数字图像实验报告二图像的灰度变换与直方图均衡
- 格式:docx
- 大小:1.36 MB
- 文档页数:11
数字图像处理实验报告实验名称:直方图均衡化姓名:班级:学号:专业:电子信息工程(2+2)指导教师:陈华华实验日期:2012年5月24日直方图均衡化图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。
直方图均衡化是最常见的间接对比度增强方法。
直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。
直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。
缺点:1)变换后图像的灰度级减少,某些细节消失;2)某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。
直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。
通过这种方法,亮度可以更好地在直方图上分布。
这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。
直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。
设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。
在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数):(1)EQ(f)在0≤f≤L-1范围内是一个单值单增函数。
这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。
(2)对于0≤f≤L-1有0≤g≤L-1,这个条件保证了变换前后灰度值动态范围的一致性。
数字图像处理实验报告班级:姓名:学号:数字图像处理实验报告一.实验名称:图像灰度变换二.实验目的:1 学会使用Matlab;2 学会用Matlab软件对图像灰度进行变换,感受各种不同的灰度变换方法对最终图像效果的影响。
三.实验原理:Matlab中经常使用的一些图像处理函数:读取图像:img=imread('filename'); //支持TIFF,JPEG,GIF,BMP,PNG,XWD等文件格式。
显示图像:imshow(img,G); //G表示显示该图像的灰度级数,如省略则默认为256。
保存图片:imwrite(img,'filename'); //不支持GIF格式,其他与imread相同。
亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]); //将low_in至high_in之间的值映射到low_out至high_out之间,low_in 以下及high_in以上归零。
绘制直方图:imhist(img);直方图均衡化:histeq(img,newlevel); //newlevel表示输出图像指定的灰度级数。
像平滑与锐化(空间滤波):w=fspecial('type',parameters);imfilter(img,w); //这两个函数结合将变得十分强大,可以实现photoshop里的任意滤镜。
图像复原:deconvlucy(img,PSF); //可用于图像降噪、去模糊等处理。
四.实验步骤:1.获取实验用图像:Fig3.10(b).jpg. 使用imread函数将图像读入Matlab。
2.产生灰度变换函数T1,使得:0.3r r < 0.35s = 0.105+2.6333(r–0.35) 0.35 ≤ r ≤ 0.65 1+0.3(r–1) r > 0.65用T1对原图像Fig3.10(b).jpg进行处理,打印处理后的新图像。
目录实验一:数字图像的基本处理操作 (4):实验目的 (4):实验任务和要求 (4):实验步骤和结果 (5):结果分析 (8)实验二:图像的灰度变换和直方图变换 (9):实验目的 (9):实验任务和要求 (9):实验步骤和结果 (9):结果分析 (13)实验三:图像的平滑处理 (14):实验目的 (14):实验任务和要求 (14):实验步骤和结果 (14):结果分析 (18)实验四:图像的锐化处理 (19):实验目的 (19):实验任务和要求 (19):实验步骤和结果 (19):结果分析 (21)实验一:数字图像的基本处理操作:实验目的1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用;2、实现图像的读取、显示、代数运算和简单变换。
3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。
:实验任务和要求1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。
2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。
3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。
4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的对应关系。
:实验步骤和结果1.对实验任务1的实现代码如下:a=imread('d:\');i=rgb2gray(a);I=im2bw(a,;subplot(1,3,1);imshow(a);title('原图像');subplot(1,3,2);imshow(i);title('灰度图像');subplot(1,3,3);imshow(I);title('二值图像');subplot(1,3,1);imshow(a);title('原图像');结果如图所示:图原图及其灰度图像,二值图像2.对实验任务2的实现代码如下:a=imread('d:\');A=imresize(a,[800 800]);b=imread('d:\');B=imresize(b,[800 800]);Z1=imadd(A,B);Z2=imsubtract(A,B);Z3=immultiply(A,B);Z4=imdivide(A,B);subplot(3,2,1);imshow(A);title('原图像 A'); subplot(3,2,2);imshow(B);title('原图像 B'); subplot(3,2,3);imshow(Z1);title('加法图像'); subplot(3,2,4);imshow(Z2);title('减法图像'); subplot(3,2,5);imshow(Z3);title('乘法图像'); subplot(3,2,6);imshow(Z2);title('除法图像');结果如图所示:3.对实验任务3的实现代码如下:s=imread('d:\');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j); %直流分量移到频谱中心I=log(abs(k)); %对数变换m=fftshift(j); %直流分量移到频谱中心RR=real(m); %取傅里叶变换的实部II=imag(m); %取傅里叶变换的虚部A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像');subplot(2,2,3);imshow(A);title('离散傅里叶变换频谱');subplot(2,2,4);imshow(B);title('平移图像离散傅里叶变换频谱');结果如图所示:4.对实验任务4的实现代码如下:s=imread('d:\');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j);I=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=imrotate(s,-90);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像');subplot(2,2,3);imshow(A);title('离散傅里叶频谱');subplot(2,2,4);imshow(B);title('平移图像离散傅里叶频谱');结果如图所示::结果分析对MATLAB软件的操作开始时不太熟悉,许多语法和函数都不会使用,写出程序后,调试运行,最开始无法显示图像,检查原因,是有些标点符号没有在英文状态下输入和一些其他的细节,学会了imread(),imshow(),rgb2gray()等函数。
数字图像处理实验实验报告(实验一)一、实验目的:1、直方图显示2、计算并绘制图像直方图3、直方图均衡化二.程序脚本clear all;RGB=imread('me.jpg');figure;imshow(RGB);title('图1 彩色图');%========================================================== I=rgb2gray(RGB);figure;imshow(I);title('图2 灰度图');%========================================================= figure;imhist(I);title('灰度直方图');%========================================================= hi=imhist(I);j=1;%为使画出的直方图更好看,在此进行了抽样for(i=1:256)if(mod(i,10)==1)h(j)=hi(i);j=j+1;endendn=0:10:255;figure;stem(n,h);axis([0 255 0 2500]);title('图3.1 stem显示直方图');figure;bar(n,h);axis([0 255 0 2500]);title('图3.2 bar显示直方图');figure;plot(n,h);axis([0 255 0 2500]);title('图3.3 plot显示直方图');%========================================================= I=rgb2gray(RGB);figure;subplot(3,2,1);imshow(I);title('图4.1 原始灰度图');subplot(3,2,2);imhist(I);title('图4.2 原始灰度直方图');%=============================J1=imadjust(I);subplot(3,2,3);imshow(J1);title('调整对比度以后的图');subplot(3,2,4);imhist(J1);title('调整对比度以后的灰度直方图');%=================================J2=histeq(I);subplot(3,2,5);imshow(J2);title('均衡化以后的的图');subplot(3,2,6);imhist(J2);title('均衡化以后的灰度直方图');三.实验结果图1 彩色图图2 灰度图010002000灰度直方图10020010020005001000150020002500图3.1 stem 显示直方图10020005001000150020002500图3.2 bar 显示直方图10020005001000150020002500图3.3 plot 显示直方图图4.1 原始灰度图10002000图4.2 原始灰度直方图0100200调整对比度以后的图010002000调整对比度以后的灰度直方图0100200均衡化以后的的图02000均衡化以后的灰度直方图100200。
《图像处理技术》实验报告实验名称:图像的灰度增强、直方图均衡化专业:测控技术与仪器班级: B15124 *名:**学号: *********** 实验地点: 9-513 实验日期: 2018.10.22机电工程学院实验二 图像的灰度增强、直方图均衡化一、实验目的⏹ 学习图像读取和显示及图像的矩阵表示; ⏹ 学习图像的灰度变换增强处理方法; ⏹学习图像直方图表示及均衡化。
二、实验要求1 对一幅灰度图像,读取和显示图像;2实现图像的灰度变换增强处理:灰度反转、对数变换、窗切片。
给出处理后的图像。
3实现图像的直方图均衡化。
给出原图和处理后的图像,以及图像处理前后的直方图。
三、主要仪器设备1、 计算机一台2、 Matlab 软件平台四、实验原理1 数字图像的表示:()[]()()()()()()()()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=1,11,10,11,11,10,11,01,00,0,N M f M f M f N f f f N f f f y x f2 几种图像灰度变换 ● 灰度反转g = L -1-f●对数变换()f c g +⋅=1log●窗切片1) 错误!未找到引用源。
2) 错误!未找到引用源。
● 直方图均衡化五、实验结果及分析1. 读取显示 f=imread('lena.jpg'); imshow(f);2. 灰度反转f=imread('lena.jpg'); fd=double(f);g=256-1-fd;p=uint8(g); imshow(p);3. 对数变换f=imread('lena.jpg'); fd=double(f);g=40*log(1+fd);p=uint8(g); imshow(p);4. 窗切片f=imread('lena.jpg');for i=1:256for j=1:256if f(i,j)>=80&&f(i,j)<=180; g(i,j)=255;elseg(i,j)=0;endendimshow(g);end5. 直方图均衡化f=imread('lena.jpg');subplot(2,2,1);imshow(f);subplot(2,2,2);imhist(f);g=histeq(f,256);subplot(2,2,3);imshow(g);subplot(2,2,4);imhist(g);六、分析思考直方图均衡化之后的图像为什么比原图的视觉效果更好?因为直方图均衡化处理之后,原来比较少像素的灰度会被分配到别的灰度去,像素相对集中,处理后灰度范围变大,对比度变大,清晰度变大,所以能有效增强图像。
贵州大学实验报告学院:专业:班级:姓名学号实验组实验时间指导教师成绩实验项目名称实验二:数字图像的空域增强处理实验目的通过本实验的学习使学生熟悉和掌握数字图像中的空域增强的一些典型方法:直方图的均衡化处理、平滑滤波、锐化滤波。
实验要求集中授课的教学形式实验原理1、直方图均衡化:基本思想:把原始图的直方图变换为均匀分布的形式,这样就增加了灰度值的动态范围从而达到增强图像整体对比度的效果。
其优点是能自动地增强整个图像的对比度。
均衡化步骤:(1)列出原始灰度级;(2)归一化原始灰度级;(3)统计原始直方图个灰度级像素kn;(4)计算原始直方图;(5)计算累计直方图;(6)确定映射关系(原则是:取最靠近的灰度级别);(7)统计新直方图各灰度级像素kn(8)计算新直方图;也可以用以下方法:(1)计算出原始图像的所有灰度级ks,1,,1,0-=Lk ;(2)统计原始图像各灰度即的像素数k n ;(3)计算原始图像的直方图n n s p kk =)(,1,,1,0-=L k ;(4)计算原始图像的累积直方图)()(00∑∑=====ki i s ki ik k s p n n s EH t ;(5)取整运算:])1int[(N kt N t k k +-=;(6)定义映射关系k k t s →;(7)统计新直方图各灰度级的像素数k n ;(8)计算新的直方图n n t p kk t =)(;2、邻域平均法对含噪声原始图像),(y x f 的每个像素点取一个邻域S 。
计算S 中的所有像素灰度级的平均值,作为空间域平均处理后图像),(y x g 的像素值。
即:∑∈=Sy x y x f My x g ),(),(1),(其中M 为邻域S 中的像素点数。
3、中值滤波对含噪声原始图像),(y x f 的每个像素点取一个邻域S (一般选取奇数点模板窗口)。
选取S 中的所有像素灰度级的中间值,作为空间域平均处理后图像),(y x g 的像素值。
实验二图像的灰度变换与直方图均衡一、实验目的1.理解图像灰度变换与直方图均衡的定义;2.掌握图像灰度变换与直方图均衡化的方法;3.学会利用matlab编程实现灰度变换和直方图均衡的方法。
二、实验内容1. 利用matlab语言直接编程实现图像的对比度调整;2. 利用matlab语言编程实现图像的反转;3. 利用matlab语言直接编程实现图像的二值化;4. 利用matlab语言直接编程实现图像的直方图均衡化处理。
三、实验步骤(一)利用matlab语言直接编程实现图像的对比度调整实验代码如下:A=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\lena.jpg');I=double(A);J=I*0.5+40;A1=uint8(J);figure(1);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(A1);J=I*1+40;A1=uint8(J);figure(2);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(A1);J=I*3+40;A1=uint8(J);figure(3);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(A1);J=exp(I);A1=uint8(J);figure(4);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(A1); 生成图像如下:从图中可以看出,第一幅图相对于原图的对比度降低了,第二幅图相对于原图对比度提高了40个灰度级,第三幅图对比度提高太多,效果反而不好。
在三幅图中,第二幅图视觉效果最好,对比度明显又不至于太亮。
第四幅图是指数灰度变换。
(二)利用matlab语言编程实现图像的反转实验代码如下:A=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\lena.jpg');E=imadjust(A,[0.35 0.65],[1 0]);figure;imshow(E);生成图像如下:从图中可以看出,原来亮的部分经过反转之后变暗,暗的部分经过反转变亮。
数字图像处理实验二直方图均衡化(直方图均衡化实质上是减少图象的灰度级以换取对比度的加大)例如:假设原图的灰度分布级为126(最大为256,也就是从0到255的级上的灰度都有或多或少的出现),经过直方图均衡化后,灰度分布级别将会小于126。
编程的时候请按照直方图均衡化公式进行。
下面给出大致的编程思路和源代码:其中黑框部分需要自己编写源代码1)利用第一次实验课提供的dhc.h 和dhc.c文件以获取位图的高宽以及从文件头到实际的位图数据的偏移字节数,从而实现对位图实际数据的操作。
利用include命令#include <stdio.h>#include <stdlib.h>#include <memory.h>#include "hdr.h"思考问题:#include <*.h> 和#include "*.h"在程序运行中有什么差别?2)定义结构指针struct bmphdr *hdr;定义用于直方图变量unsigned char *bitmap, new_color[256];定义计算灰度分布,灰度累计分布的数组int count[256], acum[256];3)main()函数编写//定义整数i,j 用于函数循环时的,nr_pixels为图像中像素的个数int i, j, nr_pixels;//定义两个文件指针分别用于提取原图像的数据和生成直方图均衡化后的图像FILE *fp, *fpnew;//定义主函数的参数包括:输入的位图文件名和输出的位图文件名,此处内容可以不要,在DOS下执行命令的时候再临时输入也可,为了方便演示,我这里直接把函数的参数确定了。
argc=3;argv[1]="test.bmp";argv[2]="testzf.bmp";//参数输入出错显示if (argc != 3) {printf("please input the name of input and out bitmap files\n");exit(1);}// 获取位图文件相关信息hdr = get_header(argv[1]);if (!hdr) exit(1);//以二进制可读方式打开输入位图文件fp = fopen(argv[1], "rb");if (!fp) {printf("File open error!\n");exit(1);}// 文件指针指向数据区域fseek(fp, hdr->offset, SEEK_SET);//计算位图像素的个数nr_pixels = hdr->width * hdr->height;bitmap = malloc(nr_pixels);//读取位图数据到bitmap中fread(bitmap, nr_pixels, 1, fp);fclose(fp);memset(count, 0, sizeof(count));//计算每个灰度级上像素的个数结果存入count[]数组中memcpy(acum, count, sizeof(acum));//计算灰度的累计分布for (i = 1; i < 256; i++)acum[i] += acum[i-1];//灰度直方图的均衡化(核心程序部分,请仔细分析)为了方便大家编程实现,这里直接给出了源代码,本实验最核心的部分就在这里//}//对所有的像素灰度值按照均衡化得到的灰度对应规则进行转换,结果存入bitmap[]中//fpnew = fopen(argv[2], "wb+");//由于位图文件的头部信息并没有因直方图均衡化而改变,因此输出图像的头部信息从原位图文件中拷贝即可:fwrite(hdr->signature, 2, 1, fpnew);fwrite(&hdr->size, 4, 1, fpnew);fwrite(hdr->reserved, 4, 1, fpnew);fwrite(&hdr->offset, 4, 1, fpnew);fwrite(&hdr->hdr_size, 4, 1, fpnew);fwrite(&hdr->width, 4, 1, fpnew);fwrite(&hdr->height, 4, 1, fpnew);fwrite(&hdr->nr_planes, 2, 1, fpnew);fwrite(&hdr->bits_per_pixel, 2, 1, fpnew);fwrite(&hdr->compress_type, 4, 1, fpnew);fwrite(&hdr->data_size, 4, 1, fpnew);fwrite(&hdr->resol_hori, 4, 1, fpnew);fwrite(&hdr->resol_vert, 4, 1, fpnew);fwrite(&hdr->nr_colors, 4, 1, fpnew);fwrite(&hdr->important_color, 4, 1, fpnew);if (hdr->offset > 54)fwrite(hdr->info, (hdr->offset - 54), 1, fpnew);////关闭fclose(fpnew);//释放内存(优化程序必需)free(hdr);free(bitmap);return 0;}。
实验三直方图一、实验目的掌握基本的图象增强方法,观察图象增强的效果,加深对灰度直方图及直方图均衡化的理解,掌握直方图均衡化方法。
二、实验内容将一张彩色图片转换成灰色图片,画灰度直方图和均衡化后的直方图,并将灰度图和均衡化后的图片对比。
三、实验原理灰度直方图是将数字图像中的所有像素,按照灰度值的大小,统计其所出现的频度。
通常,灰度直方图的横坐标表示灰度值,纵坐标为像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。
直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。
从而达到清晰图像的目的。
四、实验程序1.函数功能,画出图像的直方图,并对图像进行直方图均衡2.直接读图像football.jpg,读到I中3.graydis是原始直方图各灰度级像素个数4.原始直方图graydispro,利用原始直方图计算原始累计直方图graydispro5.t[]计算和原始灰度对应的新的灰度t[],建立映射关系,t坐标代表原始的灰度,t[]代表对应原始坐标的新坐标6.new_graydis是统计新直方图各灰度级像素个数7.计算新的灰度直方图new_graydispro,利用新的直方图计算新的累计直方图new_graydispro8.计算直方图均衡后的新图new_J程序如下:I=imread('football.jpg'); %读入图片J=rgb2gray(I); %将彩色图片转换为灰度图Imshow(J);graydis=zeros(1,256); %设置矩阵大小graydispro=zeros(1,256);new_graydis=zeros(1,256);new_graydispro=zeros(1,256);[h w]=size(J);new_J=zeros(h,w);%计算原始直方图各灰度级像素个数graydisfor x=1:hfor y=1:wgraydis(1,J(x,y))=graydis(1,J(x,y))+1;endend%计算原始直方图graydisprograydispro=graydis./sum(graydis);subplot(1,2,1);plot(graydispro);title('灰度直方图');xlabel('灰度值');ylabel('像素的概率密度');%计算原始累计直方图for i=2:256graydispro(1,i)=graydispro(1,i)+graydispro(1,i-1);end%计算和原始灰度对应的新的灰度t[],建立映射关系for i=1:256t(1,i)=floor(254*graydispro(1,i)+0.5);end%统计新直方图各灰度级像素个数new_graydisfor i=1:256new_graydis(1,t(1,i)+1)=new_graydis(1,t(1,i)+1)+graydis(1,i); end%计算新的灰度直方图new_graydispronew_graydispro=new_graydis./sum(new_graydis);subplot(1,2,2);plot(new_graydispro);title('均衡化后的灰度直方图');xlabel('灰度值');ylabel('像素的概率密度');%计算直方图均衡后的新图new_J for x=1:hfor y=1:wnew_J(x,y)=t(1,J(x,y));endendfigure,imshow(J,[]);title('原图');figure,imshow(new_J,[]);title('直方图均衡化后的图');。
数字图像处理基本操作及灰度调整实验报告实验目的1.掌握数字图像处理的基本概念和原理。
2.学会使用Python编程语言进行图像处理。
3.理解并实现图像灰度调整的方法。
4.分析实验结果,讨论图像处理方法的优缺点。
2.1 数字图像处理概述数字图像处理(Digital Image Processing,DIP)是一门研究使用计算机对图像进行处理的技术。
它的目的是改善图像的质量,使之更适合人类或计算机对图像进行观察和分析。
数字图像处理涉及到图像采集、存储、传输、分析以及图像的恢复等方面。
2.2 图像的表示和描述数字图像由图像元素(像素)组成,每个像素有一个对应的灰度值。
灰度值表示像素的亮度,通常用8位二进制数表示,其范围为0~255。
像素的灰度值越高,亮度越高。
数字图像可以表示为一个矩阵,矩阵中的每个元素对应一个像素的灰度值。
彩色图像通常采用RGB颜色模型,每个像素包含三个分量,分别对应红色、绿色和蓝色通道的亮度。
2.3 图像灰度调整图像灰度调整是指调整图像像素的灰度值,以改善图像的质量。
常用的图像灰度调整方法有:1.线性灰度变换:通过线性映射关系改变图像灰度值,可以实现图像亮度的调整和对比度的拉伸。
2.直方图均衡化:通过调整图像的灰度直方图,使其均匀分布,可以提高图像的对比度。
•操作系统:Windows 10•编程语言:Python 3.8•图像处理库:OpenCV 4.5.2•集成开发环境:Visual Studio Code4.1 图像读取和显示首先,我们需要使用OpenCV库读取和显示图像。
以下是读取和显示图像的Python代码:4.2 图像灰度化为了便于后续的灰度调整操作,我们需要将彩色图像转换为灰度图像。
以下是图像灰度化的Python代码:4.3 灰度调整接下来,我们将对图像进行灰度调整。
首先,实现线性灰度变换。
以下是线性灰度变换的Python代码:4.4 图像直方图均衡化直方图均衡化是一种能够提高图像对比度的方法。
课程设计课程名称数字图像处理题目名称直方图均衡化学生学院信息工程学院专业班级 10级电信2班学号学生姓名指导教师曹江中2013年 1 月日设计题目:直方图均衡化1、直方图的理论基础:(1)直方图概念:灰度直方图表示图像中每种灰度出现的频率。
(2)直方图的作用: 反映一幅图像的灰度分布特性(3)直方图的计算: 式中:n k 为图像中出现r k 级灰度的像素数,n 是图像像素总数,而n k /n 即为频数。
2、设计目的: 产生一幅灰度级分布具有均匀概率密度的图像,扩展像素取值的动态范围,达到了图象增强的目的。
3、直方图均衡化的效果 :1)变换后直方图趋向平坦,灰级减少,灰度合并。
2)原始象含有象素数多的几个灰级间隔被拉大了,压缩的只是象素数少的几个灰度级,实际视觉能够接收的信息量大大地增强了,增加了图象的反差。
同时,也增加了图象的可视粒度。
4、离散情况下的直方图均衡化的算法:A 、列出原始图像的灰度级B 、统计各灰度级的像素数目C 、计算原始图像直方图各灰度级的频数D 、计算累积分布函数F 、应用以下公式计算映射后的输出图像的灰度级,P 为输出图像灰度级的个数,其中INT 为取整符号:G 、用的映射关系修改原始图像的灰度级,从而获得直方图近似为均匀分布的输出图像。
5、主要代码///////////////////////////////////////////////////////////////////画两个直方图坐标轴/////////////////////////////////////////////////////////////////// void CImageView::OnDraw(CDC* pDC){1,,1,0,-=L j f j 1,,1,0,-=L j n j 1,,1,0,/)(-==L j n n f P j j f 1,,,1,0,)()(0-==∑=L k j f P f C k j j f ]5.0)()[(min min max ++-=g f C g g INT g i nn r p k k =)(1,,2,1,010-=≤≤l k r kCImageDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereif(m_dib.m_bLoaded==true) //判断是否加载图像{//获取图像宽和高int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight(); ASSERT_VALID(pDoc);// TODO: add draw code for native data hereif(m_dib.m_bLoaded==true){int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();m_dib.ShowDIB(pDC,10,10,nw,nh,m_dib.m_pDIBData,m_dib.m_pBMI);m_dib.ShowDIB(pDC,400,10,nw,nh,m_dib.m_pDumpDIBData,m_dib.m_pBMI) ;}if(m_bHist==true){//绘画直方图CString str;int nh=m_dib.GetDIBHeight();int i;// 绘制坐标轴pDC->MoveTo(10,nh+20); //(10,nh+20 )是直方图的左上角坐标// 垂直轴pDC->LineTo(10,nh+200);//(10,nh+200 )是直方图的左下角坐标// 水平轴pDC->LineTo(310,nh+200);//(310,nh+200 )是直方图的右下角坐标// 写X轴刻度值str.Format("0");pDC->TextOut(10, nh+200+10, str);str.Format("50");pDC->TextOut(60, nh+200+10, str);str.Format("100");pDC->TextOut(110, nh+200+10, str);str.Format("150");pDC->TextOut(160, nh+200+10, str);str.Format("200");pDC->TextOut(210, nh+200+10, str);str.Format("255");pDC->TextOut(265, nh+200+10, str);str.Format("原图直方图归一化");pDC->TextOut(100, nh+230+10, str);// 绘制X轴刻度for ( i = 0; i < 256; i += 25){if ((i & 1) == 0){// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}else{// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}}// 绘制X轴箭头pDC->MoveTo(305,nh+200-5);pDC->LineTo(310,nh+200);pDC->LineTo(305,nh+200+5);// 绘制y轴箭头pDC->MoveTo(10,nh+20);pDC->LineTo(5,nh+20+5);pDC->MoveTo(10,nh+20);pDC->LineTo(15,nh+20+5);int max=0;for(i=0;i<256;i++)if(m_yuantu[i]>max)max=m_yuantu[i];for(i=0;i<256;i++){pDC->MoveTo(10+i,nh+200);pDC->LineTo(10+i,nh+200-(m_yuantu[i]*160/max));}}/******************///TEST 第二个直方图if(m_bHist==true){//绘画直方图CString str;int nh=m_dib.GetDIBHeight();int i;// 绘制坐标轴pDC->MoveTo(160+nw,nh+20); //(10,nh+20 )是直方图的左上角坐标// 垂直轴pDC->LineTo(160+nw,nh+200);//(10,nh+200 )是直方图的左下角坐标// 水平轴pDC->LineTo(460+nw,nh+200);//(310,nh+200 )是直方图的右下角坐标// 写X轴刻度值str.Format("0");pDC->TextOut(415, nh+200+10, str);str.Format("50");pDC->TextOut(465, nh+200+10, str);str.Format("100");pDC->TextOut(515, nh+200+10, str);str.Format("150");pDC->TextOut(565, nh+200+10, str);str.Format("200");pDC->TextOut(615, nh+200+10, str);str.Format("255");pDC->TextOut(670, nh+200+10, str);str.Format("直方图均衡化后归一化");pDC->TextOut(505, nh+230+10, str);// 绘制X轴刻度for ( i = 0; i < 256; i += 25){if ((i & 1) == 0){// 10的倍数pDC->MoveTo(i + 420, nh+200-2);pDC->LineTo(i + 415, nh+200+2);}else{// 10的倍数pDC->MoveTo(i + 420, nh+200-2);pDC->LineTo(i + 420, nh+200+2);}}// 绘制X轴箭头pDC->MoveTo(710,nh+200-5);pDC->LineTo(715,nh+200);pDC->LineTo(710,nh+200+5);// 绘制y轴箭头pDC->MoveTo(415,nh+20);pDC->LineTo(410,nh+20+5);pDC->MoveTo(415,nh+20);pDC->LineTo(420,nh+20+5);int max=0;for(i=0;i<256;i++)if(m_hist[i]>max)max=m_hist[i];for(i=0;i<256;i++){pDC->MoveTo(415+i,nh+200);pDC->LineTo(415+i,nh+200-(m_hist[i]*160/max));}}/*************/// 显示图像(具体的参数见CDIB类的该函数说明)m_dib.ShowDIB(pDC,10,10,nw,nh,m_dib.m_pDIBData,m_dib.m_pBMI);m_dib.ShowDIB(pDC,400,10,nw,nh,m_dib.m_pDumpDIBData,m_dib.m_pBMI);}}/////////////////////////////////////////////////////////////////////直方图均衡化及直方图归一化坐标轴赋值程序///////////////////////////////////////////////////////////////////// void CImageView::OnZhifangtu(){//判断图像是否打开,没打开,则弹出提示框并退出函数if(!m_dib.m_bLoaded){AfxMessageBox("图像还打开,请先打开图像!");return;}//获取图像宽和高及定义成员变量int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();int i,j;int *arr=new int [nw*nh];int n[256]={0};float p[256]={0.0},c[256]={0.0};BYTE* pdata=m_dib.m_pdata;for(i=0;i<256;i++) //初始化直方图数组m_yuantu[i]=0;if(1)//m_dib.m_nImType==24){for(j=0;j<nh;j++)for(i=0;i<nw;i++){BYTE temp=pdata[j*nw+i];m_yuantu[temp]++;}}m_bHist=true;//直方图归一化计算for(i=0;i<nh;i++){for(j=0;j<nw;j++){n[m_dib.m_pdata[i*nw+j]]++;}}for(i=0;i<256;i++){(float)p[i]=(float)n[i]/(float)(nw*nh); }//归一化后累计计算for(i=0;i<256;i++){for(j=0;j<=i;j++){c[i]+=p[j];}}//找到灰度值最大值最小值int max=m_dib.m_pdata[0],min=m_dib.m_pdata[0]; for(i=0;i<nh;i++){for(j=0;j<nw;j++){if(max<m_dib.m_pdata[i*nw+j]){max=m_dib.m_pdata[i*nw+j];}else if(min>m_dib.m_pdata[i*nw+j]){min=m_dib.m_pdata[i*nw+j];}}}//套公式直方图均衡化计算赋值给arr[]一维数组for(i=0;i<nh;i++){for(j=0;j<nw;j++){arr[i*nw+j]=int(c[m_dib.m_pdata[i*nw+j]]*(max-min)+min+0.5); }}//一维数组arr[]赋值给新图像for( j=0;j<nh;j++){for(i=0;i<nw;i++){m_dib.m_pdata[j*nw+i]=arr[j*nw+i];}}//将修改的m_pdata的数据赋值给m_pDIBData,以显示修改的结果m_dib.UpdateData();//刷新屏幕Invalidate();for(i=0;i<256;i++) //初始化直方图数组m_hist[i]=0;if(1)//m_dib.m_nImType==24){for(j=0;j<nh;j++)for(i=0;i<nw;i++){BYTE temp=pdata[j*nw+i];m_hist[temp]++;}}m_bHist=true;// TODO: Add your command handler code here}6、实验结果。
《数字图像处理》实验报告(二)学号:____________ 姓名:__________ 专业:____ 课序号:__________计算机科学与技术学院实验2直方图均衡化一、实验学时:4学时(本部分占实验成绩的40%)二、实验目的:1、理解直方图均衡化的原理及步骤;2、编程实现图像(灰度或彩色)的直方图均衡化。
三、必须学习和掌握的知识点:直方图均衡化是一种快速有效且简便的图像空域增强方法,在图像处理中有着非常重要的意义,因此要求掌握。
四、实验题目:编程实现灰度图像的直方图均衡化处理。
要求给出原始图像的直方图、均衡化图像及其直方图和直方图均衡化时所用的灰度级变换曲线图。
五、思考题:(选做,有加分)实现对灰度图像的直方图规定化处理。
六、实验报告:请按照要求完成下面报告内容并提交源程序、可执行程序文件和实验结果图像。
1、请详细描述本实验的原理:1.直方图均衡化概述图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。
直方图拉伸和直方图均衡化是两种最常见的间接对比度增强方法。
直方图拉伸是通过对比度拉伸对直方图进行调整,从而“扩大”前景和背景灰度的差别,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来实现;直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。
直方图均衡化的英文名称是Histogram Equalization.直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。
通过这种方法,亮度可以更好地在直方图上分布。
这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。
2基本思想直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
实验二:直接灰度变换和直方图均衡一、代码线性变换:LinearTransformFunc.m分段线性变换:StretchFunc.m对数变化:LogFunc.m指数变换:ExponentFunc.mLinearTransformFunc.mfunction [new]= LinearTransformFunc( original, k, d )new=original;m=size(original,1);n=size(original,2);for i=1:mfor j=1:nnew(i,j)=original(i,j)*k+d;endendnew=original*k+d;endStretchFunc.mfunction [ new ] = StretchFunc(original, x1,y1,x2,y2)new = original;w = size(new, 1);h = size(new, 2);k1 = y1 / x1;dk1 = (y2 - y1) / (x2 - x1);dk2 = (255 - y2) / (255 - x2);for i = 1 : wfor j = 1 : hx = new(i, j);if x < x1new(i, j) = k1 * x;elseif x < x2new(i, j) = dk1 * (x - x1) + y1;elsenew(i, j) = dk2 * (x - x2) + y2;endendendLogFunc.mfunction [new] = LogFunc(original,c)new=original;m=size(original,1);n=size(original,2);for i=1:mfor j=1:nnew(i,j)=c*log(double(original(i,j))+1);endendnew=c*log(double(original)+1);endExponentFunc.mfunction [new] = ExponentFunc(original,c,d)new=original;m=size(original,1);n=size(original,2);for i=1:mfor j=1:nnew(i,j)=c*original(i,j).^d;endendnew=c*original.^d;end命令行窗口调用上述.m文件:i=imread('C:\Users\Administrator\Desktop\shiyanyi.png'); i_gray=rgb2gray(i);I=double(i_gray)/255;I_LinearTransform=LinearTransformFunc(I, 1, 0.01);imshow(I_LinearTransform);I_Stretch=StretchFunc(I,0.01,0.03,0.4,0.5); imshow(I_Stretch);I_Log=LogFunc(I,1.5);imshow(I_Log);I_Exponent=ExponentFunc(I,1.1,2); imshow(I_Exponent);I1=imadjust(I,[],[0 1]);imhist(I);imhist(I1);I_junhenghua=histeq(I);imshow(I)imshow(I_junhenghua)输出图像以及直方图如下:(原图)(线性变换)(分段线性变换)(对数变换)(指数变换)(均衡化)(直方图)实验总结:1、用imadjust函数将原图像的灰度值调整到[0 1],调整后图片并没有改变,直方图也没有改变;2、图像归一化处理后设置的参数大小不同,归一化后参数设置需要很小,以避免超出所显示的范围后出现空白现象;3、线性变换、分段限行变换、指数变换、对数变换需要设置参数,参数设置的合理性对输出的图像有很大影响,很有可能因为参数设置不合理达不到预想的效果;而直方图的均衡化处理不需要设置参数,可以明显提高图像的视觉效果。
数字图像处理实验报告实验二图像直方图均衡姓名:*******学号:*********专业:************一.实验目的学习并掌握图像直方图均衡的基本理论,并通过分析均衡前后的图像验证课堂教学内容,总结直方图均衡的特点。
二.实验内容对图像 img2 进行直方图均衡(img2为X光片图像)1.对比均衡前后图像的直方图及特点,①图形显示其直方图以及灰度映射关系②计算以下参数:概率非零灰度数,概率非零灰度中最大概率、最小概率、最大最小概率之比。
③统计图像中概率大于平均概率的灰度级数;④计算非零概率的平均值和方差⑤您认为哪些参数能够表现图像直方图分布的均匀程度?试提取相关参数进行测试。
2.找一到两幅图像重复上述实验。
3.通过实验结果对比,能得出什么结论?三、实验报告要求1.源程序(C或Matlab):(1).画直方图的Matlab程序filname='E:\课件\大三下\图像处理\实验二\1.bmp'; //打开文件A=imread(filname); //读取文件信息imhist(A); //画出图像文件的直方图(2)C程序#include<stdio.h>#include<windows.h>#include<string.h>#include<math.h>BITMAPFILEHEADER bfh;BITMAPINFOHEADER bih;typedef struct PP{unsigned char GRAY;}PIXEL;////画出灰度映射关系图////void draw(double s[]){FILE *fout,*fin;int i,j;PIXEL p[256][256];BITMAPFILEHEADER m_bfh;BITMAPINFOHEADER m_bih;RGBQUAD colorPanel[256];fin=fopen("1.bmp","rb");fread(&m_bfh,1,sizeof(BITMAPFILEHEADER),fin);fread(&m_bih,1,sizeof(BITMAPINFOHEADER),fin);fread(colorPanel,256,sizeof(RGBQUAD),fin);fclose(fin);fout=fopen("Gray mapping relationship.bmp","wb");m_bih.biWidth=256;m_bih.biHeight=256;m_bih.biSizeImage=256*256;m_bfh.bfSize=m_bfh.bfOffBits+m_bih.biSizeImage;for(i=0;i<256;i++)for(j=0;j<256;j++) p[i][j].GRAY=255;for(i=0;i<256;i++){j=(int)s[i];p[i][j].GRAY=0;}fwrite(&m_bfh,1,sizeof(BITMAPFILEHEADER),fout);fwrite(&m_bih,1,sizeof(BITMAPINFOHEADER),fout);fwrite(colorPanel,256,sizeof(RGBQUAD),fout);fwrite(p,256*256,1,fout);fclose(fout);}////统计概率非零灰度数子函数 ///double nonzero(double p[])int i;double sum=0;for(i=0;i<256;i++)if(p[i]!=0) sum=sum+1;printf("概率非零灰度数:%.2f\n",sum);return sum;}////找到最大概率子函数////double lmax(double p[]){int i;double max;for(i=0;i<256;i++) //对max初始化if(p[i]!=0){max=p[i];break;}for(i=0;i<256;i++)if(p[i]!=0&&p[i]>max) max=p[i]; //找出概率非零最大值printf("概率非零最大值:%lf\n",max);return max;}////找到最小概率子函数////double lmin(double p[]){int i;double min;for(i=0;i<256;i++) //对min初始化if(p[i]!=0){min=p[i];break;}for(i=0;i<256;i++)if(p[i]!=0&&p[i]<min) min=p[i]; //找出概率非零最小值printf("概率非零最小值:%lf\n",min);return min;}////求最大最小概率之比子函数////double rate(double max,double min){double r;r=max/min;printf("最大最小概率之比:%lf\n",r);return r;}////统计图像中概率大于平均概率的灰度级数子函数 //// double lager(double p[]){int i;double sum=0;for(i=0;i<256;i++)if(p[i]>1.0/256) sum=sum+1;printf("图像中概率大于平均概率的灰度级数:%lf\n",sum);return sum;}////求非零概率的平均值的子函数////double average(double sum){double aver;aver=1.0/sum;printf("非零概率的平均值:%lf\n",aver);return aver;}////求非零概率的方差的子函数////double variance(double sum,double p[],double aver){int i;double asum=0,var;for(i=0;i<256;i++)if(p[i]!=0) asum=asum+pow((p[i]-aver),2);//printf("%lf\n",asum);var=asum/sum;printf("非零概率的方差:%lf\n",var);return var;}/////主函数//////int main(){FILE *fin,*fout;RGBQUAD colorPanel[256];PIXEL **bmpData;long i,j;double num[256]={0},p[256]={0},s[256]={0};double max,min,r,sum=0,asum=0,aver,psum=0,var;fin=fopen("1.bmp","rb");fread(&bfh,1,sizeof(BITMAPFILEHEADER),fin);fread(&bih,1,sizeof(BITMAPINFOHEADER),fin);fread(colorPanel,256,sizeof(RGBQUAD),fin);bmpData=(PIXEL **)malloc(bih.biHeight*sizeof(PIXEL *));for(i=0;i<bih.biHeight;i++){bmpData[i]=(PIXEL *)malloc(bih.biWidth*sizeof(PIXEL));fread(bmpData[i],bih.biWidth,sizeof(PIXEL),fin);}fclose(fin);////对图像进行直方图均衡////for(i=0;i<bih.biHeight;i++){ //二重循环遍历图象数据for(j=0;j<bih.biWidth;j++){num[bmpData[i][j].GRAY]++; //当前灰度级象素/总象素}}for(i=0;i<256;i++)p[i]=num[i]/bih.biWidth/bih.biHeight; //计算灰度概率s[0]=p[0];for(i=1;i<256;i++){s[i]=s[i-1]+p[i]; //计算累积概率(低灰度概率加到高灰度概率上)}for(i=0;i<256;i++){ //0~1映射到0~255s[i]=s[i]*255;for(j=0;j<256;j++){if(s[i]>=j-0.5&&s[i]<j+0.5)s[i]=j;}}for(i=0;i<bih.biHeight;i++){ //对原图像进行直方图均衡for(j=0;j<bih.biWidth;j++){bmpData[i][j].GRAY=(unsignedchar)s[bmpData[i][j].GRAY];}}////计算各个参数////sum=nonzero(p); //概率非零灰度数max=lmax(p); //概率非零灰度中最大概率min=lmin(p); //概率非零灰度中最小概率r=rate(max,min); //最大最小概率之比asum=lager(p); //图像中概率大于平均概率的灰度级数aver=average(sum); //非零概率的平均值var=variance(sum,p,aver); //非零概率的方差draw(s); //画灰度映射关系曲线fout=fopen("3.bmp","wb");fwrite(&bfh,1,sizeof(BITMAPFILEHEADER),fout);fwrite(&bih,1,sizeof(BITMAPINFOHEADER),fout);fwrite(colorPanel,256,sizeof(RGBQUAD),fout);for(i=0;i<bih.biHeight;i++)fwrite(bmpData[i],bih.biWidth,sizeof(PIXEL),fout);fclose(fout);return 0;}2.程序流程图:3.实验结果图像及对应参数:(1)图一:均衡前:均衡前直方图:灰度映射:对应参数:均衡后:均衡后的直方图:对应参数:均衡前后灰度映射关系:横轴表示均衡前的灰度,纵轴表示均衡后的灰度。
数字图像报告班级:姓名:学号:一、直方图均衡:直方图均衡化也叫做直方图平坦化,是一种常用的灰度增强算法。
目的:曾强对比度目标:均匀分度原理:假设灰度级为归一化至范围[0,1]内的连续量,并令Pr (r)表示某给定图像中的灰度级的概率密度函数(PDF),其下标用来区分输入图像和输出图像的PDF。
假设我们对输入灰度级执行如下变换,得到(处理后的)输出灰度级s:S=T(r)=∫0r Pr(w)dw式中w 是积分的哑变量。
可以看出,输出灰度级的概率密度函数是均匀的,即a.当0≤s≤1 时,Ps(s)=1b.当s 为其他时,Ps(s)=0换言之,前述变换生成一幅图像,该图像的灰度级较为均衡化,且覆盖了整个范围[0,1]。
灰度级均衡化处理的最终结果是一幅扩展了动态范围的图像,它具有较高的对比度。
该变换函数只不过是一个累积分布函数(CDF)。
二、直方图均衡程序:clc主程序:picture=input('please input the filename:','s');fid=fopen(picture);dat=fread(fid);d=dat';B=reshape(d,256,256);h=length(d);newname=input('输入新的文件名:','s');zhi(h,newname,B,d);子程序:function y=zhi(h,newname,B,d)figure(1);imshow(uint8(B'));N=zeros(1,256);for i=0:255for j=1:hif i==d(j)N(i+1)=N(i+1)+1;endendendi=0:255;p=N/h;figure(2)stem(i,p,'.')title('原始直方图')m=zeros(1,256);for k=1:256if k==1m(k)=p(k);elsem(k)=m(k-1)+p(k);endendfor k=1:256r=round(m*255);ends=zeros(1,256);for a=1:256for b=1:256if r(a)==r(b)s(a)=N(a)+N(b);endendendq=s/h;for j=1:256k(j)=r(j);endfigure(3);stem(k,q,'.');title('均衡直方图');M=zeros(1,h);for i=1:hk=d(i);M(i)=r(k+1);endR=reshape(M,256,256);figure(4);imshow(uint8(R'));jht=fopen(newname,'wb');g=fwrite(jht,M);fclose('all');原图像原始直方图均衡直方图均衡后的图像:三、体会:通过本次设计,让我学会了从问题的高度来考虑设计的方方面面,对程序的设计和研究有了更深刻的体会;让我了解到程序的设计是建立在对理论知识了解的基础上的,特别是对直方图均衡化的原理要有较为详细的了解,此外对直方图均衡化算法也要进行了解;在编写程序时,进行模块化设计,以严谨的态度进行编程,避免出现低级错误。
图像的灰度变换增强实验报告一、实验目的1、 理解数字图像处理中点运算的基本作用;2、 掌握对比度调整与灰度直方图均衡化的方法。
二、实验原理1、对比度调整如果原图像f (x , y )的灰度范围是[m , M ],我们希望对图像的灰度范围进行线性调整,调整后的图像g (x , y )的灰度范围是[n , N ],那么下述变换:[]n m y x f mM n N y x g +---=),(),( 就可以实现这一要求。
MATLAB 图像处理工具箱中提供的imadjust 函数,可以实现上述的线性变换对比度调整。
imadjust 函数的语法格式为:J = imadjust(I,[low_in high_in], [low_out high_out])J = imadjust(I, [low_in high_in], [low_out high_out])返回原图像I 经过直方图调整后的新图像J ,[low_in high_in]为原图像中要变换的灰度范围,[low_out high_out]指定了变换后的灰度范围,灰度范围可以用 [ ] 空矩阵表示默认范围,默认值为[0, 1]。
不使用imadjust 函数,利用matlab 语言直接编程也很容易实现灰度图像的对比度调整。
但运算的过程中应当注意以下问题,由于我们读出的图像数据一般是uint8型,而在MATLAB 的矩阵运算中要求所有的运算变量为double 型(双精度型)。
因此读出的图像数据不能直接进行运算,必须将图像数据转换成双精度型数据。
MATLAB 中提供了这样的数据类型转换函数:im2double 函数,其语法格式为:I2 = im2double(I1)运算之后的图像数据再显示时可以再转化成uint8型,格式为:I3 = uint8 (I2)2、直方图均衡化直方图均衡化的目的是将原始图像的直方图变为均衡分布的形式,即将一已知灰度概率密度分布的图像,经过某种变换变成一幅具有均匀灰度概率密度分布的新图像,从而改善图像的灰度层次。
实验二灰度直方图及直方图均衡化一、实验目的1. 直方图的显示2. 计算并绘制图像直方图3. 直方图的均衡化二、实验内容灰度直方图用于显示图像的灰度值分布情况,是数字图像处理中最简单和最实用的工具。
MATLAB 中提供了专门绘制直方图的函数imhist()。
1. 直方图的显示imshow('F:\标准图片\baboon.tif');title('原图像')%显示原图像A=imread('F:\标准图片\baboon.tif');figure;imhist(A);title('对应直方图')原图像500100015002000250030003500对应直方图0501001502002502. 计算并绘制图像直方图A :用bar 函数显示A=imshow('F:\标准图片\baboon.tif');h=imhist(A);h1=h(1:10:256);horz=1:10:256;bar(horz,h1)%用bar 函数显示axis([0 255 0 15000])%设置水平轴和垂直轴的最大值和最小值set(gca,'xtick',0:50:255)set(gca,'xtick',0:2000:15000)用bar 函数显示图像0050001000015000B :用stem 函数显示A=imshow('F:\标准图片\baboon.tif');h=imhist(A);h1=h(1:10:256);horz=1:10:256;stem(horz,h1,'fill')%用stem 函数显示axis([0 255 0 15000])%设置水平轴和垂直轴的最大值和最小值set(gca,'xtick',[0:50:255])set(gca,'xtick',[0:2000:15000])用stem 函数显示050001000015000B :用plot 函数显示A=imshow('F:\标准图片\baboon.tif');h=imhist(A);plot(h)axis([0 255 0 15000])%设置水平轴和垂直轴的最大值和最小值set(gca,'xtick',[0:50:255])set(gca,'xtick',[0:2000:15000])用plot 函数显示0500010000150003. 直方图均衡化imshow('F:\标准图片\baboon.tif');title('原图像')I=imread('F:\标准图片\baboon.tif ','tif');figure;imhist(I),title('对应直方图')%从得到的直方图可以看出,图像的对比度很低,灰度级集中在70-160 范围内, 如果只取%这个范围内的灰度,并扩展到[0,255],则会明显增强图像对比度J=imadjust(I,[70/255 160/255],[]);figure;imshow(J),title('经灰度级调整后的图')figure;imhist(J),title('灰度级调整后的直方图')%MATLAB 还提供了histeq 函数(自动直方图均衡化)K=histeq(I);figure;imshow(K),title('经直方图均衡化后的图')figure;imhist(K),title('直方图均衡化后的直方图')原图像500100015002000250030003500对应直方图050100150200250经灰度级调整后的图10002000300040005000600070008000900010000灰度级调整后的直方图050100150200250经直方图均衡化后的图0500100015002000250030003500400045005000直方图均衡化后的直方图050100150200250。
实验报告1.数字图像直方图均衡的算法原理直方图均衡的主要原理是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布,通过将不同灰度值的像素数量进行统计,并将图像的像素值进行重新分配,把一定范围的像素过于密集的灰度值重新分配到较广的灰度区域内,使得整体灰度范围内每个灰度值的像素数量基本相同。
2.数字图像直方图均衡的算法步骤I.设均衡前图像在(x,y)处灰度值为f(x,y),均衡后图像的灰度值为g(x,y)II.设直方图变换函数为g(x,y)=M(f(x,y))III.令M(t)在(0,L-1)上单调递增,且使得f(x,y)和g(x,y)均属于(0,L-1)。
IV.计算每个灰度级的频数p(x,y)=f(x,y)/NV.此时计算累计分布函数C(x,y)=Σp(x,y)VI.利用M(t)计算均衡后的灰度级:g(x,y)=INT[(gmax-gmin)C(x,y)+gmin+0.5]3.MATLAB代码对RGB通道独立地进行直方图均衡的代码实现:RGB=imread('yuanban.jpg');R=RGB(:,:,1);G=RGB(:,:,2);B=RGB(:,:,3);subplot(4,2,1),imshow(RGB);title('原始真彩色图像');subplot(4,2,3),imshow(R);title('真彩色图像的红色分量');subplot(4,2,4), imhist(R);title('真彩色图像的红色分量直方图');subplot(4,2,5),imshow(G);title('真彩色图像的绿色分量');subplot(4,2,6), imhist(G);title('真彩色图像的绿色分量直方图');subplot(4,2,7),imshow(B);title('真彩色图像的蓝色分量');subplot(4,2,8), imhist(B);title('真彩色图像的蓝色分量直方图');r=histeq(R);g=histeq(G);b=histeq(B);figure,subplot(3,2,1),imshow(r);title('红色分量均衡化后图像');subplot(3,2,2), imhist(r);title('红色分量均衡化后图像直方图');subplot(3,2,3),imshow(g);title('绿色分量均衡化后图像');subplot(3,2,4), imhist(g);title('绿色分量均衡化后图像直方图');subplot(3,2,5), imshow(b);title('蓝色分量均衡化后图像');subplot(3,2,6), imhist(b);title('蓝色分量均衡化后图像直方图');figure,newimg = cat(3,r,g,b);imshow(newimg,[]);title('均衡化后分量图像还原输出原图');4.均衡效果对比:原图:Matlab直方图均衡后效果图:PS均衡后效果图:差别:原图颜色较暗,并且大部分区域灰度值偏低,仅有部分地方灰度值较亮。
实验二图像的灰度变换与直方图均衡
一、实验目的
1.理解图像灰度变换与直方图均衡的定义;
2.掌握图像灰度变换与直方图均衡化的方法;
3.学会利用matlab编程实现灰度变换和直方图均衡的方法。
二、实验内容
1. 利用matlab语言直接编程实现图像的对比度调整;
2. 利用matlab语言编程实现图像的反转;
3. 利用matlab语言直接编程实现图像的二值化;
4. 利用matlab语言直接编程实现图像的直方图均衡化处理。
三、实验步骤
(一)利用matlab语言直接编程实现图像的对比度调整
实验代码如下:
A=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\lena.jpg');
I=double(A);
J=I*0.5+40;
A1=uint8(J);
figure(1);subplot(1,2,1),imshow(A);
subplot(1,2,2),imshow(A1);
J=I*1+40;
A1=uint8(J);
figure(2);subplot(1,2,1),imshow(A);
subplot(1,2,2),imshow(A1);
J=I*3+40;
A1=uint8(J);
figure(3);subplot(1,2,1),imshow(A);
subplot(1,2,2),imshow(A1);
J=exp(I);
A1=uint8(J);
figure(4);subplot(1,2,1),imshow(A);
subplot(1,2,2),imshow(A1); 生成图像如下:
从图中可以看出,第一幅图相对于原图的对比度降低了,第二幅图相对于原图对比度提高了40个灰度级,第三幅图对比度提高太多,效果反而不好。
在三幅图中,第二幅图视觉效果最好,对比度明显又不至于太亮。
第四幅图是指数灰度变换。
(二)利用matlab语言编程实现图像的反转
实验代码如下:
A=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\lena.jpg');
E=imadjust(A,[0.35 0.65],[1 0]);
figure;imshow(E);
生成图像如下:
从图中可以看出,原来亮的部分经过反转之后变暗,暗的部分经过反转变亮。
(三)利用matlab语言直接编程实现图像的二值化
实验代码如下:
I=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\lena.jpg');%要阈值化的图像
imshow(I);
M=I;
[m,n]=size(M);
for i=1:m
for j=1:n
if(M(i,j)<120)
M(i,j)=0;
else
M(i,j)=255;
end
end
end
figure,imshow(M);%M是二值化的图像生成图像如下:
程序设置的阈值是120,灰度级低于120的变为0(最暗),高于120的将变为255(最亮)。
(四)利用matlab语言直接编程实现图像的直方图均衡化处理
实验代码如下:
PS=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\qiao.jpg'); %读入JPG图像文件
PS=rgb2gray(PS);
imwrite(PS,'qiao灰度图.bmp'); %转换为灰度化并保存
figure(1);
imshow(PS) %显示出来
title('输入图像')
%绘制直方图
[m,n]=size(PS); %测量图像尺寸参数
GP=zeros(1,256); %预创建存放灰度出现概率的向量
for k=0:255
GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率,将其存入GP中相应位置
end
figure(2),bar(0:255,GP,'g') %绘制直方图
title('原图像直方图')
xlabel('灰度值')
ylabel('出现概率')
%直方图均衡化
S1=zeros(1,256);
for i=1:256
for j=1:i
S1(i)=GP(j)+S1(i); %计算Sk
end
end
S2=round((S1*256)+0.5); %将Sk归到相近级的灰度
for i=1:256
GPeq(i)=sum(GP(find(S2==i))); %计算现有每个灰度级出现的概率
end
figure(3),bar(0:255,GPeq,'b') %显示均衡化后的直方图
title('均衡化后的直方图')
xlabel('灰度值')
ylabel('出现概率')
%均衡化后的图像
PA=PS;
for i=0:255
PA(find(PS==i))=S2(i+1); %将各个像素归一化后的灰度值赋给这个像素
end
figure(4),imshow(PA) %显示均衡化后的图像
title('均衡化后图像')
imwrite(PA,'qiao均衡后.bmp');
生成图像如下:
从图中可以看出,经过直方图均衡后,各灰度级出现概率有了一定的
变化,原先概率大的略有降低,概率小的略有升高,尤其是220~25
灰度级有了明显的提高。
从图片质量上来看,均衡化后的图像桥的钢架结构更加清晰,天空中云彩更加艳丽,总体效果比均衡化之前好。
四、实验总结
这次实验主要是对图像的灰度变换和直方图均衡化,实验内容包括灰度拉伸、图像反转、图像的二值化以及直方图均衡。
通过实验将课本上理论知识加以实践,实验过程中明白了图像处理的一些技巧,同时也明白了,不同的图像的处理方法是不完全一致的,例如,实验时,我发现对“qiao”图像的直方图均衡处理效果很好,但同样的方法对于“lena”图像效果却不是很明显。
-11 -。