轴承状态监测与故障诊断技术
- 格式:pdf
- 大小:2.31 MB
- 文档页数:61
轴承故障诊断与预测技术研究一、前言轴承是企业生产过程中非常重要的一个部件,如何提高轴承的使用寿命和可靠性是企业工程技术人员关注的重点。
轴承故障是因为在使用的过程中承载超过轴承额定承载能力而产生的,严重影响企业的生产效率和经济效益。
因此,如何有效地诊断轴承故障和预测轴承性能退化状态成为企业工程技术研究的热点和难点。
二、轴承故障诊断技术1.基于信号处理的故障诊断技术信号处理是轴承故障诊断技术最重要的一部分,通过对采集到的振动信号,识别出其中的故障特征信息进行故障诊断。
现阶段已经发展出很多不同的故障诊断方法,包括功率谱密度分析法、小波分析法、时域统计学方法等等。
这些方法都具备一定的优点,但是由于轴承工作环境的复杂性,单一的方法并不能满足所有情况的诊断需要,需要结合多种诊断方法进行综合分析。
2.基于数据融合的故障诊断技术数据融合是指将来自多个传感器的数据进行集成分析,通过提高故障特征的可靠性和准确性来提高轴承的诊断效果。
目前最常用的数据融合方法是主成分分析(PCA)和独立成分分析(ICA),通过这些方法可以将数据降至低维度,提高故障特征的显著性,从而提高轴承故障的诊断能力。
三、轴承故障预测技术由于轴承的寿命和可靠性直接影响企业的生产效率和经济效益,因此对于轴承预测技术的研究日益受到重视。
轴承的预测技术是通过对轴承状态进行持续监测、分析和预测,及时发现轴承的性能下降趋势并采取有效措施,从而提高轴承寿命和可靠性。
1.基于统计学的预测技术统计学方法主要是通过历史数据和经验知识对未来轴承性能进行预测。
目前最常用的统计学方法是基于时间序列分析的ARIMA模型和基于监督学习的支持向量机(SVM)模型。
这些方法通过对历史数据进行建模和预测,可以有效地预测轴承未来可能出现的问题,提高轴承的可靠性和寿命。
2.基于机器学习的预测技术机器学习是最新的一种预测技术,通过对大量数据进行训练和学习,可以准确地预测未来可能出现的轴承故障。
为了尽可能长时间地以良好状态维持轴承本来的性能,必须保养、检测、检修、以求防事故于未然,确保运转的可靠性,提高生产性、经济性。
对长期运行中的设备来讲,平时的检测跟踪尤为重要,检测项目包括轴承的旋转音、振动、温度、润滑剂的状态等,根据检测结果,设备维护人员可以准确地判断设备的问题点,提早作出预防和解决方案。
一、异常旋转音分析诊断异常旋转音检测分析是采用听诊法对轴承工作状态进行监测的分析方法,常用工具是木柄长螺钉旋具,也可以使用外径为20mm左右的硬塑料管。
相对而言,使用电子听诊器进行监测,更有利于提高监测的可靠性。
轴承处于正常工作状态时,运转平稳、轻快,无停滞现象,发生的声响和谐而无杂音,可听到均匀而连续的“哗哗”声,或者较低的“轰轰”声。
异常声响所反映的轴承故障如下:1、轴承发出均匀而连续的“咝咝”声,这种声音由滚动体在内外圈中旋转而产生,包含有与转速无关的不规则的金属振动声响。
一般表现为轴承内加脂量不足,应进行补充。
若设备停机时间过长,特别是在冬季的低温情况下,轴承运转中有时会发出“咝咝沙沙”的声音,这与轴承径向间隙变小、润滑脂工作针入度变小有关。
应适当调整轴承间隙,更换针入度大一点的新润滑脂。
2、轴承在连续的“哗哗”声中发出均匀的周期性“嗬罗”声,这种声音是由于滚动体和内外圈滚道出现伤痕、沟槽、锈蚀斑而引起的。
声响的周期与轴承的转速成正比。
应对轴承进行更换。
3、轴承发出不规律、不均匀的“嚓嚓”声,这种声音是由于轴承内落入铁屑、砂粒等杂质而引起的。
声响强度较小,与转数没有联系。
应对轴承进行清洗,重新加脂或换油。
4、轴承发出连续而不规则的“沙沙”声,这种声音一般与轴承的内圈与轴配合过松或者外圈与轴承孔配合过松有关系。
声响强度较大时,应对轴承的配合关系进行检查,发现问题及时修理。
二、振动信号分析诊断轴承振动对轴承的损伤很敏感,例如剥落、压痕、锈蚀、裂纹、磨损等都会在轴承及振动测量中反映出来。
所以,通过采用特殊的轴承振动测量器(频率分析器等)可测量出振动的大小,通过频率分布可推断出异常的具体情况。
滚动轴承故障诊断方法与技术综述引言:滚动轴承作为机械设备中常用的零部件之一,承担着支撑和传递载荷的重要作用。
然而,由于使用环境的恶劣和工作条件的复杂性,滚动轴承往往容易出现各种故障。
因此,为了保证机械设备的正常运行和延长轴承寿命,对滚动轴承的故障进行准确诊断非常重要。
一、故障诊断方法1. 观察法观察法是最常用的故障诊断方法之一。
通过观察滚动轴承的外观和运行状态来判断是否存在故障。
例如,如果发现滚动轴承有异常噪声、温度升高、润滑油泡沫、振动加剧等现象,很可能是轴承出现了故障。
2. 振动诊断法振动诊断法是一种先进的故障诊断方法,可以通过检测轴承的振动信号来判断轴承是否存在故障。
通过分析振动信号的频谱图,可以确定轴承故障的类型和位置。
常用的振动诊断方法包括时域分析、频域分析和小波分析等。
3. 声音诊断法声音诊断法是一种通过听觉判断轴承故障的方法。
通过专业人员对轴承产生的声音进行听觉分析,可以判断轴承是否存在异常。
常见的轴承故障声音包括金属碰撞声、摩擦声和振动声等。
4. 热诊断法热诊断法是一种通过测量轴承的温度来判断轴承故障的方法。
由于轴承在故障状态下会产生摩擦热,因此轴承的温度可以间接反映轴承的工作状态。
通过测量轴承的温度分布,可以判断轴承是否存在异常。
二、故障诊断技术1. 模式识别技术模式识别技术是一种基于机器学习的故障诊断技术,可以根据轴承的振动信号和声音信号等特征,通过训练模型来识别轴承的故障类型。
常用的模式识别技术包括支持向量机、神经网络和决策树等。
2. 图像诊断技术图像诊断技术是一种通过图像处理和分析来判断轴承故障的技术。
通过对轴承的外观图像进行特征提取和分类,可以实现对轴承故障的自动诊断。
常用的图像诊断技术包括边缘检测、纹理分析和目标识别等。
3. 声音信号处理技术声音信号处理技术是一种通过对轴承声音信号进行滤波、频谱分析和特征提取等处理,来判断轴承故障的技术。
通过对声音信号的频谱图和时域图进行分析,可以判断轴承故障的类型和位置。
滚动轴承监测技术之冲击脉冲法介绍_0冲击脉冲法(Shock Pulse Method)是一种用于滚动轴承监测的技术。
这种方法可以通过分析滚动轴承中的冲击脉冲信号,来判断轴承的健康状况和剩余寿命。
冲击脉冲法的基本原理是:当滚动轴承发生故障时,轴承内部会产生冲击脉冲信号。
这些信号可以通过适当的传感器和监测设备进行采集和分析。
在正常运行状态下,轴承内部的载荷会均匀地分布在滚动体和滚道之间。
但是,当轴承受到损坏或磨损时,载荷分布会变得不均匀,产生冲击和振动。
这些冲击和振动将通过轴承壳传播出来,形成冲击脉冲信号。
冲击脉冲信号的特征包括幅值、频率和能量等。
通过对这些特征进行分析,我们可以判断轴承是否存在故障,并评估其剩余寿命。
一般来说,故障越严重,冲击脉冲信号的幅值和能量就越大,频率也会发生变化。
冲击脉冲法在轴承监测中具有以下优点:1.非接触性:冲击脉冲法只需要在轴承外部设置适当的传感器,无需拆卸轴承或直接接触轴承内部,因此对轴承的监测不会对轴承本身造成额外的损伤。
2.灵敏性:冲击脉冲法可以有效地检测到轴承内部的微小损伤或磨损。
即使在早期故障阶段,冲击脉冲信号的变化也会被准确地捕捉到。
3.实时性:冲击脉冲法采用实时监测方法,可以随时对轴承的状态进行监测和评估。
这样可以及时发现潜在的故障并采取相应的维修措施,避免因故障而导致的生产停机和损失。
4.可靠性:冲击脉冲法的结果可靠性较高。
通过与其他传统的振动分析方法进行对比,冲击脉冲法能够提供更准确和可靠的故障诊断结果。
冲击脉冲法是一种非常有效的滚动轴承监测技术。
它不仅能够检测轴承是否存在故障,还能够评估轴承的剩余寿命。
通过及时监测和诊断轴承的状况,我们可以采取相应的维修和保养措施,提高设备的可靠性和使用寿命。
因此,冲击脉冲法在工业生产中具有重要的应用价值。
滚动轴承故障诊断的频谱分析滚动轴承在机电设备中的应用非常广泛,滚动轴承状态的好坏直接关系到旋转设备的运行状态,因此在实际生产过程中作好滚动轴承的状态监测与故障诊断是搞好设备维修与管理的重要环节。
滚动轴承在其使用过程中表现出很强的规律性,并且重复性强。
正常优质轴承在开始使用时振动和噪声均比较小,但频谱有些散乱,幅值比较小。
运动一段时间后,振动和噪声保持在一定水平,频谱比较单一,仅出现一,二倍频,极少出现三倍工频以上频谱,轴承状态非常平稳,进入稳定工作期。
持续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化比较缓慢,此时,轴承峭度值开始突然到达一定值。
可以认为此时轴承出现了初期故障。
这时就要对轴承进行严密监测,密切注意其变化。
此后轴承峭度值又开始快速下降,并接近正常值,而振动和噪声开始显著增大,其增大幅度开始加快,其振动超过标准时(ISO2372),其轴承峭度值也开始快速增大,当轴承超过振动标准,峭度值也超过正常值时,可认为轴承已进入晚期故障,需要及时检修设备,更换滚动轴承。
1、滚动轴承故障诊断方式振动分析是对滚动轴承进行状态监测和故障诊断的常用方法。
一般方式为:利用数据采集器在设备现场采集滚动轴承振动信号并储存,传送到计算机,利用振动分析软件进行深入分析,从而得到滚动轴承各种振动参数的准确数值,进而判断这些滚动轴承是否存在故障。
采用恩递替公司的Indus3振动测量分析系统进行大中型电机滚动轴承的状态监测和故障诊断,经过近几年实际使用,其效果令人非常满意。
要想真实准确反映滚动轴承振动状态,必须注意采集信号的准确真实,因此要在离轴承最近的地方安排测点。
2、滚动轴承正常运行特点与诊断技巧滚动轴承的运转状态在其使用过程中有一定的规律性,并且重复性非常好。
例如,正常优质轴承在开始使用时,振动幅值和噪声均比较小,但频谱有些散乱(图1)这可能是由于制造过程中的一些缺陷,如表面毛刺等所致。
轴承故障诊断技术及发展现状和前景摘要本文分析了轴承故障信号的基本特征,并将共振解调技术的原理和基于振动信号的信号处理方法用于滚动轴承的故障诊断. 在实践中运用该技术手段消减了背景噪声的干扰,提高了轴承的信噪比, 取得了与实际情况完全吻合的诊断结果。
并概述了滚动轴承故障监测和诊断工程与试验应用技术的现状,并预测了滚动轴承故障监测和诊断技术应用新进展和发展方向。
关键词:滚动轴承;共振解调;小波分析;信噪比(SN R );变速箱;故障监测;信号处理;故障诊断;应用技术。
1 轴承故障信号的基木特征机器在正常工作的条件下其转轴总是匀速转动的. 由轴承的结构可知,当轴承某元件的工作而产生缺陷时,由加速度传感器所测取到的轴承信号具有周期性冲击的特征,由信号理论可知, 时域中短暂而尖锐的冲击信号变换到频域中去时必具有宽频带的特性, 而非冲击的干扰信号则不具有上述特性,所以时域中的周期性冲击与频域中的宽频带特性构成了轴承故障信号区别于其它非冲击性干扰信号的基木特征。
2 用共振解调技术提高轴承信号的信噪比我们来考察一下用共振解调技术提高轴承信号信噪比的过程。
传感器拾取到的轴承信号包含两部分内容, 即轴承的故障信号和干扰噪声两部分。
带通滤波器的中心频率与传感器的安装片振圆频率相一致, 它将保存被传感器的共振响应所加强了的冲击性故障信号, 滤除掉频率较低的干扰噪声信号, 这种保留下来的瞬态冲击信号经过包络检波器后就形成了一个与故障冲击重复频率相一致的包络脉冲串, 然后对该脉冲串进行普分析便在低频域内得到一个与冲击币复频率相一致的峰值。
峰值的大小反映了冲击的强弱即故障的严重程度这样我们就借助共振解调技术实现了故障信号与干扰信号的分离, 并在低频域内重新得到了故障冲击的信息。
而在常规的信号分析与处理过程中一开始就使用了抗混频滤波器(低通滤波器这种分析方法没有利用轴承故障信号的特点, 经抗混频滤波器后将被传感器的共振以加强放大了的故障特征信号无情地滤除了, 所剩下的只是强大的背景噪声信号及微弱的故障特征信号, 因此用常规的信号分析方法难以排除干扰信号的影响而采用共振解调技术就可以排除背景噪声的干扰, 提高轴承故障诊断的有效率。
一、滚动轴承故障诊断技术的发展滚动轴承是旋转机器中的重要零件,在各机械部门中应用最为广泛。
因它具有一系列显著的优点,例如:摩擦系数小,运动精度高,对润滑剂的粘度不敏感,在低速下也能承受载荷。
有些轴承还能同时承受径向和轴向力,但是,滚动轴承也是机器中最易损坏的零件之一。
据统计,旋转机械的故障有30%是由轴承引起的。
所以对滚动轴承的故障监测和诊断一直是近年来国内外发展机械故障诊断技术的重点。
其发展状况如下:·最原始的方法是将听音棒(或螺丝刀)接触轴承座部位,靠听觉来判断有无故障。
虽然训练有素的人能觉察到轴承刚发生的疲劳剥落与损伤部位,但受主观因素的影响较大。
·出现各种测振仪后,可用振动位移、速度或加速度的均方根值或峰值来判断轴承有无故障,这可减少对人为经验的依赖。
但仍很难发现早期故障。
·60年代瑞典一公司发明了冲击脉冲计(Shock Pulse Meter)来检测轴承损伤,既快速、简单又准确,代表仪器是MEPA-10A;SPM-43A。
·70年代日本新日铁株式会社研制了MCV-021A机器检测仪(Machine Checker),可分别在低频、中频和高频段检测轴承的异常信号。
另有油膜检查仪,可探测油膜状况而对其润滑状态进行监测。
·80年代日本精工公司(NSK)相继研制了轴承监视仪NB-1、NB-2、NB-3、NB-4型。
利用1KHZ~15KHZ范围内的轴承振动信号,测量其RMS值和峰值来检测轴承的故障。
由于去掉了低频干扰,灵敏度有所提高,其中还有报警设置。
随着对滚动轴承的运动学、动力学的深入研究,对轴承的振动信号中的频率成分和轴承零件的几何寸及缺陷类型的关系有了较清楚的了解。
加之,快付里叶变换技术的发展,开创了用频域分析方法来检测和诊断轴承的故障。
以上研究奠定了这方面的理论基础,现已有多种信号处理技术用于滚动轴承的故障诊断和监测。
如频率细化技术、倒频谱、色络谱等,在信号预处理上采用了各种滤波技术,如相干波,自适应滤波等,提高了诊断灵敏度。
轴承故障诊断技术的应用与发展随着机械设备的自动化和智能化程度不断提高,对轴承故障诊断技术的需求也越来越迫切。
目前的轴承故障诊断技术主要包括声学方法、振动分析法、热成像法、电涡流检测法等,在实际应用中得到了广泛的应用。
本文将分别从这几个方面介绍轴承故障诊断技术的应用与发展。
一、声学方法声学方法是利用声音传播的特性对轴承进行诊断的方法,主要包括声发射法和声表面波法。
声发射法是将轴承安装在特制的测试系统中,在轴承工作时对其发生的声信号进行监测与分析,从而判断轴承是否存在故障。
声表面波法则是通过声表面波的传播速度和波形的改变来判断轴承的故障情况。
这两种方法的主要优点是无需拆卸轴承即可进行检测,但是其检测精度和可靠性相对较低,往往需要结合其他方法进行验证。
二、振动分析法振动分析法是利用振动信号对轴承进行诊断的方法,该方法主要包括时域分析、频域分析和小波分析法。
时域分析是将振动信号通过微处理器进行处理,得出时域波形和频率分布图,从而判断是否存在故障。
频域分析法则是通过将振动信号进行傅里叶变换,将信号转换为频率分布图,从而判断轴承的故障类型和位置。
小波分析法则是针对信号非稳态的情况下对信号进行分析,从而得出轴承故障的类型和位置。
振动分析法的优点是精度高、检测范围广,适用于各种工况。
但是该方法需要专业的仪器设备和操作人员,成本相对较高。
三、热成像法热成像法是利用红外线相机对轴承进行诊断的方法,该方法主要通过检测轴承表面温度分布的变化来判断轴承的故障类型和位置,比如局部过热或润滑不良等。
这种方法的优点是无需拆卸轴承即可进行检测,同时检测速度快、可靠性高,适用于不同形状的轴承。
但是其准确性受环境温度和湿度等因素影响较大,需要考虑去除干扰因素。
四、电涡流检测法电涡流检测法是利用涡流感应原理进行轴承故障诊断的方法,该方法主要通过检测涡流信号的变化来判断轴承的故障类型和位置。
这种方法的优点是能够检测非金属材料的轴承,比如陶瓷轴承等,并且能够检测轴承的纵向和横向缺陷。