高考数学压轴题归纳总结及解题方法专题讲解3---不含参数的极值点偏移问题
- 格式:pdf
- 大小:137.62 KB
- 文档页数:6
第47讲 极值点偏移极值点偏移的相关推导所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图象没有对称性.若函数()f x 在0=x x 处取得极值,且函数=()y f x 与直线=y b 交于1(,)A x b ,2(,)B x b 两点,则AB 的中点为12(,)2x x M b +,而往往1202x xx +≠,如下图所示.极值点偏移问题的一般题设形式:1.若函数()f x 存在两个零点12x x ,且12x x ≠,求证:120+2x x x >(0x 为函数()f x 的极值点);2.若函数()f x 中存在12x x ,且12x x ≠满足12()=()f x f x ,求证:120+2x x x >(0x 为函数()f x 的极值点);3.若函数()f x 存在两个零点12x x ,且12x x ≠,令1202x x x +=,求证:0()0f x '>. 4.若函数()f x 中存在12x x ,且12x x ≠满足12()=()f x f x ,令1202x x x +=,求证:0()0f x '>.[抽化模型]答题模板:若已知函数()f x 满足12()=()f x f x ,0x 为函数()f x 的极值点,求证:120+2x x x <.1.讨论函数()f x 单调性并求出()f x 的极值点0x ;假设此处:()f x 在0(,)x +∞上单调递增,在0()x −∞,上单调递减. 2.构造0()()(2)F x f x f x x =−−;注:此处根据题意需要还可以进行中值构造,构造成00()(+)()F x f x x f x x =−−的形式.3.通过求导0()F x '讨论()F x 的单调性,判断出()F x 在某段区间上的正负,并得出()f x 与0(2)f x x −的大小关系;假设此处:()F x 在0(,)x +∞上单调递增,那么我们便可得出0000()()()(2)0F x F x f x f x x >=−−=,从而得到当0x x >时,0()(2)f x f x x >−.4.不妨设102x x x <<,通过()f x 单调性,12()=()f x f x ,()f x 与0(2)f x x −的大小关系得出结论;接上述情况,由于0x x >时,()f x >0(2)f x x −且102x x x <<,12()=()f x f x , 故12()=()f x f x >02(2)f x x −,又因为10x x <,0202x x x −<且()f x 在0()x −∞,上单调递减,从而得到1022x x x <−,从而120+2x x x <得证.5.若要证明:12()02x x f +'<,还需进一步讨论122x x +与0x 的大小,得出122x x +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续说明:因为120+2x x x <,故122x x +<0x ,由于()f x 在0()x −∞,上单调递减,故12()02x x f +'<. 对数平均不等式的介绍与证明 两个正数a 和b 的对数平均定义:()().ln ln ()a ba b L a b a b a a b −⎧≠⎪=−⎨⎪=⎩,对数平均不等式为2()a bL a b +≤≤,. 取等条件:当且仅当a b =时,等号成立.只证:当a b ≠2 ()a b L a b +<<,,不失一般性,可设a b >.证明: (1) 先证) (L a b <,①①式ln ln lna ab b ⇔−<⇔<12ln x x x⇔<−(其中1x =>). 构造函数:1()2ln (f x x x x x ⎛⎫=−−> ⎪⎝⎭1),则22211()11f x x x x ⎛⎫'=−−=−− ⎪⎝⎭.当1x >时,()0f x '<, ∴函数()f x 在(1 ) +∞,上单调递减. 故()(1)0f x f <=,不等式①成立.(2) 再证:()2a bL a b +<,. ② ②式2()ln ln ln a b a a b a b b −⇔−>⇔>+212(1)ln (1)|1a x b x a x b ⎛⎫− ⎪−⎝⎭⇔>+⎛⎫ ⎪⎝⎭(其中1x ⎫=>⎪⎪⎭. 构造函数2(1)()ln ((1)x g x x x x −=−>+1),则22214(1)()(1)(1)x g x x x x x −'=−=++. 当1x >时, ()0 g x '>∴,函数()g x 在(1 ) +∞,上单调递增,故()(1)0g x g >=,从而不等式②成立.综合① ②知,对 a b +∀∈R ,2()a bL a b +≤≤,成立, 当且仅当a b =时,等号成立.无参极值点偏移的方法总结关于极值点偏移常考的题型如下:题型一:若函数()f x 存在两个零点1x ,2x 且12x x ≠,求证:1200 2x x x x +>,为函数()f x 的极值点.题型二:若函数()f x 中存在12 x x ,且1x ≠2x 满足()()12f x f x =,求证:1200 2x x x x +>,为函数 ()f x 的极值点.对于极值点偏移来说,所有方法的核心都是为了把双元问题转化为一元问题,那么在转换过程中常用如下方法:证法一:单调性放缩转化法,一般有两种构造函数的方式 构造方式一: 非对称构造(1) 构造函数()0()()2h x f x f x x =−−. (2) 判断函数()h x 的单调性.(3) 证明()0h x >[或()0]h x <即()f x >()02f x x −[或()0()2f x f x x ⎤<−⎦. (4) 结合函数()f x 的单调性,通过整体代换即可证1202x x x +<,或1202x x x +>.构造方式二: 对称构造(1) 求出函数()f x 的极值点0x ,及单调区间.(2) 作差比较:构造一元差函数()F x =()()00f x x f x x +−−.(3) 确定函数()F x 的单调性.(4) 结合(0)0F =,判断()F x 的符号,从而确定()()00 f x x f x x +−,的大小关系,结合函数()f x 的单调性,通过整体代换即可证1202x x x +<,或1202x x x +>.证法二: 引参消元法,一般有两种引参方式 引参方式一: 差式引参 一般步骤如下:第一步:根据1x 和2x 的关系式,一般为()()12f x f x =,通过变形,构造出12x x −. 第二步:通过整体代换,令12x x t −=,引入参数t ,如果可以直接构造一元函数就直接计算,如果不行再进入第三步.第三步:用参数t 表示出变量12()()x f t x g t =⎧⎨=⎩,进而构造一元函数.第四步:按照一元函数处理方式处理.引参方式二: 齐次引参消元 一般步骤如下:第一步:先根据已知条件确定出变量1x ,2x 满足的等式,并变形出12x x ,然后令12x t x =.第二步:用参数t 表示出变量12()()x f t x g t =⎧⎨=⎩,进而构造一元函数,将关于12 x x ,待求的问题转化为关于t 的函数问题.第三步:构造关于t 的一元函数()g t 求解.证法三:齐次分式整体代换消元法 一般步骤如下:第一步:先根据已知条件确定出变量1x ,2x 满足的条件.第二步:通过将所有涉及12 x x ,的式子转化为关于12x x 的式子,将问题转化为关于自变量12xx (21x x 亦可)的函数问题. 第三步:整体代换12x t x =,构造关于t 的一元函数()g t 求解.证法四:对数平均不等式法 一般步骤如下:第一步:通过等式两边同取自然对数或相减等配凑出“12ln ln x x −”及“12x x −”.第二步:通过等式两边同除以“1ln x −2ln x ”构建对数平均数1212ln ln x x x x −−.第三步:利用对数平均不等式将1212ln ln x x x x −−转化为122x x +后再证明12x x +<02x ,或1202x x x +>.【例1】已知函数()e ()x f x x x −=∈R ,如果12x x ≠,且()()12f x f x =,证明:1x +22x >.【解析】证明 法一:对称构造法()(1)e x f x x −'=−易得()f x 在( 1 )−∞,上单调递增,在(1 ) +∞,上单调递减. x →−∞时,()(0)0 f x f →−∞=,.x →+∞时,()0f x →.函数()f x 在1x =时取得极大值:1(1)ef =.由()()1212 f x f x x x =≠,不妨设1x <2x .则必有121x x <<. 构造函数()(1)(1)F x f x f x =+−−,] (01 x ∈,. 则()(1)(1)F x f x f x '='+−'−=()21e10exx x+−>.()F x ∴在] (01 x ∈,上单调递增,()F x >(0)0F =,即(1)(1)f x f x +>−对] (01 x ∈,恒成立.由1201x x <<<,则11(01] x −∈,. ()()()11112f x f x ∴+−=−>()()()()11211f x f x f x −−==,即()()122f x f x −>.又122(1) x x −∈+∞,,,且()f x 在(1 ) +∞,上单调递减, 122x x ∴−<,即122x x +>.法二:非对称构造法欲证122x x +>,即证212x x >−.由“法一”可知1201x x <<<,故12x −,2) (1 x ∈+∞,. 又()f x 在(1 ) +∞,上单调递减,故只需证明 ()()212f x f x <−.又()()1212 f x f x x x =≠,,∴证明()()112f x f x <−即可.构造函数()()(2)H x f x f x =−−,) (01 x ∈,. 等价于证明( ) (0 )01H x x <∈,,恒成立. 1()()(2)xx H x f x f x e −'='−'−=⋅()221e 0x −−>.()H x ∴在) (01 x ∈,上单调递增.()(1)0H x H ∴<=,即以证明()0H x <,对) (01 x ∈,恒成立.故原不等式122x x +>成立. 法三: 差式引参换元法由()()12f x f x =,得1212e e x x x x −−=,化简得 2121e x x x x −=. ① 不妨设21x x >,由“法一”知,101x <<2x <.令21t x x =−,则210 t x t x >=+,,代入①式,得11e t t x x +=,反【解析】出1e 1t t x =−. 则12122e 1ttx x x t t +=+=+−,故要证1x +22x >,即证22e 1t t t +>−. 又e 10t −>,等价于证明2(2)t t +−⋅()10t e −> ②构造函数()) ()2(2e 1( t G t t t t =+−−>,0),则0 ()(1)e 1()e t t G t t G t t '''=−+=>,,故()G t '在) (0 t ∈+∞,上单调递增,()(0)0G t G '>'=. 从而()G t 也在) (0 t ∈+∞,上单调递增,()(0)0G t G >=,即②式成立, 故原不等式 122x x +>成立. 法四: 齐次分式整体消元法由“法三”中①式,两边同时取自然对数,可得112122lnln ln x x x x x x −==−. 即1212ln ln 1x x x x −=−,从而(121x x x +=+)12121212122ln ln ln x x x x x x x x x x x −+⋅=⋅=−−1211221ln 1x x x x x x +⋅−令12(1)x t t x =>,欲证122x x +>,等价于证明1ln 21t t t +⋅>−. ③ 构造(1)ln 2()1ln 11t t M t t t t +⎛⎫==+ ⎪−−⎝⎭,(1)t >,则2212ln ()(1)t t tM t t t −−'=−. 又令2()12ln (1)t t t t t ϕ=−−>,则()22(ln 1)2(1ln )t t t t t ϕ'=−+=−−.由于1ln t t −>对) (1t ∀∈+∞,恒成立,故) ()( 0t t ϕϕ'>,在) (1 t ∈+∞,上单调递增. ()(1)0t ϕϕ∴>=,从而()0M t '>,故()M t 在(1 )t ∈+∞,上单调递增. 由洛必达法则知,1lim ()x M t →=()()()()1111ln 1ln 1limlim lim(ln 211x x x t t t tt t t t t →→→'+++⎫==+=⎪−'⎭−,(下一章会讲)可得()2M t >,即证③式成立,即原不等式122x x +>成立.法五:对数平均不等式法由“法三”中①式,两边同时取自然对数,可得112122ln ln ln xx x x x x −==−.即12121ln ln x x x x −=−..把12121ln ln x x x x −=−代入不等式即可得1212121ln ln 2x x x xx x −+=<−.,即可得122x x +>.【例2】已知函数()2x f x x e =−.,上存在两个不相等的数12,x x .,满足()()12f x f x =.,求证:122ln2x x +<.【解析】证明()2x f x e '=−,令()0f x '=得ln2x =.当ln 2x <时,()()0,f x f x '>在(),ln2−∞上单调递增.当ln 2x >时,()0,f x '<()f x 在()ln2,+∞上单调递减.ln2x ∴=为()f x 的极大值点,不妨设12x x <.,由题意可知12ln2x x <<.()()()ln2ln2422x x F x f x f x x e e −=+−−=−+令.,()()()422,2,0,x x x x F x e e e e F x F x −−'=−−+∴'∴单调递减.又()()00,0F F x =∴<在()0,+∞上恒成立, 即()()ln2ln2f x f x +<−在()0,+∞上恒成立.()()()()()()()12222ln2ln ln2ln22ln2.f x f x f x x f x f x ∴==+−<−−=−1ln2,x <()()22ln2ln2,,ln2,x f x −<−∞又在上单调递增 12122ln2.2ln2x x x x ∴<−∴+<含参极值点偏移含参极值点偏移问题和无参的证法类似,参数可分为在函数中和在不等式中两种类型,可以通过参变分离,把含参问题转换为无参问题,其处理思路和上一节一样,注意将问题转化为()()112f x f a x >−.,然后构造函数()()()2F x f x f a x =−−.,利用函数的单调性可得()()1120f x f a x −−>,从而得出结论.含参型一:函数含参极值点偏移问题【例1】已知函数()()()221x f x x e a x =−+−有两个零点. (1)求a 的取值范围.(2)设12,x x 是()f x 的两个零点,证明:122x x +<.【解析】(1)函数()f x 的定义域为R .①当0a =时,()()20x f x x e =−=,得2x =,只有一个零点,不合题意. ②当0a ≠时,()()()12x f x x e a =−+'.i.当0a >时,由()0f x '=得1x =.,由()0f x '>得1x >.,由()0f x '<得1x <.1x ∴=是()f x 的极小值点,也是()f x的最小值点.()()1e 0.f x f ∴==−<又()20,f a =>∴在()1,2上存在一个零点2x ,即212x <<. 由()21lim 2limlim 0x x xx x x x x e e e −−→−∞→−∞→−∞−−===−又2(1)0a x −>,()f x ∴在(),1−∞上存在唯一零点1x , 即11x <,0a ∴>时,()f x 存在两个零点. ii.当0a <时,由()0f x '=得1x =或()ln 2x a =−.若()ln 21a −=,即2ea =−时,()f x '0,故()f x 在R 上单调递增,与题意不符.若()ln 21a −>,即e2a <−时,易证()max ()1e 0f x f ==−<,故()f x 在R 上只有一个零点. 若()ln 21a −<.,即e02a −<<时,易证.()()()()(()2max ln 2ln 24ln 25)0f x f a a a a =−=−−−+<.,故()f x 在R 上只有一个零点. 综上所述,0a >.(2)证明法一:非对称构造法由(1)题知,0a >且1212x x <<<..()()()()222x x h x f x f x x e xe −=−−=−+令.,则()()()()21211x x x e h x e−−−'−=.()211,10,e10x x x −>∴−>−>.()0h x ∴'>.()h x ∴在()1,+∞上单调递增.()()()()10,2h x h f x f x ∴>=>−..()()222f x f x ∴>−..()()122f x f x ∴>−..()121,21,x x f x <−<在(),1−∞上单调递减,122x x ∴<−,即122x x +<. 法二:参变分离,再对称构造由已知得()()120f x f x ==,不难发现121,1x x ≠≠, 故可整理得()()()()121222122211xx x e x e a x x −−−==−−..设()()()221xx e g x x −=−.,则()()12g x g x =..那么()()()23211xx g x e x −+=⨯−'. 当1x <时,()()0,g x g x '<单调递减.当1x >时,()()0,g x g x '>单调递增. 设0m >.,构造代数式.()()11122221111111.1m m m m m m m m g m g m e e e e m m m m +−−−−−+−⎛⎫+−−=⨯−⨯=⨯⨯+ ⎪+⎝⎭设()21e 1,01mm h m m m −=⨯+>+. 则()2222e 0(1)m m h m m =⨯>+',故()h m 单调递增,有()()00h m h >=. 因此,对于任意的()()0,11m g m g m >+>−.由()()12g x g x =可知12,x x 不可能在()g x 的同一个单调区间上, 不妨设12x x <,则必有121x x <<.令110m x =−>,则有()()()()()1111211112g x g x g x g x g x +−>−−⇔−>=⎡⎤⎡⎤⎣⎦⎣⎦. 而()1221,1,x x g x −>>在()1,+∞上单调递增,因此()()121222g x g x x x −>⇔−>. 整理得122x x +<.法三:参变分离,再非对称构造由法二得()()()221x x e g x x −=−,构造()()()()2,,1G x g x g x x =−−∈−∞. 利用单调性可证,此处略.含参型二:不等式含参极值点偏移问题【例1】已知函数()ln (0xf x x a a=−≠,)a R ∈. (1)求函数()f x 的单调区间.(2)若存在两个不相等的正数12,x x ,满足()()12f x f x =,求证:122x x a +>.【解析】(1)()ln x f x x a =−.,定义域为()()110,,x a f x a x ax−+∞='=−..当0a >时,(),0;0x a f x x a '<<,()0f x '<.当0a <时,()0,0x f x ><'.故当0a >时,()f x 的单调递减区间是()0,a .,单调递增区间是(),a +∞.当0a <时,()f x 的单调递减区间是()0,+∞,无单调递增区间.(2)证明由(1)题知当0a <时,()f x 的单调递减区间是()0,+∞,无递增区间,不合题意,故0a >,此时()f x 在()0,a 上单调递减,在(),a +∞上单调递增.若存在两个不相等的正数12,x x .,满足()()12f x f x =.,不妨设12x x <.,则有()()120,,,x a x a ∈∈+∞.要证122x x a +>,即证212x a x >−. 而21,2x a a x a >−>.由(1)题知()f x 在(),a +∞上单调递增,故只需证()()212f x f a x >−. 又()()12f x f x =,即要证()()112f x f a x >−(其中10x a <<). 考查函数()()()2F x f x f a x =−−.,()F x 的定义域是()0,2a .,()()()()()()()22211112ln ln 2,0,22x a x a x F x f x f a x x a x F x a a a x a a x ax a x −−−=−−=−−+−=−+−='−−()()(),,0,2,0,x a F x a F a ==当且仅当时才能取等号在定义域上恒递减观察知 ()()()()0,,20.x a F x f x f a x ∴∈=−−>当时 ()()()(),2,20.x a a F x f x f a x ∈=−−<当时 ()()()1110,,20x a f x f a x ∴∈−−>当时 122x x a ∴+>【例2】已知()21ln 2f x x x mx x =−−,m R ∈.若()f x 有两个极值点12,x x ,且12x x <,求证:212e x x >(e 为自然对数的底数).【解析】证明法一:零点等式相减相加消参换元法 欲证212e x x >,需证12ln ln 2x x +>.若()f x 有两个极值点12,x x ,则函数()f x '有两个零点.又()ln f x x mx =−',12,x x ∴是方程()0f x '=的两个不同实根.则有112200lnx mx lnx mx −=⎧⎨−=⎩,解得1212ln ln x x m x x +=+.另一方面,由11220lnx mx lnx mx −=⎧⎨−=⎩得()2121ln ln x x m x x −=−,从而可得21122112ln ln ln ln x x x x x x x x −+=−+. ()()222121111222111lnln ln ln ln .1x x x x x x x x x x x x x x ⎛⎫+ ⎪−+⎝⎭∴+==−−又120x x <<,设21x t x =,则1t >.()121ln ln ln ,11t t x x t t +∴+=>−. 要证12ln ln 2x x +>,即证()1ln 2,11t tt t +>>−.即当1t >时,有()21ln 1t t t −>+.设函数()()21ln ,11t h t t t t −=−+,则()()()()()()222212111011t t t h t t t t t '+−−−=−=++, ()h t ∴为()1,+∞上的增函数.()()()10,10h h t h =∴=.于是,当1t >时,有()21ln 1t t t −>+.12ln ln 2x x ∴+>.212e x x ∴>.法二:含参非对称构造欲证212e x x >,需证12ln ln 2x x +>.若()f x 有两个极值点12,x x ,即函数()f x '有两个零点.又()ln ,f x x mx =−'12,x x ∴是方程()0f x '=的两个不同实根.显然0m >,否则,函数()f x '为单调函数,不符合题意.由于()11mx f x m x x −=−='',故()f x '在10,m ⎛⎫ ⎪⎝⎭上单调递增,在1,m⎛⎫+∞ ⎪⎝⎭上单调递减.由()11121222ln ln 0lnx mx x x m x x lnx mx −=⎧⇒+=+⎨−=⎩,需证明()122m x x +>即可.即只需证明122x x m+>. 设()()()()2212(1),0,,02mx g x f x f x x g x m m x mx −⎛⎫⎛⎫=−−∈=> ⎪ ⎪'⎝'−⎭⎭'⎝,故()g x 在10,m ⎛⎫ ⎪⎝⎭上单调递增,即()10g x g m ⎛⎫<= ⎪⎝⎭,故()2f x f x m ⎛⎫<− ⎪⎝'⎭'.由于()11mx f x m xx −=−='',故()f x '在10,m ⎛⎫⎪⎝⎭上单调递增,在1,m ⎛⎫+∞ ⎪⎝⎭上单调递减. 设121x x m <<,令1x x =,则()()2112f x f x f x m ⎛⎫=>− ⎪⎝''⎭' 又()2121,,,x x f x m m ⎛⎫−∈+∞ ⎪⎭'⎝在1,m ⎛⎫+∞ ⎪⎝⎭上单调递减,故有212x x m >−,即122x x m +>.原命题得证.法三:单调性放缩转换法由12,x x 是方程()0f x '=的两个不同实根得ln xm x=, 令()()()12ln ,x g x g x g x x ==,由于()21ln xg x x −=', 因此,()g x 在()0,e 上单调递增,在(),e +∞上单调递减.设120e x x <<<,要证明212e x x >,只需证明()212e 0,e x x >∈,只需证明()212e f x f x ⎛⎫> ⎪⎝⎭,即()222e 0f x f x ⎛⎫>> ⎪⎝⎭,即()222e 0f x f x ⎛⎫−> ⎪⎝⎭. 即()()()2,1,e h x f x f x e x ⎛⎫=−∈ ⎪⎝⎭,()()()()22221ln ,x e x h x h x x e −−='在()1,e 上单 调递增,故()()0h x h e <=,即()2e f x f x ⎛⎫< ⎪⎝⎭.()()21211e ,.x x f x f x f x ⎛⎫==< ⎪⎝⎭令则()221,,,e x e x ∈+∞()(),f x e +∞在上单调递减,222121e ,e .x x x x ∴>>即 法四:差式引参消元法设()()1122ln 0,1,ln 1,t x t x =∈=∈+∞,则由112200lnx mx lnx mx −=⎧⎨−=⎩得11221122tt t t t me t e t t me−⎧=⎪⇒=⎨=⎪⎩, 设120k t t =−<,则12,11k k k ke kt t e e ==−−. 欲证212e x x >.,需证12ln ln 2x x +>.,即只需证明122t t +>..()()()()()1e 21e 2e 11e 2e 10e 1k k k k k kk k k +>⇔+<−⇔+−−<−.设()()()()()12e 1(0),e e 1,e 0k k k k k g k k e k g k k g k k =+'−−<=−+''=<,故()g k '在(),0−∞上单调递减,故()()00g k g '>=',故()g k 在(),0−∞上单调递增, 因此()()00g k g <=,命题得证. 法五:分式引参消元法设()()1122ln 0,1,ln 1,t x t x =∈=∈+∞,则由112200lnx mx lnx mx −=⎧⎨−=⎩得11221122tt t t t me t e t t me−⎧=⎪⇒=⎨=⎪⎩. 设()120,1t k t =∈.,则12ln ln ,11k k k t t k k ==−−.欲证212e x x >.,需证12ln ln 2x x +>.,即只需证明122t t +>.,即()()()1ln 21212ln ln 0111k kk k k k k k k +−−>⇔<⇔−<−++.设()()()()()2221(1)ln 0,1,01(1)k k g k k k g k k k k −−='−∈=>++.,故()g k 在()0,1上单调递增,因此()()10g k g <=,命题得证.极值点偏移变形一般题型1.若函数()f x 存在两个零点12,x x 且12x x ≠,求证:1202x x f +⎛⎫> ⎪⎝⎭'.2.若函数()f x 中存在12,x x 且12x x ≠,满足()()12f x f x =,求证:1202x x f +⎛⎫> ⎪⎝⎭'. 3.若函数()f x 存在两个零点12,x x 且12x x ≠,求证:0f '>.4.若函数()f x 中存在12,x x 且12x x ≠,满足()()12f x f x =,求证:0f '>.方法核心:要证明1202x x f +⎛⎫> ⎪⎝⎭'.,即比较122x x +与极值点0x 的大小,得出122x x +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.对于0f '>问题,要结合基本不等式122x x +<,转换为比较122x x +与极值点0x 的大小的问题.【例1】已知函数()()22ln f x x a x a x =−−− (1)求函数的单调区间.(2)若方程()f x 有两个不相等的实数根12,x x ,求证:1202x x f +⎛⎫> ⎪⎝⎭'. 【解析】(1)()()()21(0)x a x f x x x'−+=>.①当0a 时,()0f x '>,函数()f x 在()0,+∞上单调递增,()f x ∴的单调递增区间为()0,+∞.②当0a >时,由()0f x '>得2a x >. 由()0f x '<得02a x <<, ()f x ∴的单调递增区间为,2a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为0,2a ⎛⎫ ⎪⎝⎭.(2)证明12,x x 是方程()f x 的两个不等实根,0a ∴>.不妨设120x x <<,则()()221112222ln ,2ln x a x a x c x a x a x c −−−=−−−=,两式相减得()()221112222ln 2ln 0x a x a x x a x a x ⎡⎤−−−−−−−=⎣⎦,即221122112222ln ln x x x x a x x x x +−−=+−−. 又02a f ⎛⎫= ⎪⎝⎭',当2a x >时,()0f x '>.当02ax <<时,()0f x '<.故只要证明1222x x a +>即可,即证22112212112222ln ln x x x x x x x x x x +−−+>+−−, 即证11221222lnx x x x x x −<+,即11212222ln 1x x x x x x ⨯−<+.设12(01)x t t x =<<.,令()22ln 1t g t t t −=−+.,则()22(1)0(1)t g t t t '−=>+.,则()22ln 1t g t t t −=−+在()0,1上为增函数,又()10g =,()0,1t ∴∈时,()0g t <总成立,得证. 【例2】已知函数()212ln )(a f x x a x x=+−+. (1)讨论()f x 的单调性.(2)如果方程()f x m =有两个不相等的解12,x x ,且12x x <,证明:1202x x f +⎛⎫> ⎪⎝⎭'. 【解析】(1)()()()()222221221122(0)x a x a x a x a a f x x x x x x +−−'−+−=+−==>. ①当0a 时,()()0,,0x f x ∈+∞'>,()f x 单调递增. ②当0a >时,()()()0,,0,x a f x f x <'∈ 单调递减;()()(),,0,x a f x f x ∈+∞>'单调递增.综上,当0a 时,()f x 在()0,+∞上单调递增.当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增.(2)证明由(1)题知,当0a 时,()f x 在()0,+∞上单调递增,()f x m =至多有一个根,不符合题意. 当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增,则()0f a '=.不妨设120x a x <<<,要证1202x x f +⎛⎫> ⎪⎝⎭',即证122x x a +>,即证122x x a +>, 即证212x a x >−.()f x 在(),a +∞上单调递增,即证()()212f x f a x >−,又()()21,f x f x =∴即证()()112f x f a x >−,即证()()f a x f a x +<−,其中()1,0,.x a x x a =−∈()()()g x f a x f a x =+−−令()()()()()()212ln 212ln a a a x a a x a x a a x a x a x ⎡⎤⎡⎤=++−++−−+−−+⎢⎥⎢⎥+−⎣⎦⎣⎦ ()()()()412ln 12ln ,a ax a a x a a x a x a x=+−+−−−+−+− ()()()2212124a a a ag x a x a x a x a x −−=+'+−−+−+−()()()()()()()22222222222242124.a a x x x a a a a a x a x a x a x a x +−−−=+−=−+−+−()()()0,,0,,x a g x g x '∈<当时单调递减()()()0000,g f a f a =+−−=又()()()()()0,,00,.x a g x g f a x f a x ∴∈<=+<−当时即 ()11,0,,x a x x a =−∈令又()()2112.0.2x x f x f a x f +⎛⎫∴>−∴> ⎪'⎝⎭\) 【例3】设函数()()x f x e ax a a R =−+∈,其图像与x 轴交于()()12,0,,0A x B x 两点,且12x x <.(1)求实数a 的取值范围. (2)证明:()0[f f x <''为函数()f x 的导函数].【解析】(1)(),x f x e a x R =−∈'.当0a 时,()0f x '>在R 上恒成立,不合题意.当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点. 故()()()min ln 2ln f x f a a a ==−.当()0min f x ,即20e a <时,()f x 至多有一个零点,不合题意,故舍去. 当()0f x <时,即2e a >时,由()1e 0f =>,且()f x 在(),ln a −∞上单调递减, 故()f x 在()1,ln a 上有且只有一个零,点.由()()22ln 2ln 12ln f a a a a a a a a =−+=+−. 令212ln ,y a a a e =+−>,则21y a'=−>0,故2212ln e 14e 30a a +−>+−=−>.()2ln 0f a ∴>,即在()ln ,2ln a a 上有且只有一个零点.2e a ∴>.(2)由(1)题知,()f x 在(),ln a −∞上单调递减,在()ln ,a +∞上单调递增,且()1e 0f =>.121ln 2ln x a x a ∴<<<<,要证0f '<,只需证a <,ln a .122x x <+,故只需证x 1+x 2<2ln a .令h (x )=f (x )−f (2ln a −x )=e x −ax +a −e 2ln a −x +a (2ln a −x )−a=e x −a 2e −x −2ax +2a ln a ,1<x <ln a .则h '(x )=e x +a 2e −x −2a 2e x a 2e −2a =0,∴h (x )在(1,ln a )上单调递增.∴h (x )<e ln a −a 2e −ln a −2a ln a +2a ln a =0,即f (x )<f (2ln a −x ).∴f (x 1)<f (2ln a −x 1).又f (x 1)=f (x 2),∴f (x 2)<f (2ln a −x 1).x 2>ln a ,2ln a −x 1>ln a ,且f (x )在(ln a ,+∞)上单调递增,∴x 2<2ln a −x 1,即x 1+x 2<2ln a .∴f '<0.。
专题1.3 极值点偏移第一招--不含参数的极值点偏移问题函数的极值点偏移问题,其实是导数应用问题,呈现的形式往往非常简洁,涉及函数的双零点,是一个多元数学问题,不管待证的是两个变量的不等式,还是导函数的值的不等式,解题的策略都是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.例.(2010天津理)已知函数,如果,且.证明:构造函数,则,所以在上单调递增,,也即对恒成立.由,则,所以,即,又因为,且在上单调递减,所以,即证法三:由,得,化简得…,不妨设,由法一知,.令,则,代入式,得,反解出,则,故要证,即证,又因为,等价于证明:…,构造函数,则,故在上单调递增,,从而也在上单调递增,,构造,则,又令,则,由于对恒成立,故,在上单调递增,所以,从而,故在上单调递增,由洛比塔法则知:,即证,即证式成立,也即原不等式成立.【点评】以上四种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一、二利用构造新的函数来达到消元的目的,方法三、四则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的.例.(2013湖南文)已知函数,证明:当时,【解析】易知,在上单调递增,在上单调递减.招式演练:★已知函数,正实数满足. 证明:.【解析】由,得从而,令,构造函数,得,可知在上单调递减,在上单调递增,所以,也即,解得:.★已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若方程有两个相异实根,,且,证明:. 【答案】(Ⅰ)在 (0,1)递增,在(1,+ 递减;(Ⅱ)见解析(2)由(1)可设的两个相异实根分别为,满足且,由题意可知又有(1)可知在递减故所以,令。
专题03不含参数的极值点偏移问题极值点偏移问题是指在一些函数的极值点附近,通过对函数进行微小的改变,导致极值点的位置发生偏移的现象。
这种现象在实际问题中经常出现,对于函数的极值点的求解和分析有重要影响。
本文将讨论不含参数的极值点偏移问题,并通过具体例子进行说明。
我们先来回顾一下极值点的概念。
对于函数f(x),如果存在一个点x0,使得在x0的一些邻域内,f(x0)小于(或大于)f(x)(x≠x0),则称f(x0)为f(x)的极小值点(或极大值点)。
如果f(x0)是f(x)的极小值点,并且在x0的左(或右)邻域内,f'(x0)>0(或<0),则称x0为极小值点的左(或右)极值点。
现在我们考虑一个不含参数的函数f(x),并以一个具体例子来讨论极值点偏移问题。
假设f(x)=x^3-3x^2-x+3我们首先要找出f(x)的极值点。
为了找到极值点,需要计算函数的导数。
f'(x)=3x^2-6x-1、令f'(x)=0,解得x=2,x=-1/3、将这些x值代入f(x)中,可以计算出相应的y值。
当x=2时,f(x)=-3;当x=-1/3时,f(x)=46/27、因此,函数f(x)的极小值点为(2,-3)和(-1/3,46/27)。
假设我们希望在极小值点(2,-3)附近做微小的改变,使得极小值点发生偏移。
我们可以改变函数的形式,以考虑新的偏移问题。
假设我们将函数f(x)改变为f'(x)=x^3-3x^2-x+a,其中a为可变参数。
通过对新函数f'(x)进行分析,我们可以得到极值点的位置与参数a之间的关系。
现在我们来对新函数f'(x)进行分析。
计算f'(x)的导数,得到f''(x)=3x^2-6x-1、令f''(x)=0,解得x=1-√7/3和x=1+√7/3、将这些x值代入f'(x)中,可以计算出相应的y值。
极值点偏移问题专题(三)一一题学懂端点
偏移5大套路
问题背景
在数学中,极值点偏移是指函数的极值点随着一定条件的改变而发生位移的现象。
在解决极值点偏移问题时,有许多常用的策略和技巧可以应用。
解决方案
以下是解决极值点偏移问题的五种常见策略:
1. 极值点的函数改变
通过改变函数的形态和特征,可以导致极值点的偏移。
这可以通过增加或减少函数的项、重新调整函数的系数等方式来实现。
2. 增加约束条件
通过引入额外的约束条件,可以使极值点受到限制,从而发生偏移。
这些约束条件可以是函数的限制、变量的限制等。
3. 改变函数的定义域
通过改变函数的定义域,可以使极值点的位置发生变化。
这可以通过增加或减少函数定义域的范围、改变函数定义域的形状等方式来实现。
4. 变换坐标系
通过变换坐标系,可以使原本的极值点在新的坐标系中发生偏移。
这可以通过旋转、平移、缩放等方式来实现。
5. 改变问题的目标函数
通过改变问题的目标函数,可以直接影响极值点的位置。
这可以通过调整目标函数的构成、改变目标函数的权重等方式来实现。
总结
极值点偏移问题在数学中很常见,但通过简单的策略和技巧,我们可以解决这些问题。
以上介绍的五种策略可以作为解决极值点偏移问题的参考,灵活运用它们可以帮助我们更好地理解和解决这类问题。
第4课时极值点偏移问题考点一对称构造法求极值点偏移问题例1(2023·黑龙江牡丹江市第一高级中学高三热身考试(二))已知函数f (x )=x x -32aa为实数.(1)求函数f (x )的单调区间;(2)若函数f (x )在x =e 处取得极值,f ′(x )是函数f (x )的导函数,且f ′(x 1)=f ′(x 2),x 1<x 2,证明:2<x 1+x 2<e.解(1)函数f (x )=x x -32a(0,+∞),f ′(x )=2x -32ax =x (2ln x -3a +1).令f ′(x )=0,得x =e3a -12,当x ∈(0,e3a -12)时,f ′(x )<0,当x ∈(e3a -12,+∞)时,f ′(x )>0,故函数f (x )的单调递减区间为(0,e3a -12),单调递增区间为(e3a -12,+∞).(2)证明:因为函数f (x )在x =e 处取得极值,所以x =e 3a -12=e ,得a =1,所以f (x )=x x 得f ′(x )=x (2ln x -2)=2x (ln x -1),令g (x )=2x (ln x -1),因为g ′(x )=2ln x ,当0<x <1时,g ′(x )<0,当x >1时,g ′(x )>0,所以函数g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,且当x ∈(0,e)时,g (x )=2x (ln x -1)<0,当x ∈(e ,+∞)时,g (x )=2x (ln x -1)>0,故0<x 1<1<x 2<e.先证x 1+x 2>2,需证x 2>2-x 1.因为x 2>1,2-x 1>1,下面证明g (x 1)=g (x 2)>g (2-x 1).设t (x )=g (2-x )-g (x ),则当0<x <1时,t ′(x )=-g ′(2-x )-g ′(x )=-2ln (2-x )-2ln x =-2ln [(2-x )x ]>0,故t (x )在(0,1)上为增函数,故t (x )<t (1)=0,所以t (x 1)=g (2-x 1)-g (x 1)<0,则g (2-x 1)<g (x 2),所以2-x 1<x 2,即得x 1+x 2>2.下面证明:x 1+x 2<e.令g (x 1)=g (x 2)=m ,当x ∈(0,1)时,g (x )-(-2x )=2x ln x <0,所以g (x )<-2x 成立,所以-2x 1>g (x 1)=m ,所以x 1<-m2.当x ∈(1,e)时,记h (x )=g (x )-(2x -2e)=2x ln x -4x +2e ,所以当x ∈(1,e)时,h ′(x )=2ln x -2<0,所以h (x )为减函数,得h (x )>h (e)=2e -4e +2e =0,所以m =g (x 2)>2x 2-2e ,即得x 2<m2+e.所以x 1+x 2<-m 2+m2+e =e.综上,2<x 1+x 2<e.对称构造法主要用来解决与两个极值点之和(积)相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x 0.(2)构造函数,即对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x )或F (x )=f (x 0+x )-f (x 0-x );对结论x1x 2>x 20型,构造函数F (x )=f (x )-f x 20x ,通过研究F(x )的单调性获得不等式.(3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的大小关系,进而得到所证或所求.1.(2022·全国甲卷)已知函数f (x )=e xx-ln x +x -a .(1)若f (x )≥0,求a 的取值范围;(2)证明:若f (x )有两个零点x 1,x 2,则x 1x 2<1.解(1)f (x )的定义域为(0,+∞),f ′(x )x -1x +1x 令f ′(x )=0,得x =1.当x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )≥f (1)=e +1-a ,若f (x )≥0,则e +1-a ≥0,即a ≤e +1,所以a 的取值范围为(-∞,e +1].(2)证法一:由题意知,f (x )的一个零点小于1,一个零点大于1.不妨设0<x 1<1<x 2,要证x 1x 2<1,即证x 1<1x 2.因为x 1,1x 2∈(0,1),即证f (x 1)>因为f (x 1)=f (x 2),即证f (x 2)>即证e x x -ln x +x -x e 1x -ln x -1x>0,x ∈(1,+∞),即证e xx-x e 1x -2lnx下面证明当x >1时,e x x -x e 1x >0,ln x0.设g (x )=e xx-x e 1x ,则g ′(x )x -e 1x+x e 1xx -设φ(x )=e xx,则当x >1时,φ′(x )x =x -1x 2e x >0,所以φ(x )>φ(1)=e ,而e 1x <e ,所以e x x-e 1x>0,所以当x >1时,g ′(x )>0,所以g (x )在(1,+∞)上单调递增,即g (x )>g (1)=0,所以e xx -x e 1x >0.令h (x )=ln x则当x >1时,h ′(x )=1x -=2x -x 2-12x 2=-(x -1)22x 2<0,所以h (x )在(1,+∞)上单调递减,即h (x )<h (1)=0,所以ln x 0.综上,e xx-x e 1x -2ln x 0,即x 1x 2<1得证.证法二:不妨设x 1<x 2,则由(1)知0<x 1<1<x 2,0<1x 2<1.由f (x 1)=f (x 2)=0,得e x 1x 1-ln x 1+x 1=e x 2x 2-ln x 2+x 2,即e x 1-lnx 1+x 1-ln x 1=e x 2-lnx 2+x 2-ln x 2.因为函数y =e x +x 在R 上单调递增,所以x 1-ln x 1=x 2-ln x 2成立.构造函数h (x )=x -ln x ,g (x )=h (x )-x -1x -2ln x ,则g ′(x )=1+1x 2-2x =(x -1)2x 2≥0,所以函数g (x )在(0,+∞)上单调递增,所以当x >1时,g (x )>g (1)=0,即当x >1时,h (x )>所以h (x 1)=h (x 2)>又h ′(x )=1-1x =x -1x ,当0<x <1时,h ′(x )<0,所以h (x )在(0,1)上单调递减,所以0<x 1<1x 2<1,即x 1x 2<1.考点二比(差)值换元法求极值点偏移问题例2(2024·湖北黄冈浠水县第一中学高三上学期质量检测)已知函数f (x )=x (ln x -a ),g (x )=f (x )x+a -ax .(1)当x ≥1时,f (x )≥-ln x -2恒成立,求a 的取值范围;(2)若g (x )的两个相异零点为x 1,x 2,求证:x 1x 2>e 2.解(1)当x ≥1时,f (x )≥-ln x -2恒成立,即当x ≥1时,(x +1)ln x -ax +2≥0恒成立,设F (x )=(x +1)ln x -ax +2,所以F (1)=2-a ≥0,即a ≤2;F ′(x )=ln x +1x+1-a ,设r(x)=ln x+1x+1-a,则r′(x)=1x-1x2=x-1x2,所以当x≥1时,r′(x)≥0,即r(x)在[1,+∞)上单调递增,所以r(x)≥r(1)=2-a≥0,所以当x≥1时,F′(x)=r(x)≥0,即F(x)在[1,+∞)上单调递增,所以F(x)≥F(1)=2-a≥0.所以a的取值范围为(-∞,2].(2)证明:由题意知,g(x)=ln x-ax,不妨设x1>x2>0,x1=ax1,x2=ax2,(x1x2)=a(x1+x2),x1x2=a(x1-x2),则ln(x1x2)ln x1x2=x1+x2x1-x2=x1x2+1x1x2-1,令t=x1x2>1,则ln(x1x2)ln t=t+1t-1,即ln(x1x2)=t+1t-1ln t.要证x1x2>e2,只需证ln(x1x2)>2,只需证t+1t-1ln t>2,即证ln t>2(t-1)t+1(t>1),即证ln t-2(t-1)t+1>0(t>1),令m(t)=ln t-2(t-1)t+1(t>1),因为m′(t)=(t-1)2t(t+1)2>0,所以m(t)在(1,+∞)上单调递增,又当t从右侧趋近于1时,m(t)趋近于0,所以当t∈(1,+∞)时,m(t)>0,即ln t-2(t-1)t+1>0成立,故x1x2>e2.比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t表示)表示两个极值点,即t=x1x2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.2.已知函数f (x )=x ln x -x 2e+tx -1(t ∈R )有两个极值点x 1,x 2(x 1<x 2).(1)求t 的取值范围;(2)证明:x 1+x 2>4e x 1x 2.解(1)f ′(x )=ln x +1-2xe+t ,令g (x )=f ′(x ),则g ′(x )=1x -2e =e -2xe x (x >0),令g ′(x )=0,解得x =e2,所以当x ,g ′(x )>0;当x +,g ′(x )<0,所以g (x ),+,所以g (x )max =1-ln 2+t .因为f (x )有两个极值点,所以g (x )有两个变号零点,所以g (x )max >0,即1-ln 2+t >0,所以t >ln 2-1,即t 的取值范围为(ln 2-1,+∞).(2)证明:由题意,知ln x 2-2x 2e +t +1=0,ln x 1-2x1e+t +1=0,所以ln x 2-ln x 1=2e (x 2-x 1),即ln x 2-ln x 1x 2-x 1=2e .要证x 1+x 2>4e x 1x 2,只需证1x 1+1x 2>4e,即证1x 1+1x 2>2(ln x 2-ln x 1)x 2-x 1,即证2lnx 2x 1<x 2-x 1x 1+x 2-x 1x 2=x 2x 1-x 1x 2,设x2x 1=u (u >1),则只需证u -1u >2ln u (u >1),令h (u )=u -1u-2ln u (u >1),则h ′(u )=1+1u 2-2u =u 2-2u +1u 2=(u -1)2u 2>0,所以h (u )在(1,+∞)上单调递增,又当u 从右侧趋近于1时,h (u )趋近于0,所以h (u )>0,即u -1u >2ln u (u >1),则x 1+x 2>4ex 1x 2.课时作业1.(2024·福建福州格致中学高三上学期质检)已知函数f (x )=a ln x +ax .(1)讨论函数f (x )的极值;(2)若(e x 1)x 2=(e x 2)x 1(e 是自然对数的底数),且x 1>0,x 2>0,x 1≠x 2,证明:x 1+x 2>2.解(1)函数f (x )的定义域为(0,+∞),求导得f ′(x )=-a ln xx 2,若a =0,则f ′(x )=0,函数f (x )无极值;若a ≠0,由f ′(x )=0,可得x =1;若a <0,当0<x <1时,f ′(x )<0,则f (x )单调递减,当x >1时,f ′(x )>0,则f (x )单调递增,此时函数f (x )有唯一极小值f (1)=a ,无极大值;若a >0,当0<x <1时,f ′(x )>0,则f (x )单调递增,当x >1时,f ′(x )<0,则f (x )单调递减,此时函数f (x )有唯一极大值f (1)=a ,无极小值.综上,当a =0时,函数f (x )无极值;当a <0时,函数f (x )有极小值f (1)=a ,无极大值;当a >0时,函数f (x )有极大值f (1)=a ,无极小值.(2)证明:由(e x 1)x 2=(e x 2)x 1,两边取对数可得x 2(ln x 1+1)=x 1(ln x 2+1),即ln x 1+1x 1=ln x 2+1x 2,当a =1时,f (x )=ln x +1x,f ′(x )=-ln xx 2,由(1)可知,函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=1,而0,当x >1时,f (x )>0恒成立,因此当a =1时,存在x 1,x 2且0<x 1<1<x 2,满足f (x 1)=f (x 2),若x 2∈[2,+∞),则x 1+x 2>x 2≥2成立;若x 2∈(1,2),则2-x 2∈(0,1),记g(x)=f(x)-f(2-x),则当x∈(1,2)时,g′(x)=f′(x)+f′(2-x)=-ln xx2-ln(2-x)(2-x)2>-ln xx2-ln(2-x)x2=-ln[-(x-1)2+1]x2>0,即函数g(x)在(1,2)上单调递增,所以g(x)>g(1)=0,即f(x)>f(2-x),于是f(x1)=f(x2)>f(2-x2),而x2∈(1,2),2-x2∈(0,1),x1∈(0,1),函数f(x)在(0,1)上单调递增,因此x1>2-x2,即x1+x2>2.综上,x1+x2>2.2.(2024·广东深圳中学高三阶段考试)设函数f(x)=(x+a)e x,已知直线y=2x+1是曲线y=f(x)的一条切线.(1)求a的值,并讨论函数f(x)的单调性;(2)若f(x1)=f(x2),其中x1<x2,证明:x1x2>4.解(1)设直线y=2x+1与曲线y=f(x)相切于点(x0,f(x0)),∵f′(x)=(x+a+1)e x,∴f′(x0)=(x0+a+1)e x0=2;又f(x0)=(x0+a)e x0=2x0+1,∴2-e x0=2x0+1,即e x0+2x0-1=0.设g(x)=e x+2x-1,则g′(x)=e x+2>0,∴g(x)在R上单调递增,又g(0)=0,∴g(x)有唯一零点x=0,∴x0=0,∴a+1=2,解得a=1,∴f(x)=(x+1)e x,f′(x)=(x+2)e x,则当x∈(-∞,-2)时,f′(x)<0;当x∈(-2,+∞)时,f′(x)>0.∴函数f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增.(2)证明:由(1)知,f(x)min=f(-2)=-e-2<0,当x<-1时,f(x)<0;当x>-1时,f(x)>0,∴x1<-2<x2<-1.要证x1x2>4,只需证x1<4x2<-2.∵f(x)在(-∞,-2)上单调递减,∴只需证f (x 1)>又f (x 1)=f (x 2),则只需证f (x 2)>f x 2∈(-2,-1)恒成立.设h (x )=f (x )-∴h ′(x )=(x +2)e x +8(x +2)x 3e 4x =(x +2)e 4x x 3(x 3e x -4x +8).设p (x )=x 3e x-4x +8,则当-2<x <-1时,p ′(x )=x e x +74<0,∴p (x )在(-2,-1)上单调递减,∴p (x )<p (-2)=-8+8=0,又当-2<x <-1时,(x +2)e x4x 3<0,∴当-2<x <-1时,h ′(x )>0,∴h (x )在(-2,-1)上单调递增,∴h (x )>h (-2)=0,即f (x )>f x ∈(-2,-1)时恒成立,又x 2∈(-2,-1),∴f (x 2)>原不等式得证.3.(2023·湖北武汉华中师范大学第一附属中学高三下学期压轴卷(一))已知f (x )=2x -sin x -a ln x .(1)当a =1时,讨论函数f (x )的极值点个数;(2)若存在x 1,x 2(0<x 1<x 2),使f (x 1)=f (x 2),求证:x 1x 2<a .解(1)当a =1时,f (x )=2x -sin x -ln x ,则f ′(x )=2-cos x -1x,当x ≥1时,f ′(x )≥1-cos x ≥0,故f (x )在[1,+∞)上单调递增,不存在极值点;当0<x <1时,令h (x )=2-cos x -1x,则h ′(x )=sin x +1x2>0恒成立,故函数h (x )即f ′(x )在(0,1)上单调递增,且f ′(1)=1-cos1>0,f cos 14-2<0,所以存在x 0使得f ′(x 0)=0,所以当0<x <x 0时,f ′(x )<0,f (x )单调递减;当x 0<x <1时,f ′(x )>0,f (x )单调递增,故函数f (x )在(0,1)上存在唯一极值点.综上,当a =1时,函数f (x )的极值点有且仅有一个.(2)证明:由f (x 1)=f (x 2),知2x 1-sin x 1-a ln x 1=2x 2-sin x 2-a ln x 2,整理,得2(x 1-x 2)-(sin x 1-sin x 2)=a (ln x 1-ln x 2)(*),不妨令g (x )=x -sin x (x >0),则g ′(x )=1-cos x ≥0,故g (x )在(0,+∞)上单调递增,当0<x 1<x 2时,有g (x 1)<g (x 2),即x 1-sin x 1<x 2-sin x 2,那么sin x 1-sin x 2>x 1-x 2,因此(*)即转化为a >x 1-x 2ln x 1-ln x 2.接下来证明x 1-x 2ln x 1-ln x 2>x 1x 2(0<x 1<x 2),等价于证明ln x 1x 2>x 1x 2-x 2x 1,不妨令x 1x 2=t (0<t <1),建构新函数φ(t )=2ln t -t +1t(0<t <1),φ′(t )=2t -1-1t 2=-(t -1)2t 2<0,则φ(t )在(0,1)上单调递减,又当t 从左侧趋近于1时,φ(t )趋近于0,所以φ(t )>0,故lnx 1x 2>x 1x 2-x 2x 1即x 1-x 2ln x 1-ln x 2>x 1x 2(0<x 1<x 2)得证,由不等式的传递性知x 1x 2<a ,即x 1x 2<a .4.(2023·湖南长沙实验中学高三三模)已知函数h (x )=x -a ln x (a ∈R ).(1)若h (x )有两个零点,求实数a 的取值范围;(2)若方程x e x -a (ln x +x )=0有两个实根x 1,x 2,且x 1≠x 2,证明:e x 1+x2>e 2x 1x 2.解(1)函数h (x )的定义域为(0,+∞).当a =0时,函数h (x )=x 无零点,不符合题意,所以a ≠0,由h (x )=x -a ln x =0,可得1a =ln x x,构造函数f (x )=ln x x ,其中x >0,所以直线y =1a与函数f (x )的图象有两个交点,f ′(x )=1-ln x x 2,由f ′(x )=0可得x =e ,列表如下:x(0,e)e (e ,+∞)f ′(x )+0-f (x )单调递增极大值1e 单调递减所以函数f (x )的极大值为f (e)=1e ,函数f (x )的大致图象如下图所示:且当x >1时,f (x )=ln x x>0,由图可知,当0<1a <1e ,即a >e 时,直线y =1a与函数f (x )的图象有两个交点,故实数a 的取值范围是(e ,+∞).(2)证明:因为x e x -a (ln x +x )=0,则x e x -a ln (x e x )=0,令t =x e x >0,其中x >0,则有t -a ln t =0,t ′=(x +1)e x >0,所以函数t =x e x 在(0,+∞)上单调递增,因为方程x e x -a (ln x +x )=0有两个实根x 1,x 2,令t 1=x 1e x 1,t 2=x 2e x 2,则关于t 的方程t -a ln t =0也有两个实根t 1,t 2,且t 1≠t 2,要证e x 1+x 2>e 2x 1x 2,即证x 1e x 1·x 2e x 2>e 2,即证t 1t 2>e 2,即证ln t 1+ln t 2>2,=a ln t 1,=a ln t 2,-t 2=a (ln t 1-ln t 2),+t 2=a (ln t 1+ln t 2),整理可得t 1+t 2t -t =ln t 1+ln t 2ln t -ln t ,不妨设t 1>t 2>0,即证ln t 1+ln t 2=t 1+t 2t 1-t 2ln t 1t 2>2,即证ln t 1t 2>2(t 1-t 2)t 1+t 2=t 1t 2+1令s =t 1t 2>1,即证ln s >2(s -1)s +1,其中s >1,构造函数g (s )=ln s -2(s -1)s +1,其中s >1,g ′(s )=1s -4(s +1)2=(s -1)2s (s +1)2>0,所以函数g (s )在(1,+∞)上单调递增,又当s 从右侧趋近于1时,g (s )趋近于0,所以当s >1时,g (s )>0,故原不等式成立.5.(2024·河北石家庄部分重点高中高三月考)已知函数f (x )=x 2ln x -a (a ∈R ).(1)求函数f (x )的单调区间;(2)若函数f (x )有两个零点x 1,x 2,证明:1<x 1+x 2<2e .解(1)因为f (x )=x 2ln x -a (a ∈R )的定义域为(0,+∞),则f ′(x )=2x ln x +x =x (2ln x +1),令f ′(x )>0,解得x >1e,令f ′(x )<0,解得0<x <1e,所以f (x )+(2)证明:不妨设x 1<x 2,由(1)知,必有0<x 1<1e <x 2.要证x 1+x 2<2e ,即证x 2<2e-x 1,即证f (x 2)<又f (x 2)=f (x 1),即证f (x 1)-令g (x )=f (x )-则g ′(x )=x (2ln x +1)1,令h (x )=g ′(x ),则h ′(x )=2(ln x +1)+1-2ln 1-2=2ln x 2e-x <0在x 恒成立,所以h (x ),即g ′(x ),所以g ′(x )>g 0,所以g (x ),所以g (x 1)<0,即f (x 1)-,所以x 1+x 2<2e.接下来证明x 1+x 2>1,令x 2x 1=t ,则t >1,又f (x 1)=f (x 2),即x 21ln x 1=x 22ln x 2,所以ln x 1=t 2ln t 1-t 2,要证1<x 1+x 2,即证1<x 1+tx 1,即证(t +1)x 1>1,不等式(t +1)x 1>1两边取对数,即证ln x 1+ln (t +1)>0,即证t 2ln t 1-t 2+ln (t +1)>0,即证(t +1)ln (t +1)t>t ln t t -1,令u (x )=x ln x x -1,x ∈(1,+∞),则u ′(x )=(ln x +1)(x -1)-x ln x (x -1)2=x -ln x -1(x -1)2,令p (x )=x -ln x -1,其中x ∈(1,+∞),则p ′(x )=1-1x =x -1x>0,所以p (x )在(1,+∞)上单调递增,又当x 从右侧趋近于1时,p (x )趋近于0,所以当x ∈(1,+∞)时,p (x )>0,故当x ∈(1,+∞)时,u ′(x )=x -ln x -1(x -1)2>0,可得函数u (x )单调递增,可得u (t +1)>u (t ),即(t +1)ln (t +1)t>t ln t t -1,所以x 1+x 2>1.综上可知,1<x 1+x 2<2e .6.(2021·新高考Ⅰ卷)已知函数f (x )=x (1-ln x ).(1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且b ln a -a ln b =a -b ,证明:2<1a +1b<e.解(1)因为f (x )=x (1-ln x ),所以f (x )的定义域为(0,+∞),f ′(x )=1-ln x +x ln x .当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0.所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)证明:由题意,a ,b 是两个不相等的正数,且b ln a -a ln b =a -b ,两边同时除以ab ,得ln a a-ln b b =1b -1a ,即ln a +1a =ln b +1b,即令x 1=1a ,x 2=1b,由(1)知f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,且当0<x <e 时,f (x )>0,当x >e 时,f (x )<0,不妨设x 1<x 2,则0<x 1<1<x 2<e.要证2<1a +1b<e ,即证2<x 1+x 2<e.先证x 1+x 2>2:要证x 1+x 2>2,即证x 2>2-x 1,因为0<x 1<1<x 2<e ,所以x 2>2-x 1>1,又f (x )在(1,+∞)上单调递减,所以即证f (x 2)<f (2-x 1),又f (x 1)=f (x 2),所以即证f (x 1)<f (2-x 1),即证当x ∈(0,1)时,f (x )-f (2-x )<0.构造函数F (x )=f (x )-f (2-x ),则F ′(x )=f ′(x )+f ′(2-x )=-ln x -ln (2-x )=-ln [x (2-x )],当0<x <1时,0<x (2-x )<1,则-ln [x (2-x )]>0,即当0<x <1时,F ′(x )>0,所以F (x )在(0,1)上单调递增,所以当0<x <1时,F (x )<F (1)=0,所以当0<x <1时,f (x )-f (2-x )<0成立,所以x 1+x 2>2成立.再证x 1+x 2<e :由(1)知,f (x )的极大值点为x =1,f (x )的极大值为f (1)=1,过点(0,0),(1,1)的直线方程为y =x ,设f (x 1)=f (x 2)=m ,当x ∈(0,1)时,f (x )=x (1-ln x )>x ,直线y =x 与直线y =m 的交点坐标为(m ,m ),则x 1<m .欲证x 1+x 2<e ,即证x 1+x 2<m +x 2=f (x 2)+x 2<e ,即证当1<x <e 时,f (x )+x <e.构造函数h (x )=f (x )+x ,则h ′(x )=1-ln x ,当1<x <e 时,h ′(x )>0,所以函数h (x )在(1,e)上单调递增,所以当1<x <e 时,h (x )<h (e)=f (e)+e =e ,即f (x )+x <e 成立,所以x 1+x 2<e 成立.综上可知,2<1a +1b<e 成立.。
(完整)高三数学导数压轴题03,极值点偏移,5种方法(word版可编辑修改) 编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高三数学导数压轴题03,极值点偏移,5种方法(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高三数学导数压轴题03,极值点偏移,5种方法(word版可编辑修改)的全部内容。
高考数学玩转压轴题专题12极值点偏移问题利器极值点偏移判定定理极值点偏移问题利器——极值点偏移判定定理一、极值点偏移的判定定理对于可导函数 $y=f(x)$,在区间 $(a,b)$ 上只有一个极大(小)值点 $x$,方程 $f(x)=0$ 的解分别为 $x_1$、$x_2$,且 $a<x_1<x_2<b$,则:1)若 $f(x_1)<f(2x-x_2)$,则极(小)大值点 $x$ 右(左)偏;2)若 $f(x_1)>f(2x-x_2)$,则极(小)大值点 $x$ 右(左)偏。
证明:1)因为对于可导函数 $y=f(x)$,在区间 $(a,b)$ 上只有一个极大(小)值点 $x$,则函数 $f(x)$ 的单调递增(减)区间为 $(a,x)$,单调递减(增)区间为 $(x,b)$。
由于 $x_1)2x-x_2$,$a)2x$,即函数 $y=f(x)$ 在区间 $(x_1,x_2)$ 上$2x_1+x_2)x$,即函数 $y=f(x)$ 的极(小)大值点 $x$ 右(左)偏。
2)证明略。
二、运用判定定理判定极值点偏移的方法1、方法概述:1)求出函数 $f(x)$ 的极值点 $x$;2)构造一元差函数 $F(x)=f(x+x)-f(x-x)$;3)确定函数 $F(x)$ 的单调性;4)结合 $F(x)=0$,判断 $F(x)$ 的符号,从而确定$f(x+x)$、$f(x-x)$ 的大小关系。
口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随。
2、抽象模型答题模板:若已知函数 $f(x)$ 满足 $f(x_1)=f(x_2)$,$x$ 为函数 $f(x)$ 的极值点,求证:$x_1+x_2<2x$。
1)讨论函数$f(x)$ 的单调性并求出$f(x)$ 的极值点$x$;假设此处 $f(x)$ 在 $(-\infty,x)$ 上单调递减,在$(x,+\infty)$ 上单调递增。
2025年新人教版高考数学一轮复习讲义第三章培优点6 极值点偏移极值点偏移是指函数在极值点左右的增减速度不一样,导致函数图象不具有对称性,极值点偏移问题常常出现在高考数学的压轴题中,这类题往往对思维要求较高,过程较为烦琐,计算量较大,解决极值点偏移问题,有对称化构造函数法和比值代换法,二者各有千秋,独具特色.1.极值点偏移的概念已知函数y=f(x)是连续函数,在区间(a,b)内只有一个极值点x0,f(x1)=f(x2),且x0在x1与x2之间,由于函数在极值点左右两侧的变化速度不同,使得极值点偏向变化速度快的一侧,常常有x0≠ ,这种情况称为极值点偏移.2.极值点偏移问题的一般题设形式(1)函数f(x)存在两个零点x1,x2且x1≠x2,求证:x1+x2>2x0(x0为函数f(x)的极值点);(2)函数f(x)中存在x1,x2且x1≠x2,满足f(x1)=f(x2),求证:x1+x2>2x0(x0为函数f(x)的极值点);题型一 对称化构造函数例1 (2023·唐山模拟)已知函数f(x)=x e2-x.(1)求f(x)的极值;因为f(x)=x e2-x,所以f′(x)=(1-x)e2-x,由f′(x)>0,解得x<1;由f′(x)<0,解得x>1,所以f(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减,又f(1)=e,所以f(x)在x=1处取得极大值e,无极小值.(2)若a>1,b>1,a≠b,f(a)+f(b)=4,证明:a+b<4.由(1)可知,f(x)在(1,+∞)上单调递减,f(2)=2,且a>1,b>1,a≠b,f(a)+f(b)=4,不妨设1<a<2<b,要证a+b<4,只需证b<4-a,而b>2,2<4-a<3,且f(x)在(1,+∞)上单调递减,所以只需证f(b)>f(4-a),即证4-f(a)>f(4-a),即证f(a)+f(4-a)<4.即证当1<x<2时,f(x)+f(4-x)<4,令F(x)=f(x)+f(4-x),1<x<2,则F′(x)=f′(x)-f′(4-x)=(1-x)e2-x-e x-2(x-3),令h(x)=(1-x)e2-x-e x-2(x-3),1<x<2,则h′(x)=e2-x(x-2)-e x-2(x-2)=(x-2)(e2-x-e x-2),因为1<x<2,所以x-2<0,e2-x-e x-2>0,所以h′(x)<0,即h(x)在(1,2)上单调递减,则h(x)>h(2)=0,即F′(x)>0,所以F(x)在(1,2)上单调递增,所以F(x)<F(2)=2f(2)=4,即当1<x<2时,f(x)+f(4-x)<4,所以原命题成立.思维升华对称化构造函数法构造辅助函数(1)对结论x1+x2>2x0型,构造函数F(x)=f(x)-f(2x0-x).(1)若f(x)≥0,求a的取值范围;由题意知函数f(x)的定义域为(0,+∞).可得函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以f(x)min=f(1)=e+1-a.又f(x)≥0,所以e+1-a≥0,解得a≤e+1,所以a的取值范围为(-∞,e+1].(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.方法一 不妨设x 1<x 2,1211e 11x x x x ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭1e xx令g (x )=e x +x - -1(x >0),1e xx 11e ex x +x =e x +1+ (x >0),11e 1x x ⎛⎫- ⎪⎝⎭所以当x ∈(0,1)时,g ′(x )>0,所以当x ∈(0,1)时,g (x )<g (1)=0,所以当x ∈(0,1)时,F ′(x )>0,所以F(x)在(0,1)上单调递增,所以F(x)<F(1),方法二 (同构法构造函数化解等式)不妨设x 1<x 2,由f (x 1)=f (x 2)=0,得 -ln x 1+x 1= -ln x 2+x 2,11e x x 22e x x 即 +x 1-ln x 1= +x 2-ln x 2.11ln e x x -22ln e x x -因为函数y=e x+x在R上单调递增,所以x1-ln x1=x2-ln x2成立.构造函数h(x)=x-ln x(x>0),所以函数g(x)在(0,+∞)上单调递增,所以当x>1时,g(x)>g(1)=0,所以h(x)在(0,1)上单调递减,题型二 比值代换例2 (2024·沧州模拟)已知函数f(x)=ln x-ax-1(a∈R).若方程f(x)+2=0有两个实根x1,x2,且x2>2x1,求证:.(参考数据:ln 2≈0.693,ln 3≈1.099)由题意知f(x)+2=ln x-ax+1=0,则有ln x1+2ln x2>5ln 2-3,于是φ(t)在(2,+∞)上单调递增,所以g′(t)>0,即函数g(t)在(2,+∞)上单调递增,于是g(t)>g(2)=5ln 2.思维升华比值代换法是指通过代数变形将所证的双变量不等式通过代换t=化为单变量的函数不等式,利用函数单调性证明.(1)讨论f(x)的单调性;当a≤0时,f′(x)>0恒成立,f(x)在(0,+∞)上单调递增;当a>0时,令f′(x)>0,解得x>a,令f′(x)<0,解得0<x<a,故f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,综上,当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(2)若f(x)有两个不相同的零点x1,x2,设f(x)的导函数为f′(x).证明:x1f′(x1)+x2f′(x2)>2ln a+2.由(1)知,当a≤0时,f(x)在(0,+∞)上单调递增,故f(x)至多有一个零点,不符合要求,故a>0,要想f(x)有两个不相同的零点x1,x2,则f(a)=1+ln a<0,要证x1f′(x1)+x2f′(x2)>2ln a+2,即证ln(x1x2)>2ln a,因为y=ln x在(0,+∞)上单调递增,所以只需证x1x2>a2,不妨设0<x1<x2,故h(t)>h(1)=1-1-2ln 1=0,能力提升1.(2023·洛阳联考)已知函数g(x)=ln x-bx,若g(x)有两个不同的零点x1,x2.(1)求实数b的取值范围;由φ′(x)>0,得0<x<e;由φ′(x)<0,得x>e.所以函数φ(x)在(0,e)上单调递增,在(e,+∞)上单调递减.又φ(1)=0,且当x→+∞时,φ(x)→0;当x→0时,φ(x)→-∞,由于g(x)有两个不同的零点,则直线y=b与函数φ(x)的图象在(0,+∞)上有两个不同的交点.(2)求证:ln x1+ln x2>2.方法一 (比值代换法)由(1)知,不妨设1<x2<e<x1,由g(x1)=g(x2)=0,得ln x1-bx1=0,ln x2-bx2=0,两式相减得ln x1-ln x2=b(x1-x2),两式相加得ln x1+ln x2=b(x1+x2).欲证ln x1+ln x2>2,只需证b(x1+x2)>2,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=0,故ln x 1+ln x 2>2,得证.方法二 (对称化构造法)由(1)知,不妨设1<x 1<e<x 2,令t 1=ln x 1,t 2=ln x 2,则0<t 1<1<t 2, ,1212e et t t t欲证ln x1+ln x2>2,即证t1+t2>2.所以k(t)在(0,1)上单调递增,在(1,+∞)上单调递减.当t2≥2时,易得t1+t2>2;当0<t1<1<t2<2时,要证t1+t2>2,即证1>t1>2-t2>0,即证k(t1)>k(2-t2).因为k(t1)=k(t2),所以即证k(t2)>k(2-t2).构造函数K(t)=k(t)-k(2-t)(1<t<2),易得K(1)=0,因为1-t<0,且-t<t-2,所以e-t<e t-2,即K′(t)>0.所以K(t)在(1,2)上单调递增,K(t)>K(1)=0(1<t<2).所以K(t2)>0,即k(t2)>k(2-t2).故ln x1+ln x2>2,得证.2.(2023·聊城模拟)已知函数f(x)=ln x+ (a∈R),设m,n为两个不相等的正数,且f(m)=f(n)=3.(1)求实数a的取值范围;即a=3x-x ln x有两个不相等的正根,令函数h(x)=3x-x ln x,x>0,则h′(x)=2-ln x,令h′(x)=0,得x=e2;令h′(x)>0,得0<x<e2;令h′(x)<0,得x>e2,所以函数h(x)=3x-x ln x的单调递增区间为(0,e2),单调递减区间为(e2,+∞),令h(x)=0,得x=e3,且h(e2)=e2,当x→0时,h(x)→0,作出函数h(x)=3x-x ln x的图象,如图所示,要使a=3x-x ln x有两个不相等的正根,则函数y=a与函数h(x)=3x-x ln x有两个交点,由图知0<a<e2,故实数a的取值范围为{a|0<a<e2}.(2)证明:a2<mn<a e2.函数f(x)的定义域为(0,+∞),由(1)知,0<a<e2,若0<x<a,f′(x)<0,f(x)在(0,a)上单调递减,若x>a,f′(x)>0,f(x)在(a,+∞)上单调递增.由题意,不妨设0<m<a<n,先证明mn>a2,所以g(x)在(0,a)上单调递增,所以当0<x<a时,g(x)<g(a)=0,所以ln a=ln m+ln(3-ln m),。