一次函数的图像和性质
- 格式:doc
- 大小:41.50 KB
- 文档页数:2
课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。
一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。
一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。
(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。
2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。
反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。
(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。
(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。
即该函数为减函数。
3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。
4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。
一次函数图像及性质
一次函数是一种基本函数,其形式为y=kx+b,其中k是斜率,b是截距。
一次函数的图像呈现为一条直线,具有一定的性质。
首先,一次函数的图象可以通过将直线y=kx平移Ib1个单位长度得到,具体地,当b>0时,图象向上平移;当b<0时,图象向下平移。
其次,一次函数具有以下主要性质:
-一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠O)°
-一次函数与y轴交点的坐标总是(0,b),与X轴总是交于(-b∕k,0)o
-正比例函数的图像都是过原点。
-当k>0时,直线必通过一、三象限,y随X的增大而增大;当k<0时,直线必通过二、四象限,y随X的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点;当bVO时,直线必通过三、四象限。
这些性质有助于我们更好地理解和应用一次函数。
一次函数图像性质总结一次函数图像性质总结3、一次函数的图象及性质(1)形状:一次函数y=kx+b的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.(2)画法:由于一次函数y=kx+b的图象是一条直线,因此作一次函数图象时,只要确定两个点,再过这两个点作直线就可以了.一般地,一次函数y=kx+b的图象是经过点(0,b)和b(-,0)的一条直线,当b=0时,即为正比例函数,其图象k是经过原点(0,0)和点(1,k)的一条直线.(3)性质:一次函数y=kx+b(k、b是常数,且k≠0)的图像是一条直线,它的性质如下:性质一:(增减性)一次函数中k的取值决定了图像的倾斜方向。
①k>0直线必然经过一、三象限,y的值随着x的增大而增大。
②k<0直线必然经过二、四象限,y的值随着x的增大而减小。
性质二:一次函数中b的取值确定直线与y轴交点的位置,反之亦然。
①b>0直线与y的交点在x轴的上方。
②b=0直线过原点。
③b<0直线与y的交点在x轴的下方。
性质三:当k确定b变化时,图像为无数条平行线;即两直线平行K的值相等。
当b确定k变化时,图像为一束都经过点(0,b)的直线。
即当b相等时两直线相交于Y轴一点。
性质四:一般的,一次函数的k、b都未确定,他的图像分为四种情况:注意:一般的画一次函数y=kx+b(k、b是常数,且k≠0)图像时,选取(0,b)、(-,0)两点,即选取直线与两坐标轴的交点。
bk扩展阅读:一次函数图像性质小结与配套练习一次函数的图像性质总结(阅读+理解)一、一次函数的图像姓名1.正比例函数y=kx(k≠0,k是常数)的图像是经过O(0,0)和M(1,k)两点的一条直线(如图13-17).(1)当k>0时,图像经过原点和第一、三像限;(2)k<0时,图像经过原点和第二、四像限.2.一次函数y=kx+b(k是常数,k≠0)的图像是经过A(0,b)和B(-直线,当kb≠0时,图像(即直线)的位置分4种不同情况:(1)k>0,b>0时,直线经过第一、二、三像限,如图13-18A(2)k>0,b<0时,直线经过第一、三、四像限,如图13-18B(3)k<0,b>0时,直线经过第一、二、四像限,如图13-18C(4)k<0,b<0时,直线经过第二、三、四像限,如图13-18Db,0)两点的一条k3.一次函数的图像的两个特征(1)对于直线y=kx+b(k≠0),当x=0时,y=b即直线与y轴的交点为A(0,b),因此b叫直线在y轴上的截距.(2)直线y=kx+b(k≠0)与两直角标系中两坐标轴的交点分别为A(0,b)和B(-4.一次函数的图像与直线方程(1)一次函数y=kx+b(k≠0)的图像是一条直线,因此y=kx+b(k≠0)也叫直线方程.但直线方程不一定都是一次函数.(2)与坐标轴平行的直线的方程.①与x轴平行的直线方程形如:y=a(a是常数).a>0时,直线在x轴上方;a=0时,直线与x轴重合;a<0时,直线在x轴下方.(如图13-19)b,0).k②与y轴平行的直线方程形如x=b(b是常数),b>0时,直线在y轴右方,b=0时,直线与y轴重合;b<0时,直线在y轴左方,(如图13-20).二、两条直线的关系1.与坐标轴不平行的两条直线l1:y1=k1x+b1,l2:y2=k2x+b,若l1与l2相交,则k1≠k2,其交点是联立这两条直线的方程,求得的公共解;若l1与l2平行,则k1=k2.三、一次函数的增减性1.增减性如果函数当自变量在某一取范围内具有函数值随自变量的增加(或减少)而增加(或减少)的性质,称为该函数当自变量在这一取值范围内具有增减性,或称具有单调性.2.一次函数的增减性一次函数y=kx+b在x取全体实数时都具有如下性质:(1)k>0时,y随x的增加而增加;(2)k<0时,y随x的增加而减小.3.用待定系数法求一次函数的解析式:若已知一次函数的图像(即直线)经过两个已在点A(x1,y1)和B(x2,y2)求这个一次函数的解析式,其方法和步骤是:(1)设一次函数的解析式:y=kx+b(k≠0)(2)将A、B两点的坐标代入所设函数的解析式,得两个方程:y1=kx1+b①y2=kx2+b②(3)联立①②解方程组,从而求出k、b值.这一先设系数k、b,从而通过解方程求系数的方法以称为待定系数法.一次函数的图像和性质练习题题组一:1.正比例函数ykx(k0)一定经过点,经过(1一次函数ykxb(k0)经,),过(0,)点,(,0)点.2.直线y2x6与x轴的交点坐标是,与y轴的交点坐标是。
3.2 一次函数一、知识汇总: 1、 函数的概念:在某变化的过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有 的值与它对应,那么称y 是x 的函数,其中 x 是 ,y 是 2、 一次函数与正比例函数:若两个变量x ,y 之间的关系可以表示成 的形式,则称y 是x 的一次函数,特别地当 时,称y 是x 的正比例函数,显然正比例函数是一次函数的特殊情况. 3、 一次函数的图象:正比例函数y =kx (0≠k )的图象经过点(0, )(1, )的一条直线,一次函数y =kx 十b (k ,b 为常数,0≠k )的图象经过点(0, )( ,0)的一条直线,具体的见下表:正比例函数和一次函数有相同的性质即当k >0时,y 随x 的 ,当k <0时,y 随x 的 . 二、典型例题与易错题:例1、已知函数133255y x y x y y y x =-=-=+==,,,,其中一次函数的个数是( )A.2 B.3C.4D.5例2、 当k 满足什么条件时函数23(2)2k y k x -=++是一次函数?例3、一次函数(1)5y m x =++中,y 的值随x 的减小而减小,则m 的取值范围是( )A.1m >- B.1m <- C.1m =- D.1m < 例4、关于一次函数y =-x+1的图像,下列所画正确的是()【答案】C两个一次函数1y ax b =+与2y bx a =+,它们在同一直角坐标系中的图象可能是( )例5、某一次函数的图像经过A (0,3),B (-1,1),求该一次函数的解析式。
例8、如图,直线y=kx+b 与x y 21=图象交于点A (2,1), 则不等式b kx x +>21的解集为 三、基础知识练习: 1、函数y =122++-x x x 的自变量x 的取值范围是2、在函数2y x b =-中,函数y 随着x 的增大而 ,此函数的图象经过点(21)-,,则b = .3、已知直线35y x =+与直线6y ax =-是两条互相平等的直线,则a = .4、一次函数3y x =+与2y x b =-+的图象交于y 轴上一点,则b = .5、已知一次函数y kx b =+的图象不经过第三象限,也不经过原点,那么k b 、的取值范围是( )A.0k >且0b <B.0k >且0b < C.0k <且0b > D.0k <且0b <已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为A .x<-1B .x> -1C . x>1D .x<1 6、已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y 轴交点的坐标为 7、如图,表示一次函数y mx n =+与正比例函数y mnx =(m n ,为常数,且mn 0≠)1 x x 1 x D. C. B . A .图象的是( )如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、如图,已知函数b ax y +=与kx y =得图象交于点P ,则关于x 、y 的二元一次方程组⎩⎨⎧=+=kxy bax y 的解是9、如图,已知函数b x y +=3和3-=ax y 的图象交于点P (-2,-5),则不等式33->+ax b x 的解集是12、如图,已知直线1l 经过点A (-1,0)与点B (2,3),另一条直线2l 经过点B,且与x 轴相交于点P (m ,0) (1)求直线1l 的解析式(2)若△APB 的面积为3,求m 的值四、拓展提高:1、如图,直线33+-=x y 与x 轴、y 轴分别交于A 、B 两点,若把 △AOB 沿直线AB 翻折,点O 落在点C 处,则点C 的坐标是2、如图,已知直线1l :3832+=x y 与直线2l :162+-=x y 相交于点C ,1l 、2l 分别交x 轴与A 、B 两点,矩形DEFG 的顶点D 、E 分别在直线1l 、2l 上,顶点F 、G 都在x 轴上,且点G 与点B 重合。
一次函数的图象及性质1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴ 次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数和一次函数图像及性质3、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:即横坐标或纵坐标为0的点.4、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠(3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k5、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.例1:已知一次函数y=kx+b 的图象如图所示,求函数表达式.例2、直线与x 轴交于点A (-4,0),与y 轴交于点B ,若点B 到x 轴的距离为2,求直线的解析式。
例1:已知一次函数)1()14(+-+=m x m y 。
(1)m 为何值时,y 随x 的增大而减小?(2)m 为何值时,此直线与y 轴交点在x 轴下方? (3)m 为何值时,此直线不经过第三象限?(4)若1=m ,求这个一次函数与两个坐标轴的交点。