (x 1)=f (△x ) ≥0. 所以函数f (x )在[0,1]上不是减函数,f (x )最大值是f (1)=1.(3)当x ∈[0,1]时,f (x ) ∈[0,1].假设f (x )=1,则4-4(2-a )+5-4a =10≥,不等式4[f (x )]2-4(2-a )f (x )+5-4a 0≥成立.假设f (x ) ∈[0,1),别离参数a ≤1-f (x ) +14[1-f (x )].因为1-f (x ) +14[1-f (x )]≥2[1-f (x )]14[1-f (x )]=1,当f (x )=12时等号成立.所以实数a 的取值范围是(-∞,1].备选:1.(12分,重庆)已知定义域为R 的函数f (x )满足f (f (x )-x 2+x )=f (x )-x 2+x . (1)假设f (2)=3,求f (1); (2)求f (0);(3)设有且仅有一个实数x 0,使得f (x 0)=x 0,求函数f (x )的解析表达式. 2.(12分)已知函数f (x )满足f (x +y )-f (y )=(x +2y +1)x ,且f (1)=0. (1)求f (0)的值;(2)当x 1,x 2 (0,12)时, f (x 1)+2<log a x 2,求a 的取值范围.3.(12分)已知偶函数f (x )满足f (xy )=f (x )+f (y ),且当x >1时,f (x )>0,f (2)=1. (1)求证:f (x )在(0,+∞)上是增函数; (2)解不等式f (2x 2-1)< 2. 4.(12分)已知函数f (x )满足f (m +n )=f (m )+f (n )-1,且f (-21)=0,当x >-12时,f (x )>0.求证:f (x )是单调递增函数. 5.(12分)已知函数f (x )满足f (xy )=f (x )f (y ),且f (x )≠0,当x >1时,f (x )<1.试判断f (x )在(0,+∞)上的单调性. 6.(12分)已知函数f (x )的定义域关于原点对称,且满足f (x -y )=f (x )f (y )+1f (x )-f (y ),存在正常数a ,使f (a )=1.求证:f (x )是奇函数.。
抽象函数及应用13种常考题型总结题型1抽象函数的定义域问题题型2抽象函数的值域问题题型3求抽象函数的值题型4求抽象函数的解析式题型5抽象函数的奇偶性问题题型6抽象函数的单调性问题题型7抽象函数周期性问题题型8抽象函数的对称性问题题型9解抽象不等式题型10抽象函数比较大小题型11抽象函数的最值问题题型12抽象函数的零点问题题型13双函数混合型1.抽象函数概念:我们把没有给出具体解析式的函数称为抽象函数,题目中往往只给出函数的特殊条件或特征.2.抽象函数定义域的确定所谓抽象函数是指用()f x 表示的函数,而没有具体解析式的函数类型,求抽象函数的定义域问题,关键是注意对应法则。
在同一对应法则的作用下,不论接受法则的对象是什么字母或代数式,其制约条件是一致的,都在同一取值范围内。
抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.注:求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.3.“赋值法”求抽象函数的值赋值法就是根据题目的具体情况,合理、巧妙地对某些元素赋予确定的特殊值(0,1,-1等),从而使问题获得简捷有效的解决。
注:(1)第一层次赋值:常常令字母取0,-1,1等.(2)第二层次赋值:若题中有条件0f x =t (),则再令字母取0x .(3)第三层次赋值:拆分赋值,根据抽象式子运算,把赋值数拆成某两个值对应的和与积(较多)或者差与商(较少).4.“赋值法”求抽象函数的解析式赋值法求抽象函数的解析式,首先要对题设中的有关参数进行赋值,再得到函数解析式的某种递推关系,最后求得函数的解析式。
5.“赋值法”探究抽象函数的奇偶性判断抽象函数的奇偶性的关键是得到()f x 与()f x -的关系,解题时要对有关变量进行赋值,使其最后只保留()f x 与()f x -的关系。
抽象函数一、求表达式方法 (2)1.换元法 (2)2.拼凑法 (2)3.待定系数法 (2)4.利用函数性质法 (3)5.方程组法 (3)5.赋值法 (3)二、抽象函数常见考点解法综述 (5)1.定义域问题 (5)2.求值问题 (5)3.值域问题 (5)4.奇偶性问题 (6)5单调性问题 (6)6.对称性问题 (7)7.求参数的取值范围 (7)8.解不定式 (7)9.周期问题 (7)三、抽象函数五类题型及解法 (9)1.线性函数型抽象函数 (9)2.指数函数型抽象函数 (10)3.对数函数型抽象函数 (11)4.幂函数型抽象函数 (12)5.三角函数型抽象函数 (13)四、巩固练习 (15)抽象函数问题综述-----含有函数记号“()f x ”有关问题解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式方法1.换元法例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1ux u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 例2:已知+1)=x +2,则f(x)=____________.解:设t+1=t -1,x =(t -1)2,t≥1,代入原式有f(t)=(t -1)2+2(t -1)=t 2-1,故f(x)=x 2-1(x≥1).2.拼凑法在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例1:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()((3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1) 例2:已知+1)=x +2,则f(x)=____________. 解:+1)=x +2=+1)2-1,故f(x)=x 2-1(x≥1).3.待定系数法先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
抽象函数专题
一、定义域问题
1、若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为
2、已知函数f(x)的定义域是[]2,1- ,求函数()⎪⎪⎭
⎫ ⎝⎛-x f 3log 21 的定义域。
3、已知函数()x f 3log 的定义域为[3,27],求函数f(x)的定义域
4、若函数(21)f x +的定义域为31,
2⎛⎫- ⎪⎝⎭,则函数2(log )f x 的定义域为 二、赋值问题
1、已知定义域为+R 的函数f (x ),同时满足下列条件:①5
1)6(1)2(=
=f f ,;②)()()(y f x f y x f +=⋅,求f (3)
,f (9)的值。
2、对任意实数x,y ,均满足f(x+y 2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=___
3、若*(1)()1(f n f n n N +=+∈),且f(1)=2,则f(100)的值是( )
4、定义R 上的函数()f x 满足:()()(),(9)8,f xy f x f y f f =+==且则
5、对任意整数y x ,函数)(x f y =满足:1)()()(+++=+xy y f x f y x f ,若1)1(=f ,则=-)8(f
三、解析式问题 1、设对满足10≠≠x x ,的所有实数x ,函数)(x f 满足
x x x f x f +=-+1)1()(,求f (x )
的解析式。
2、()f x 满足:12()()1f x f x x
-=+求()f x 3、设)(x f 为偶函数,)(x g 为奇函数,又,1
1)()(-=+x x g x f 试求)()(x g x f 和的解析 4、若一次函数()f x 满足:{[()]}87f f f x x =+,求()f x
四、单调性问题
1、设f (x )定义于实数集上,当0>x 时,1)(>x f ,且对于任意实数x 、y ,有
)()()(y f x f y x f ⋅=+,求证:)(x f 在R 上为增函数。
2、f(x)对任意实数x 与y 都有()()()2f x f y f x y -=--,当x>0时,f(x)>2
(1)求证:f(x)在R 上是增函数;
3、已知函数f x ()对任意x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集.
4、f(x)是定义在x>0的函数,且f(xy) = f(x) + f(y);当x>1时有f(x)<0;f(3) = -1.
(1) 求f(1)和f(1/9)的值;(2)证明f(x)在x>0上是减函数;
(3)解不等式f(x) + f(2-x) < 2。
5、定义在(0,)+∞上函数()y f x =对任意的正数,a b 均有:()()()
a f f a f
b b =-,且当1x <时,()0f x >,(I )求(1)f 的值;(II )判断()f x 的单调性,
6、若非零函数)(x f 对任意实数b a ,均有()()()f a b f a f b +=⋅,且当0<x 时,1)(>x f ;
(1)求证:()0f x > ;(2)求证:)(x f 为减函数
7、设函数f (x )定义在R 上,对于任意实数m 、n ,恒有fm n fm fn ()()()+=·,且当x >0时,0<f (x )<1。
(1)求证:f (0)=1,且当x <0时,f (x )>1;
(2)求证:f (x )在R 上单调递减;
五、奇偶性问题
1、已知函数)0)((≠∈x R x x f ,对任意不等于零的实数21x x 、都有)()()(2121x f x f x x f +=⋅,试判断函数f (x )的奇偶性。
2、已知函数f(x)的定义域关于原点对称且满足())
()(1)()()(1x f y f y f x f y x f -+=
-,(2)存在正常数a ,使f(a)=1.求证:f(x)是奇函数。
3、设)(x f 是定义在R 上的偶函数,且在)0,(-∞上是增函数,又)123()12(22+-<++a a f a a f 。
求实数a 的取值范围。
4、定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x +y )=f (x )+f (y ).
(1)求证f (x )为奇函数;
(2)若f (k ·3x )+f (3x -9x
-2)<0对任意x ∈R 恒成立,求实数k 的取值范围.
5、已知f(x)是定义在R 上的不恒为零的函数,且对于任意的函数a,b 都满足f(ab)=af(b)+bf(a).
(1)求f(0),f(1)的值; (2)判断f(x)的奇偶性,并证明你的结论;
6、定义在区间(-1,1)上的减函数()f x 满足:()()f x f x -=-。
若2(1)(1)0f a f a -+-<恒成立,则实数a 的取值范围是___________________.
7、已知函数()f x 是定义在(0,+∞)上的增函数,对正实数,x y ,都有:()()()f xy f x f y =+成立.则不等式2(log )0f x <的解集是
8、定义在R 上的函数f (x )对任意实数a 、b 都有f (a +b )+ f (a -b )=2 f (a )·f (b )成立,且f ()00≠。
(1)求f (0)的值;
(2)试判断f (x )的奇偶性;。