《概率论与数理统计》第八章1假设检验的基本概念
- 格式:ppt
- 大小:2.17 MB
- 文档页数:41
概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。
由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。
概率论与数理统计教案-假设检验第一章:假设检验概述1.1 假设检验的定义与作用引导学生理解假设检验的基本概念解释假设检验在统计学中的重要性1.2 假设检验的基本步骤介绍假设检验的基本步骤,包括建立假设、选择显著性水平、计算检验统计量、确定决策规则和给出结论1.3 假设检验的类型解释单样本假设检验、两样本假设检验和方差分析等不同类型的假设检验第二章:单样本假设检验2.1 单样本Z检验介绍单样本Z检验的适用场景和条件解释Z检验的计算方法和步骤2.2 单样本t检验介绍单样本t检验的适用场景和条件解释t检验的计算方法和步骤2.3 单样本秩和检验介绍单样本秩和检验的适用场景和条件解释秩和检验的计算方法和步骤第三章:两样本假设检验3.1 两样本t检验介绍两样本t检验的适用场景和条件解释两样本t检验的计算方法和步骤3.2 两样本秩和检验介绍两样本秩和检验的适用场景和条件解释两样本秩和检验的计算方法和步骤3.3 配对样本t检验介绍配对样本t检验的适用场景和条件解释配对样本t检验的计算方法和步骤第四章:方差分析4.1 方差分析的适用场景和条件解释方差分析的适用场景和条件,包括完全随机设计、随机区组设计和析因设计等4.2 方差分析的计算方法介绍方差分析的计算方法,包括总平方和、组间平方和和组内平方和的计算4.3 方差分析的判断准则解释F检验的判断准则和显著性水平的确定第五章:假设检验的扩展5.1 非参数检验介绍非参数检验的概念和适用场景解释非参数检验的计算方法和步骤5.2 假设检验的优化方法介绍自助法和贝叶斯方法等假设检验的优化方法5.3 假设检验的软件应用介绍使用统计软件进行假设检验的方法和技巧第六章:卡方检验6.1 卡方检验的基本概念介绍卡方检验的定义和作用解释卡方检验在分类数据分析中的应用6.2 拟合优度检验解释拟合优度检验的概念和计算方法举例说明拟合优度检验在实际中的应用6.3 独立性检验解释独立性检验的概念和计算方法举例说明独立性检验在实际中的应用第七章:诊断性统计与效果量分析7.1 诊断性统计的概念介绍诊断性统计的定义和作用解释诊断性统计在教学评估中的应用7.2 效果量的计算方法介绍效果量的定义和计算方法解释不同效果量指标的含义和应用7.3 效果量分析的实际应用举例说明效果量分析在教学研究中的具体应用第八章:多重比较与事后检验8.1 多重比较的概念介绍多重比较的定义和作用解释多重比较在实验数据分析中的应用8.2 事后检验的方法介绍事后检验的概念和计算方法解释不同事后检验方法的原理和应用8.3 多重比较与事后检验的实际应用举例说明多重比较与事后检验在实际研究中的应用第九章:贝叶斯统计与贝叶斯推断9.1 贝叶斯统计的基本概念介绍贝叶斯统计的定义和特点解释贝叶斯统计与经典统计的区别9.2 贝叶斯推断的计算方法介绍贝叶斯推断的计算方法和步骤解释贝叶斯推断在实际中的应用9.3 贝叶斯统计软件应用介绍使用贝叶斯统计软件进行数据分析的方法和技巧第十章:假设检验的综合应用与案例分析10.1 假设检验在医学研究中的应用举例说明假设检验在医学研究中的具体应用10.2 假设检验在社会科学研究中的应用举例说明假设检验在社会科学研究中的具体应用10.3 假设检验在商业数据分析中的应用举例说明假设检验在商业数据分析中的具体应用重点和难点解析重点环节1:假设检验的定义与作用假设检验是统计学中的核心内容,理解其定义和作用对于后续的学习至关重要。
概率论与数理统计教案-假设检验一、教学目标1. 理解假设检验的基本概念和原理;2. 学会使用假设检验方法对样本数据进行推断;3. 掌握假设检验的类型、步骤和判断准则;4. 能够运用假设检验解决实际问题。
二、教学内容1. 假设检验的基本概念和原理假设检验的定义假设检验的目的是什么假设检验的基本原理2. 假设检验的类型单样本检验双样本检验配对样本检验3. 假设检验的步骤建立假设选择检验统计量确定显著性水平计算检验统计量的值做出判断4. 假设检验的判断准则拒绝域和接受域检验的拒绝准则检验的接受准则5. 假设检验的应用实例应用假设检验解决实际问题实例分析与解答三、教学方法1. 讲授法:讲解假设检验的基本概念、原理、类型、步骤和判断准则;2. 案例分析法:分析实际问题,引导学生运用假设检验方法解决问题;3. 互动教学法:提问、讨论、解答学生提出的问题,促进学生理解和掌握知识;4. 练习法:布置课后作业,让学生巩固所学知识,提高运用能力。
四、教学准备1. 教案、教材、课件等教学资源;2. 投影仪、电脑等教学设备;3. 课后作业及答案。
五、教学过程1. 导入新课:回顾上一节课的内容,引入假设检验的基本概念和原理;2. 讲解假设检验的基本概念和原理,阐述其目的是什么;3. 讲解假设检验的类型,引导学生了解各种类型的假设检验;4. 讲解假设检验的步骤,让学生掌握进行假设检验的方法;5. 讲解假设检验的判断准则,使学生明白如何做出判断;6. 分析实际问题,引导学生运用假设检验方法解决问题;7. 布置课后作业,让学生巩固所学知识;8. 课堂小结,总结本节课的主要内容和知识点。
教学反思:在教学过程中,要注意引导学生理解和掌握假设检验的基本概念、原理和步骤,并通过实际问题让学生学会运用假设检验方法。
要关注学生的学习反馈,及时解答他们提出的问题,提高他们的学习兴趣和积极性。
六、教学评估1. 评估方式:课后作业、课堂练习、小组讨论、个人报告2. 评估内容:学生对假设检验基本概念的理解学生对假设检验类型和步骤的掌握学生对假设检验判断准则的应用学生解决实际问题的能力七、课后作业1. 完成教材后的练习题2. 选择一个实际问题,运用假设检验方法进行分析和解答3. 总结本节课的主要内容和知识点,写下自己的学习心得八、课堂练习1. 例题解析:分析教材中的例题,理解假设检验的步骤和判断准则2. 小组讨论:分组讨论课后作业中的问题,共同解决问题,交流学习心得3. 个人报告:选取一个实际问题,进行假设检验的分析和解题过程报告九、教学拓展1. 假设检验的扩展知识:学习其他类型的假设检验方法,如非参数检验、方差分析等2. 实际应用案例:搜集更多的实际问题,进行假设检验的分析和解答3. 软件操作实践:学习使用统计软件进行假设检验,提高数据分析能力十、教学计划1. 下一节课内容预告:介绍假设检验的扩展知识和实际应用案例2. 学习任务布置:预习下一节课的内容,准备相关问题和建议3. 课后自学计划:鼓励学生自主学习,深入了解假设检验的方法和应用教学反思:在完成本节课的教学后,要关注学生的学习情况,及时解答他们提出的问题,并提供必要的辅导。
第八章假设检验2009考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验2009考试要求1.理解显著性检验基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。
2.掌握单个及两个正态总体的均值和方差的假设检验。
一、假设检验与参数区间估计的关系1.1参数θ的置信度为1α-的区间估计,正好是显著性水平为α的假设检验的接受域。
1.2 区间估计中,假设总体中的参数是未知的,要用样本对它进行估计;而假设检验中,是先对参数做出假设,再用样本对假设作检验。
在某种意义上,假设检验是区间估计的逆问题。
1.3 具有完全相同的8大枢轴量(8大枢轴量详见第七章)。
二、假设检验的基本思想及两类错误与显著性检验比如,一个人说他射击是高手,我们将半信半疑。
怎样才能确定他的话真假,最好的办法就是先假设他是高手或低手,然后让他实际打几枪,根据他射击的结果来检验。
如果其射击结果命中率在90% 以上,我们就接受他的说法;如果命中率在50% 以下,我们就拒绝他的说法。
但我们的判断也可能犯错误,一是他的确是高手,但在这次射击中失误了,而我们却只根据他这一次的命中率没把他当高手,也就是说我们犯了以真当假的错误—称为第一类错误。
二是他本来是个低手,但这次命中率恰好超过了90% 以上,我们却把他当成了高手,实事上我们犯了以假当真的错误—称为第二类错误。
这两类错误,我们都尽可能使其概率最小,但实事上做不到,因为它们是此消彼长的关系,因此,我们首先要控制主要错误(又称显著性错误)的概率。
为了说明两类错误主次关系的直观含义,我们引用一个生活例子:某人因身体不适前往医院求医。
医生的职责就是通过各种生理检查,根据化验的数据作出该病员是否犯病的结论。
然而再好的医生都不可避免会犯下两类错误。
一种是病员确实有病,但由于生理指标未出现明显的异常现象,使医生判断为无病。
另一种是病员实际上没有疾病,但生理指标呈现某种异常,使医生判断为有病。
《概率论与数理统计》作业集及答案之马矢奏春创作第1章概率论的基本概念 §1 .1 随机试验及随机事件1.(1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;2.(1) 丢一颗骰子. A :出现奇数点,则A=;B :数点大于2,则B= .(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系暗示下列各事件:(1)A 、B 、C 都不发生暗示为:.(2)A 与B 都发生,而C 不发生暗示为:.(3)A 与B 都不发生,而C 发生暗示为:.(4)A 、B 、C 中最多二个发生暗示为:.(5)A 、B 、C 中至少二个发生暗示为:.(6)A 、B 、C 中未几于一个发生暗示为:.2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1.已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则 (1)=)(AB P , (2)()(B A P )= , (3))(B A P ⋃=.2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P =. §1 .4古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个分歧的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
第八章 假设检验
1. 假设检验的基本思想:小概率事件在一次抽样中是几乎不可能发生的
例1 设总体X ~)1,(μN ,其中μ未知,n x x x ,,,21 为其样本
试在显著性水平α下检验假设
00:μμ=H ;01:μμ≠H
这里,α即为小概率事件的概率,当00:μμ=H 真时,n x n x u /1/00μσμ-=-=
~)1,0(N
则 αα=≥)(2/u u P
即事件)(2/αu u ≥即为小概率事件,当它发生时,即认为原假设0H 不真,从而接受对立假设01:μμ≠H
2. 两类错误
以例1为例,上述n x u /10
μ-=的取值完全由样本n x x ,,1 所决定,由于样本的随机性,
假设检验可能犯以下两类错误:
第一类错误:P =α(拒00H H 真),也即检验的显著性水平
第二类错误:P =β(接受00H H 不真)P =(接受10H H 真)
在样本容量n 固定时,βα,相互制约,当减小α时,β的值会增大,反之亦然。
3.正态总体),(2σμN 参数的假设检验
(1)首先要会判断所讨论问题是否为假设检验问题
例2 从一批灯泡中随机抽取50个,分别测得其寿命,算得其平均值1900=x (小时),样本标准差490=s (小时),问可否认为这批灯泡的平均寿命(μ)为2000小时。
分析:本题中虽然没说总体(寿命)服从什么分布,但由于样本容量50≥n ,可按正态总体处理,“可否认为平均寿命为2000小时”等价于作检验2000:0=μH
(2)检验问题主要是对提出的假设检验确定出检验的拒绝域,这可参考指定教材第八章正态总体检验一览表。