数据结构 稀疏矩阵相乘问题
- 格式:doc
- 大小:48.00 KB
- 文档页数:4
数据结构实验四稀疏矩阵运算1、实验目的掌握三元组法存储稀疏矩阵的方法及相关的基本操作。
2、实验内容∙用三元组法存放稀疏矩阵∙求出矩阵转置结果∙求出矩阵相乘结果∙输出结果矩阵3、实验要求∙用数组存放矩阵的三元组,矩阵的行数和列数及非0数据从键盘输入∙要求采用稀疏矩阵快速转置算法∙若两个矩阵不能相乘则输出“Error”4、试验参考程序typedef s tr uct { // 定义三元组的元素int i, j;int e;} Tr iple;typedef s tr uct { // 定义矩阵Tr iple data[MA XSI ZE + 1];int mu, nu, tu;} TSMa tr ix;typedef s tr uct { // 定义行逻辑连接矩阵Tr iple data[MA XSI ZE + 2];int rpos[MA XROW + 1];int mu, nu, tu;} RLSMatr ix;矩阵输入函数bool InPutT SMat r ix(T SMatr ix & T) {cout << "输入矩阵的行,列和非零元素个数:" << e ndl;cin >> T.mu >> T.nu >> T.tu;cout << "请输出非零元素的位置和值:" << e ndl;for (int k = 1;; k <= T.t u; k++)cin >> T.data[k].i >> T.da ta[k].j >> T.data[k].e;retur n t rue;}请补充完成下列矩阵转置函数、矩阵乘法函数与矩阵输出函数Bool Trans poseSMa tr ix(T SMa t r ix M, T SMat r ix & T){TSMatrix M,T; //定义预转置的矩阵InPutTSMatrix(M, 0); //输入矩阵int num[MAXROW+1];int cpot[MAXROW+1]; // 构建辅助数组int q,p,t;T.tu=M.tu; T.mu=M.nu; T.nu=M.mu;if(T.tu){for(int col=1;col<=M.nu;col++) num[col]=0;for(t=1;t<=M.tu;t++) ++num[M.data[t].j];cpot[1]=1;for(int i=2;i<=M.nu;i++) cpot[i]=cpot[i-1]+num[i-1]; // 求出每一列中非零元素在三元组中出现的位置for(p=1;p<=M.tu;p++){col=M.data[p].j; q=cpot[col];T.data[q].i=col; T.data[q].j=M.data[p].i;T.data[q].e=M.data[p].e; ++cpot[col];}}cout<<"输入矩阵的转置矩阵为"<<endl;OutPutSMatrix(T);return true;}Bool MultSMatr ix(RLSMatr ix M, RL SMatr ix N,RL SMat r ix & T){RLSMatrix M,N,Q; // 构建三个带“链接信息”的三元组表示的数组InPutTSMatrix(M,1); // 用普通三元组形式输入数组InPutTSMatrix(N,1);Count(M); Count(N);if(M.nu!=N.mu) return false;Q.mu=M.mu; Q.nu=N.nu; Q.tu=0; // Q初始化int ctemp[MAXROW+1]; // 辅助数组int arow,tp,p,brow,t,q,ccol;if(M.tu*N.tu){ // Q是非零矩阵for( arow=1;arow<=M.mu;arow++){///memset(ctemp,0,N.nu);for(int x=1;x<=N.nu;x++) // 当前行各元素累加器清零ctemp[x]=0;Q.rpos[arow]=Q.tu+1; // 当前行的首个非零元素在三元组中的位置为此行前所有非零元素+1 if(arow<M.mu) tp=M.rpos[arow+1];else tp=M.tu+1;for(p=M.rpos[arow];p<tp;p++){ // 对当前行每个非零元素进行操作brow=M.data[p].j; // 在N中找到i值也操作元素的j值相等的行if(brow<N.mu) t=N.rpos[brow+1];else t=N.tu+1;for(q=N.rpos[brow];q<t;q++){ // 对找出的行当每个非零元素进行操作ccol=N.data[q].j;ctemp[ccol] += M.data[p].e*N.data[q].e; // 将乘得到对应值放在相应的元素累加器里面}}for(ccol=1;ccol<=Q.nu;ccol++) // 对已经求出的累加器中的值压缩到Q中if(ctemp[ccol]){if(++Q.tu>MAXSIZE) return false;Q.data[Q.tu].e=ctemp[ccol];Q.data[Q.tu].i=arow;Q.data[Q.tu].j=ccol;}}OutPutSMatrix(Q);return true;}}boo l O utP utSMatrix(T SMat r ix T){// 输出矩阵,按标准格式输出int m,n,k=1;fo r(m=0;m<T.mu;m++){fo r(n=0;n<T.nu;n++){if((T.d a ta[k].i-1)==m&&(T.d a ta[k].j-1)==n){co ut.w id th(4);co ut<<T.d a ta[k++].e;}e ls e{co ut.w id th(4); co ut<<"0"; }}co ut<<e nd l;}re turn true;}}并建立ma in()函数对上述函数进行测试。
稀疏矩阵乘法并行全文共四篇示例,供读者参考第一篇示例:稀疏矩阵乘法是一种重要的数值计算问题,它在很多领域都有着广泛的应用,比如图像处理、机器学习等。
由于稀疏矩阵的特性是大部分元素都是0,只有少量非零元素,所以传统的矩阵乘法算法在处理稀疏矩阵时会浪费大量的计算资源。
为了解决这个问题,人们提出了一种并行计算的方法,即利用多个处理器同时计算矩阵乘法,从而提高计算效率。
在并行计算中,稀疏矩阵乘法也有着自己的特点和挑战。
稀疏矩阵的非零元素分布在整个矩阵中,处理起来比较困难。
矩阵乘法的计算量随着非零元素的增加而增加,所以需要合理地分配计算资源和任务。
稀疏矩阵乘法的并行计算需要考虑通信开销和负载均衡,以充分利用多个处理器的计算能力。
为了解决上述问题,人们提出了一些并行的稀疏矩阵乘法算法。
其中比较有代表性的是基于CSR(Compressed Sparse Row)格式的算法。
CSR格式是一种压缩存储稀疏矩阵的方法,它将矩阵分成三部分:非零元素数组、列索引数组和行偏移数组。
基于CSR格式的算法在并行计算中能够有效地减少通信开销,提高计算效率。
还有一些其他的并行稀疏矩阵乘法算法,比如基于COO (Coordinate)格式、基于Ecoo(Ellpack-Chebyshev)格式等。
这些算法都有着自己的特点和适用场景,可以根据具体的问题选择合适的算法。
在并行计算中,负载均衡是一个非常重要的问题。
负载不均衡会导致一些处理器的计算资源被浪费,影响整体的计算效率。
为了解决负载均衡问题,人们提出了一些方法,比如动态任务分配、静态任务划分、自适应任务调度等。
这些方法能够根据任务的计算量和数据分布特点,合理地分配任务,从而提高计算效率。
除了负载均衡,通信开销也是一个需要考虑的重要问题。
在并行计算中,处理器之间需要进行通信,传递计算结果和数据,这会导致一定的开销。
为了减小通信开销,人们提出了一些方法,比如数据压缩、异步通信、消息合并等。
基于MPI实现稀疏矩阵的乘法1. 引言稀疏矩阵是指大部分元素为零的矩阵,与之相对应的是稠密矩阵,其中大部分元素非零。
由于稀疏矩阵中有大量的零元素,传统的矩阵乘法算法在计算稀疏矩阵乘法时效率较低。
为了提高计算效率,我们可以利用并行计算的思想,使用MPI (Message Passing Interface)来实现稀疏矩阵的乘法。
MPI是一种用于编写并行程序的标准通信库,它定义了一组函数和语义,用于在多个进程之间进行通信和同步操作。
通过将任务划分为多个进程,每个进程负责处理一部分数据,并通过消息传递进行通信和协调,可以实现并行计算。
本文将介绍如何使用MPI实现稀疏矩阵的乘法算法。
首先我们会介绍稀疏矩阵的表示方法和存储格式,然后详细说明基于MPI的稀疏矩阵乘法算法的实现过程。
2. 稀疏矩阵的表示和存储格式稀疏矩阵有多种表示方法,常用的有三元组表示法、行压缩存储(CSR)和列压缩存储(CSC)。
三元组表示法将稀疏矩阵中非零元素的行、列和值分别存储在三个数组中。
这种表示方法简单直观,但对于大型稀疏矩阵来说,空间效率较低。
行压缩存储(CSR)是一种常用的稀疏矩阵存储格式。
在CSR格式中,我们将稀疏矩阵拆分为三个数组:值数组(values)、列指针数组(col_indices)和行偏移量数组(row_offsets)。
其中,值数组存储非零元素的值,列指针数组存储非零元素所在的列索引,行偏移量数组记录每一行第一个非零元素在值数组和列指针数组中的索引。
通过这种方式,我们可以快速访问稀疏矩阵中的非零元素。
列压缩存储(CSC)与CSR类似,只是将列指针数组变为行指针数组,将行偏移量数组变为列偏移量数组。
CSC格式适合于按列访问稀疏矩阵。
在本文中,我们将使用CSR格式来表示稀疏矩阵,并基于该格式实现稀疏矩阵的乘法算法。
3. 基于MPI的稀疏矩阵乘法算法基于MPI的稀疏矩阵乘法算法可以分为以下几个步骤:1.初始化MPI环境:在开始进行并行计算之前,需要初始化MPI环境,获取进程数量和进程编号等信息。
稀疏矩阵乘法是一种针对稀疏矩阵的乘法运算,由于稀疏矩阵中非零元素较少,因此可以利用这一特性进行优化计算,提高计算效率。
以下是两个稀疏矩阵乘法的详细介绍:稀疏矩阵的定义:稀疏矩阵是一个矩阵,其中大多数元素都是零。
在存储和计算时,为了节省空间和时间,我们可以只存储非零元素,并采用特殊的数据结构来表示这种矩阵。
稀疏矩阵乘法的原理:稀疏矩阵乘法的原理与普通矩阵乘法相似,只是由于稀疏矩阵中非零元素较少,所以在计算时可以只考虑这些非零元素,而忽略零元素。
具体来说,对于两个稀疏矩阵A和B的乘积C,我们可以按照元素的位置关系,逐个计算A中的非零元素与B中的非零元素的乘积,并将结果加到C中相应位置上。
稀疏矩阵乘法的算法步骤:
读入两个稀疏矩阵A和B。
初始化结果矩阵C为零矩阵。
遍历A中的每一个非零元素(i,j),如果A(i,j)非零,则按照元素的位置关系,计算A(i,j)与B中相应位置的元素的乘积,并将结果加到C中相应位置上。
返回结果矩阵C。
稀疏矩阵乘法的优化:由于稀疏矩阵中非零元素较少,因此在计算时可以采用一些优化策略来提高计算效率。
例如,可以采用压缩存储技术来减少存储空间的使用;可以采用并
行计算技术来提高计算速度;还可以采用一些迭代算法来加速计算过程。
总之,稀疏矩阵乘法是一种针对稀疏矩阵的特殊运算方法,由于其具有较高的计算效率和较低的空间复杂度,因此在科学计算、工程领域和数据处理等方面得到了广泛应用。
稀疏矩阵乘法给定两个 A 和 B,返回AB的结果。
您可以假设A的列数等于B的⾏数。
本参考程序来⾃九章算法,由 @Roger 提供。
题⽬解法:时间复杂度分析:假设矩阵A,B均为 n x n 的矩阵,矩阵A的稀疏系数为a,矩阵B的稀疏系数为b,a,b∈[0, 1],矩阵越稀疏,系数越⼩。
⽅法⼀:暴⼒,不考虑稀疏性Time (n^2 * (1 + n)) = O(n^2 + n^3)Space O(1)⽅法⼆:改进,仅考虑A的稀疏性Time O(n^2 * (1 + a * n) = O(n^2 + a * n^3)Space O(1)⽅法三(最优):进⼀步改进,考虑A与B的稀疏性Time O(n^2 * (1 + a * b * n)) = O(n^2 + a * b * n^3)Space O(b * n^2)⽅法四:另外⼀种思路,将矩阵A, B⾮0元素的坐标抽出,对⾮0元素进⾏运算和结果累加Time O(2 * n^2 + a * b * n^4) = O(n^2 + a * b * n^4)Space O(a * n^2 + b * n^2)解读:矩阵乘法的两种形式,假设 A(n, t) * B(t, m) = C(n, m)// 形式⼀:外层两个循环遍历C (常规解法)for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {for (int k = 0; k < t; k++) {C[i][j] += A[i][k] * B[k][j];}}}// 或者写成下⾯这样⼦for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {int sum = 0;for (int k = 0; k < t; k++) {sum += A[i][k] * B[k][j];}C[i][j] = sum;}}// 形式⼆:外层两个循环遍历Afor (int i = 0; i < n; i++) {for (int k = 0; k < t; k++) {for (int j = 0; j < m; j++) {C[i][j] += A[i][k] * B[k][j];}}}两种⽅法的区别代码上的区别(表象):调换了第⼆三层循环的顺序核⼼区别(内在):形式⼀以C为核⼼进⾏遍历,每个C[i][j]只会被计算⼀次,就是最终答案。
稀疏矩阵的相乘*两个矩阵相乘的经典算法是大家所熟悉的,设Q=M×N其中,M 是m 1×n 1矩阵,N 是m 2×n 2矩阵。
当n 1=m 2时有:for (i=1;i<=m1;++i )for(j=1;j<=n2;++j){Q[i][j]=0;for(k=1;k<=n1;++k)Q[i][j]+=M[i][k]×N[k][j];}此算法的时间复杂度是O(m 1×n 1×n 2)。
当矩阵变成稀疏矩阵,并且用三元组表作存储结构时,上面这个算法就不能用了,下面我们讨论稀疏矩阵三元组表的相乘算法。
已知稀疏矩阵A(m 1× n 1)和B(m 2× n 2),求乘积C(m 1× n 2)。
稀疏矩阵A 、B 、C 及它们对应的三元组表A.data 、B.data 、C.data 如图1所示。
A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000203008005 B=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-01500720 C=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-40150108 115148233312ij v 114523712221-v j i 42315221021811-v j i 图1 稀疏矩阵相乘图例由矩阵乘法规则知:C (i ,j )=A(i,1)×B(1,j)+A(i,2)×B(2,j)+…+A(i,n)×B(n,j)=)11(),(),(2,11n j m i j k B k i A n k ≤≤≤≤⨯∑=矩阵用二维数组表示时,在经典算法中,不论A(i,k)与B(k,j)的值是否为零,都要进行一次乘法运算,而在三元组表示的稀疏矩阵相乘时,只需从A.data 和B.data 中找到A.data 中列值与B.data 中行值相等的各对元素相乘并将结果累加即可。
为此需要在B.data 中找到矩阵B 第k 行中所有非零元素,跟矩阵转置改进算法相同的原理,我们引入num 和rpot 两个向量。
稀疏矩阵乘法的时间复杂度稀疏矩阵乘法的时间复杂度,这话一说出来,可能有些朋友会皱眉头,觉得这又是个高深的数学问题。
但实际上,咱们今天就来聊聊这个看似复杂的事情,轻松点、幽默点,让大家都能明白。
咱们得搞清楚什么是稀疏矩阵。
简单来说,就是矩阵里有很多的零。
想象一下,你在看一张桌子,上面摆着很多碗,只有几个碗里有东西,其他的都是空的。
这样的矩阵就叫稀疏矩阵。
其实在很多实际应用中,稀疏矩阵的出现是非常常见的,特别是在图像处理、机器学习和数据科学中,真是频繁得让人惊叹。
咱们就要说说稀疏矩阵乘法。
说白了,就是把两个稀疏矩阵相乘。
这个过程其实可以看作是把两个“空碗”组合成一个新碗,看看能不能得到一些“有料”的东西。
由于很多位置上都是零,所以在计算的时候,咱们可以聪明点,干脆不去计算那些零的位置,省得浪费时间和精力,简直就是把“事半功倍”发挥到了极致。
这一招可不是什么秘笈,很多程序员和数学家都用得特别溜。
不过,时间复杂度是个什么鬼呢?简单来说,它就是描述算法运行时间的一个指标。
想象一下,咱们去市场买菜,时间复杂度就像是你去菜市场的路程,如果你走的路特别绕,那肯定花的时间就长;如果你选了一条最近的路,当然就能更快到达。
对于稀疏矩阵乘法来说,时间复杂度跟矩阵的稀疏程度和大小有很大关系。
一般来说,如果你有一个稀疏矩阵A和B,那么它们相乘的复杂度大致是O(NzA + NzB),Nz代表非零元素的数量。
别被这些符号吓到,通俗点说,就是看你非零元素有多少,越多计算的时间就越长。
再说个形象的例子。
想象你在一个派对上,跟一群朋友聊得火热,结果你发现只有几个人是你特别想交流的。
如果你一个一个去找他们,肯定费时费力。
但是如果你能知道他们在哪,直接冲过去,效率简直翻倍。
稀疏矩阵乘法就像这样,只找非零的元素,省去那些冗余的时间,简直太聪明了。
再来聊聊实际应用。
稀疏矩阵在机器学习中可是大显身手。
比如在推荐系统里,用户和物品的评分矩阵常常都是稀疏的,绝大多数用户根本没给某些物品打过分。
java 稀疏矩阵乘法
Java 稀疏矩阵乘法
在计算机科学领域,稀疏矩阵是指非常庞大的矩阵中只有很少的非零元素。
这种类型的矩阵在各种领域中都有广泛应用,比如图像处理、文本分析和生物科学等方面。
然而,由于其庞大的规模,传统的矩阵乘法算法对于稀疏矩阵的计算非常耗时甚至不可行。
因此,一种更有效的算法被提出,即稀疏矩阵乘法。
在 Java 语言中,我们可以使用一些优化技术,使得稀疏矩阵乘法算法执行更快。
首先,我们可以使用 Compressed Row Storage(CRS)和Compressed Column Storage(CCS)这两种方式来存储稀疏矩阵。
这些数据结构可以更好地表示稀疏矩阵,并在矩阵乘法运算中提高运行效率。
其次,我们可以使用一些常见的算法技术,如分治法和递归,来简化复杂的矩阵乘法算法。
在递归算法中,我们将稀疏矩阵划分为更小的子矩阵,然后递归地计算每个子矩阵的乘积。
这种方法可以减少计算量,提高效率。
最后,在大规模稀疏矩阵乘法中,我们可以使用多线程技术,将任务分解为多个独立的线程,并将它们分配到不同的 CPU 核心中去并行处
理。
这种方法可以使算法更加快速和高效。
总之,稀疏矩阵乘法是一个重要的算法问题,应用非常广泛。
在 Java 语言中,我们可以使用 CRX 和 CCS 存储格式、递归和多线程技术等方法来提高算法效率。
随着计算机技术的不断发展,新的优化方法和技术也会不断涌现,为稀疏矩阵乘法算法的提高提供更多的选择和可能。
基于mpi实现稀疏矩阵的乘法要基于MPI实现稀疏矩阵的乘法,首先需要将稀疏矩阵存储在内存中的数据结构转换成适合在MPI上进行并行计算的数据结构。
稀疏矩阵通常采用压缩稀疏行(Compressed Sparse Row,CSR)格式进行存储。
在CSR格式中,矩阵被分为三个数组:val、col_ind和row_ptr。
val数组存储所有非零元素的值,col_ind数组存储对应非零元素的列索引,而row_ptr数组存储每一行的起始位置在val和col_ind数组中的索引。
在基于MPI的并行计算中,每个MPI进程将会处理部分矩阵的行。
因此,需要将稀疏矩阵按照行进行划分,并将行划分的结果分配给每个MPI进程。
下面是一个基于MPI的稀疏矩阵乘法的伪代码:```#include <mpi.h>MPI_Init(NULL, NULL);int rank, size;MPI_Comm_rank(MPI_COMM_WORLD, &rank);MPI_Comm_size(MPI_COMM_WORLD, &size);// 假设稀疏矩阵A和向量x的CSR格式为val、col_ind和row_ptr// 假设矩阵A的行数为M,列数为N,向量x的长度为N double* val_A;int* col_ind_A;int* row_ptr_A;int M, N;// 由主进程读取稀疏矩阵A和向量x,并分发给其他进程if (rank == 0) {// 从文件或其他地方读取稀疏矩阵A和向量x的值,并存储在val_A、col_ind_A和row_ptr_A等变量中// 设置矩阵A的行数M和列数N// 将稀疏矩阵A和向量x的数据按行划分,并发送给其他进程for (int i = 1; i < size; i++) {// 计算每个MPI进程处理的行数和起始行索引int rows = ...; // 每个进程处理的行数int start_row = ...; // 每个进程处理的起始行索引// 发送稀疏矩阵A的值、列索引和行指针数组给其他进程 // 发送向量x的值给其他进程MPI_Send(val_A + start_row, rows * N, MPI_DOUBLE, i, 0, MPI_COMM_WORLD);MPI_Send(col_ind_A + start_row, rows * N, MPI_INT, i, 0, MPI_COMM_WORLD);MPI_Send(row_ptr_A + start_row, rows + 1, MPI_INT, i, 0, MPI_COMM_WORLD);MPI_Send(x, N, MPI_DOUBLE, i, 0,MPI_COMM_WORLD);}} else {// 接收稀疏矩阵A和向量x的数据MPI_Recv(val_A, <每个进程处理的行数> * N,MPI_DOUBLE, 0, 0, MPI_COMM_WORLD,MPI_STATUS_IGNORE);MPI_Recv(col_ind_A, <每个进程处理的行数> * N, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);MPI_Recv(row_ptr_A, <每个进程处理的行数> + 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);MPI_Recv(x, N, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);}// 在每个进程上计算稀疏矩阵乘法的结果// 假设结果向量y的长度为Mdouble* y = new double[<每个进程处理的行数>];for (int i = 0; i < <每个进程处理的行数>; i++) {double sum = 0.0;for (int j = row_ptr_A[i]; j < row_ptr_A[i + 1]; j++) {sum += val_A[j] * x[col_ind_A[j]];}y[i] = sum;}// 将每个进程上的计算结果发送给主进程if (rank == 0) {// 接收其他进程的计算结果for (int i = 1; i < size; i++) {double* recv_buf = new double[<每个进程处理的行数>]; MPI_Recv(recv_buf, <每个进程处理的行数>,MPI_DOUBLE, i, 0, MPI_COMM_WORLD,MPI_STATUS_IGNORE);// 将每个进程的计算结果合并到结果向量y中for (int j = 0; j < <每个进程处理的行数>; j++) {y[<每个进程的处理起始行索引> + j] = recv_buf[j];}delete[] recv_buf;}} else {// 发送计算结果给主进程MPI_Send(y, <每个进程处理的行数>, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);}// 主进程输出结果向量yif (rank == 0) {for (int i = 0; i < M; i++) {std::cout << y[i] << " ";}std::cout << std::endl;}// 释放内存delete[] val_A;delete[] col_ind_A;delete[] row_ptr_A;delete[] x;delete[] y;MPI_Finalize();```请注意,上述代码中的一些变量和计算的具体实现可能需要根据你的具体需求进行调整。
稀疏矩阵的存储和乘法操作⼀稀疏矩阵的存储1.三元组顺序表三元组表⽰法就是在存储⾮零元的同时,存储该元素所对应的⾏下标和列下标。
稀疏矩阵中的每⼀个⾮零元素由⼀个三元组(i,j,a ij)唯⼀确定。
矩阵中所有⾮零元素存放在由三元组组成的顺序表中(通常⽤数组)。
所以三元组的逻辑结构如下://————稀疏矩阵的三元组表⽰法————//#define MAX_SIZE 1500 //表⽰稀疏矩阵的⾮零元素的最⼤个数class Triple{int i,j;//表⽰⾮零元素的⾏下表和列下标int val;//⾮零元素的值,此处以int类型为例};class TSMatrix{Triple data[MAX_SIZE];int row_num,col_num,cnt;//稀疏矩阵的⾏数、列数以及⾮零元素的个数};注意,此处的⾮零元素的三元组是以⾏序为主序顺序排列的。
2.⾏逻辑链接顺序表⾏逻辑链接顺序表的实质就是在三元组顺序表的基础上加了⼀个数组,这个数组⽤于存储稀疏矩阵中每⾏的第⼀个⾮零元素的在三元组顺序表中的位置(此处⼀定要理解对,是在三元组顺序表中的位置)。
所以其逻辑结构如下://————稀疏矩阵的⾏逻辑链接表⽰法————//#define MAX_SIZE 1500 //表⽰稀疏矩阵的⾮零元素的最⼤个数#define MAX_ROW 1500 //表⽰稀疏矩阵的⾏数的最⼤个数class Triple{int i,j;//表⽰⾮零元素的⾏下表和列下标int val;//⾮零元素的值,此处以int类型为例};class RLSMatrix{Triple data[MAX_SIZE]; //⾮零元三元组表int rpos[MAX_ROW];//每⾏第⼀个⾮零元素的位置int row_num,col_num,cnt;//稀疏矩阵的⾏数、列数以及⾮零元素的个数};3.⼗字链表当稀疏矩阵的⾮零元个数和位置在操作过程中变化较⼤时,就不易采⽤顺序存储结构来表⽰三元组的线性表。
数据结构三元组稀疏矩阵乘法代码代码:```pythonclass SparseMatrix:def __init__(self, rows, columns):self.rows = rowsself.columns = columnsself.elements = []def insert(self, row, column, value):if row >= 0 and row < self.rows and column >= 0 and column < self.columns:self.elements.append((row, column, value))else:raise IndexError("Invalid index")def multiply(self, other):if self.columns != other.rows:raise ValueError("Invalid matrix dimensions")result_matrix = SparseMatrix(self.rows, other.columns)for i in range(self.rows):for j in range(other.columns):result = 0for k in range(len(self.elements)):if self.elements[k][0] == i:for l in range(len(other.elements)):if other.elements[l][1] == j:if self.elements[k][1] == other.elements[l][0]:result += self.elements[k][2] * other.elements[l][2] if result != 0:result_matrix.insert(i, j, result)return result_matrix# 创建稀疏矩阵1sparse_matrix1 = SparseMatrix(3, 3)sparse_matrix1.insert(0, 0, 1)sparse_matrix1.insert(0, 2, 2)sparse_matrix1.insert(1, 1, 3)sparse_matrix1.insert(2, 0, 4)# 创建稀疏矩阵2sparse_matrix2 = SparseMatrix(3, 3)sparse_matrix2.insert(0, 1, 5)sparse_matrix2.insert(1, 0, 6)sparse_matrix2.insert(1, 2, 7)sparse_matrix2.insert(2, 2, 8)# 稀疏矩阵乘法result = sparse_matrix1.multiply(sparse_matrix2)# 输出结果for i in range(result.rows):for j in range(result.columns):print(result.elements[i * result.columns + j][2], end=" ")print()```该代码实现了三元组表示的稀疏矩阵的乘法运算。
稀疏矩阵乘法并行
稀疏矩阵乘法是指两个稀疏矩阵相乘的运算。
稀疏矩阵是指大部分元素为零的矩阵。
由于稀疏矩阵的特殊性质,传统的矩阵乘法算法在稀疏矩阵上执行效率较低,因此并行计算可以提高稀疏矩阵乘法的运算速度和效率。
首先,我们可以从并行计算的角度来考虑稀疏矩阵乘法。
在并行计算中,可以将稀疏矩阵分割成多个子矩阵,然后在多个处理单元上同时进行计算,最后将结果合并得到最终的乘积矩阵。
这样可以充分利用并行计算的优势,加快稀疏矩阵乘法的运算速度。
其次,从算法优化的角度来看,针对稀疏矩阵的特点,可以采用一些特殊的算法来进行并行计算。
例如,可以使用CSR (Compressed Sparse Row)格式或者CSC(Compressed Sparse Column)格式来存储稀疏矩阵,并设计针对这些格式的并行算法来进行稀疏矩阵乘法的计算,以提高计算效率。
另外,还可以考虑使用GPU进行并行计算。
由于GPU具有大量的并行计算单元,适合处理大规模数据的特点,可以利用GPU的并行计算能力来加速稀疏矩阵乘法的运算。
此外,针对稀疏矩阵乘法的特点,还可以结合多线程并行计算,利用多核处理器的优势,实现稀疏矩阵乘法的并行计算。
总的来说,稀疏矩阵乘法的并行计算可以从多个角度进行优化,包括算法设计、数据格式选择以及硬件加速等方面,以提高稀疏矩
阵乘法的运算速度和效率。
通过并行计算,可以更好地利用计算资源,加快稀疏矩阵乘法的计算速度,提高计算效率。
稀疏矩阵乘法
稀疏矩阵乘法是指矩阵乘法,其中一个或两个输
入矩阵都是稀疏矩阵。
稀疏矩阵是指当矩阵中大
多数元素都是零时,用较少数据表示矩阵的数据
结构。
稀疏矩阵乘法把空间和时间复杂度降低了。
一、什么是稀疏矩阵乘法?
稀疏矩阵乘法(sparse matrix multiplication),是指
当一个(或两个)输入矩阵中的大多数元素为零时,采用较少数据表示矩阵的数据结构,在一些
应用场景中,可以减少计算的方法及时间覆盖率。
它可以把空间和时间复杂度降低了。
二、稀疏矩阵乘法的特点
(1)它需要少量的额外空间,可以节省很大的内存空间,而且速度也会提高。
(2)它可以显著提高矩阵乘法的效率,使得矩阵乘法可以在稀疏矩阵计算方面大大提高,且运算时间短、耗能少。
(3)它可以增加乘积矩阵的稀疏程度,并能同时得到多个稀疏乘积结果。
三、稀疏矩阵乘法的优势
(1)稀疏矩阵乘法的运算时间较矩阵乘法短,比其它计算方法更快。
(2)稀疏矩阵乘法可以高效地利用现有存储器结构,并将所需数据传送到存储器中。
(3)它可以明显降低计算开销,并在数据库查询大量数据时有显著优势。
四、稀疏矩阵乘法的应用
(1)稀疏矩阵乘法应用于搜索引擎,复杂的数据
挖掘任务,图像处理,矩阵乘积,矩阵运算,特征提取及分类。
(2)稀疏矩阵乘法也广泛应用于大规模数据的处理,如金融业决策支持,视频监控,天气预测,密码学等。
(3)它还可以应用于深度学习,机器学习,机器人控制及人工智能等领域,以便快速解决多项复杂问题。
pytorch 稀疏矩阵乘法PyTorch 是已经成为了深度学习领域中最具有代表性的一种框架,而其本身的灵活性和强大性质也为其赢得了大量的忠实用户,其中之一就是在矩阵计算方面进行优化的 PyTorch 稀疏矩阵乘法。
对于机器学习和深度学习任务特别有效,不仅能提高执行效率,同时还可以大大减少计算和存储开销。
本篇文章主要介绍 PyTorch 稀疏矩阵乘法的应用和实现细节。
## 什么是稀疏矩阵稀疏矩阵是指大多数元素为零的矩阵。
在矩阵计算中,大多数操作都会涉及到元素的乘法操作,而稀疏矩阵的计算往往能够通过改进算法,提高计算效率。
在深度学习中,我们通常会处理高维矩阵,很多时候,这些高维矩阵的大多数元素都为零,这时候就可以利用稀疏矩阵优化计算,加快模型的训练速度。
## 稀疏矩阵乘法稀疏矩阵乘法是指对两个稀疏矩阵进行乘法操作的过程。
可以用矩阵的标准乘法表达式进行定义,如下所示:$$ c_{i,j}=\sum_k a_{i,k}b_{k,j} $$其中,矩阵 $A$ 的维度为 $m \times n$,矩阵$B$ 的维度为 $n \times k$,矩阵 $C$ 的维度为 $m\times k$。
对于稀疏矩阵乘法,相应的优化算法能够通过改变乘法操作的顺序来避免大量的费时操作,并实现更高效的计算。
下面介绍 PyTorch 中的稀疏矩阵乘法实现方法。
## PyTorch 稀疏矩阵乘法的实现PyTorch 中使用稀疏矩阵进行计算的方法是,将稀疏矩阵的非零元素保存在稀疏张量(sparse tensor)的indices、values 和 size 属性中,并通过 PyTorch 提供的稀疏矩阵乘法函数进行计算。
### 创建稀疏张量PyTorch 中提供了两种方式创建稀疏张量。
第一种方式是先创建一个密集矩阵,再将其转换为稀疏矩阵。
第二种方式是直接创建稀疏张量。
#### 创建密集矩阵下面是如何使用 PyTorch 创建密集矩阵的示例代码:```python import torchdense_matrix = torch.randn(3, 5) ```#### 将密集矩阵转换为稀疏矩阵下面是如何使用 PyTorch 将密集矩阵转换为稀疏矩阵的示例代码:```python sparse_matrix =torch.sparse_coo_tensor( dense_matrix.nonzero(), dense_matrix[dense_matrix.nonzero()],size=dense_matrix.shape ) ```在上述代码中,我们首先使用dense_matrix.nonzero() 获取矩阵 non-zero 元素的索引,然后使用 dense_matrix[dense_matrix.nonzero()]获取该索引处元素的值,最后使用这些索引和值创建稀疏矩阵。
*****大学数据结构课程设计说明书题目:稀疏矩阵运算器学生姓名:学号:专业:班级:指导教师:2013 年 7 月 24日稀疏矩阵运算器摘要摘要:设计一稀疏矩阵运算器。
实现两个矩阵的相加、相减和相乘的功能。
用“带行逻辑链接信息”的三元组顺序表表示稀疏矩阵,实现两个矩阵相加、相减和相乘的运算,采用分级的设计方法,分别设计出加、减、乘运算器的子程序,相加运算时只要依次存储、扫描两矩阵的行、列数,若行、列数相等,再取行、列下标相等的元素,相加后存入结果矩阵。
相减运算与相加运算相同,同样取行、列下标相等的元素,相减后存入结果矩阵。
相乘运算要先判断两矩阵能否相乘。
若能相乘,则取行、列号相对应的元素进行相乘及相加,最后将对应元素存入结果矩阵中。
通过实验表明本程序能够进行稀疏矩阵的相加,相减,相乘运算。
具备矩阵的加、减、乘功能。
关键词:相加运算器;相减运算器;相乘运算器数据结构课程设计任务书针对本课程设计,完成以下课程设计任务:1、熟悉系统实现工具和上级环境。
2、根据课程设计任务,查阅相关资料。
3、针对所选课题完成以下工作:(1)、需求分析(2)、概要设计(3)、详细设计(4)、编写源程序(5)、静态走查程序和上机调试程序4、书写上述文档和撰写课程设计报告。
目录稀疏矩阵运算器 (I)摘要 (II)课程设计任务书 (III)课程设计正文 (Ⅳ)第一章问题描述 (5)第二章需求分析 (6)第三章概要设计 (9)第四章详细设计 (19)4.1 函数说明 (10)4.2 算法分析 (19)第五章调试分析 (21)第六章测试结果 (23)第七章课程设计总结 (24)参考文献 (24)附录(程序清单) (33)第一章问题描述一、问题描述:稀疏矩阵是指那些多数元素为零的矩阵,利用“稀疏”特点进行存储和计算可以大大节省存储空间,提高计算效率,实现一个能进行稀疏矩阵基本运算的运算器。
二、基本要求:以“带行逻辑链接信息”的三元组顺序表表示稀疏矩阵,实现两个矩阵相加、相减和相乘的运算。
#include<stdio.h>#include<stdlib.h>#define OK 1#define ERROR 0#define MAXSIZE 25 //最多非0元素的个数#define MAXR 5 //rpos所能处理的最大行数#define MAXC 5 //系数矩阵相乘时,保留临时列结果的数组temp[MAXC] typedef struct NODE{ //定义稀疏矩阵结点int i;int j;int data;} Node;typedef struct MATRIX{ //定义稀疏矩阵(可以快速访问)int mu, nu, tu;Node matrix[MAXSIZE+1];int rpos[MAXR+1];} Matrix;int CreatSMatrix( Matrix* M ); //创建一个矩阵(由用户输入原始矩阵,转化为稀疏矩阵方式储存)int Print( Matrix M ); //打印一个稀疏矩阵int Mul_SMatrix( Matrix M, Matrix N, Matrix *Q); //两个稀疏矩阵相乘main(){printf("计科四班刘辉学号:41012169");printf("\n");printf("稀疏矩阵相乘");printf("\n\n");Matrix A1, A2, A3; //定义矩阵CreatSMatrix( &A1 );CreatSMatrix( &A2 );if( A1.nu==A2.mu ){ //判断能否相乘Mul_SMatrix( A1, A2, &A3 );printf("两矩阵相乘得:\n"); Print(A3);}system("pause");}//稀疏矩阵相乘int Mul_SMatrix( Matrix M, Matrix N, Matrix *Q){int i,Mj;int arow, Mlim, Nlim, Mcol, Nrow;int ctemp[MAXC];Q->tu=0;//初始化QQ->mu=M.mu; Q->nu=M.nu;if(M.tu*N.tu!=0){//非零矩阵for(arow=1; arow<=M.mu; arow++){for(i=1; i<=M.nu; i++)//清空累加器ctemp[i]=0;Q->rpos[arow]=Q->tu+1; //给Q->rpos[]数组赋值Mlim = arow<M.mu ? M.rpos[arow+1] : M.tu+1;//M中第arow行在结点数组中的范围for( Mcol=M.rpos[arow]; Mcol<Mlim; Mcol++ ){//遍历M中第arow行的每一个jMj=M.matrix[Mcol].j;Nlim = Mj<N.mu ? N.rpos[Mj+1] : N.tu+1;//在N中找到行号i等于M中的列号j的位置for( Nrow=N.rpos[Mj]; Nrow<Nlim; Nrow++ )//乘积元素在Q中的列号ctemp[N.matrix[Nrow].j] += M.matrix[Mcol].data * N.matrix[Nrow].data;}for(i=1; i<=Q->nu; i++){//列号对应元素不为零,赋值if( ctemp[i] ){if( ++Q->tu > MAXSIZE )return 0;Q->matrix[Q->tu].i = arow;Q->matrix[Q->tu].j = i;Q->matrix[Q->tu].data = ctemp[i];}}}}return 1;}//构建稀疏矩阵int CreatSMatrix( Matrix* M ){int temp, i,j;printf("输入矩阵的行列数:");scanf("%d,%d", &M->mu,&M->nu);M->tu=0;printf("按行序输入矩阵:\n");for( i=1; i<=M->mu; i++){M->rpos[i]=M->tu+1; //每计算完一行,给rpos[]赋值for( j=1; j<=M->nu; j++){scanf("%d",&temp );if( temp ){ //非0值保存M->matrix[M->tu+1].i= i;M->matrix[M->tu+1].j= j;M->matrix[M->tu+1].data=temp;M->tu++;}}}return OK;}//打印稀疏矩阵int Print( Matrix M){int i;if(M.tu==0){printf("空矩阵\n\n");return ERROR;}printf("i\tj\tdata\n");for( i=1; i<=M.tu; i++ )printf("%d\t%d\t%d\n", M.matrix[i].i,M.matrix[i].j,M.matrix[i].data);return OK;}运行结果:。
LeetCode刷题实战311:稀疏矩阵的乘法算法的重要性,我就不多说了吧,想去大厂,就必须要经过基础知识和业务逻辑面试+算法面试。
所以,为了提高大家的算法能力,这个公众号后续每天带大家做一道算法题,题目就从LeetCode上面选!今天和大家聊的问题叫做稀疏矩阵的乘法,我们先来看题面:/problems/sparse-matrix-multiplication/Given two sparse matrices A and B, return the result of AB.You may assume that A's column number is equal to B's row number.给你两个稀疏矩阵 A 和 B,请你返回 AB 的结果。
你可以默认 A 的列数等于 B 的行数。
示例解题由于是稀疏数组可以只计算非零数字。
将A矩阵转存为hashmap,然后对每一个非零数遍历B的列数来更新它在ans矩阵里可以被用到的位置。
class Solution {public:vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>& B) {int n = A.size(), m = A[0].size(), k = B[0].size();vector<vector<int>> res(n, vector<int>(k, 0));unordered_map<int, int> am;for (int i = 0; i < n; i ++)for (int j = 0; j < m; j ++){if (!A[i][j]) continue;int idx = i * m + j;am[idx] = A[i][j];}for (auto aij : am){int va = aij.second, aidx = aij.first, ai = aidx / m, aj = aidx % m;for (int j = 0; j < k; j ++){res[ai][j] += va * B[aj][j];}}return res;}};好了,今天的文章就到这里,如果觉得有所收获,请顺手点个在看或者转发吧,你们的支持是我最大的动力。
#include<stdio.h>
#include<stdlib.h>
#define OK 1
#define ERROR 0
#define MAXSIZE 25 //最多非0元素的个数
#define MAXR 5 //rpos所能处理的最大行数
#define MAXC 5 //系数矩阵相乘时,保留临时列结果的数组temp[MAXC] typedef struct NODE{ //定义稀疏矩阵结点
int i;
int j;
int data;
} Node;
typedef struct MATRIX{ //定义稀疏矩阵(可以快速访问)
int mu, nu, tu;
Node matrix[MAXSIZE+1];
int rpos[MAXR+1];
} Matrix;
int CreatSMatrix( Matrix* M ); //创建一个矩阵(由用户输入原始矩阵,转化为稀疏矩阵方式储存)
int Print( Matrix M ); //打印一个稀疏矩阵
int Mul_SMatrix( Matrix M, Matrix N, Matrix *Q); //两个稀疏矩阵相乘
main(){
printf("计科四班刘辉学号:41012169");
printf("\n");
printf("稀疏矩阵相乘");
printf("\n\n");
Matrix A1, A2, A3; //定义矩阵
CreatSMatrix( &A1 );
CreatSMatrix( &A2 );
if( A1.nu==A2.mu ){ //判断能否相乘
Mul_SMatrix( A1, A2, &A3 );
printf("两矩阵相乘得:\n"); Print(A3);
}
system("pause");
}
//稀疏矩阵相乘
int Mul_SMatrix( Matrix M, Matrix N, Matrix *Q)
{
int i,Mj;
int arow, Mlim, Nlim, Mcol, Nrow;
int ctemp[MAXC];
Q->tu=0;
//初始化Q
Q->mu=M.mu; Q->nu=M.nu;
if(M.tu*N.tu!=0){
//非零矩阵
for(arow=1; arow<=M.mu; arow++){
for(i=1; i<=M.nu; i++)//清空累加器
ctemp[i]=0;
Q->rpos[arow]=Q->tu+1; //给Q->rpos[]数组赋值
Mlim = arow<M.mu ? M.rpos[arow+1] : M.tu+1;
//M中第arow行在结点数组中的范围
for( Mcol=M.rpos[arow]; Mcol<Mlim; Mcol++ ){
//遍历M中第arow行的每一个j
Mj=M.matrix[Mcol].j;
Nlim = Mj<N.mu ? N.rpos[Mj+1] : N.tu+1;//在N中找到行号i等于M中的列号j的位置
for( Nrow=N.rpos[Mj]; Nrow<Nlim; Nrow++ )//乘积元素在Q中的列号
ctemp[N.matrix[Nrow].j] += M.matrix[Mcol].data * N.matrix[Nrow].data;
}
for(i=1; i<=Q->nu; i++){//列号对应元素不为零,赋值
if( ctemp[i] ){
if( ++Q->tu > MAXSIZE )
return 0;
Q->matrix[Q->tu].i = arow;
Q->matrix[Q->tu].j = i;
Q->matrix[Q->tu].data = ctemp[i];
}
}
}
}
return 1;
}
//构建稀疏矩阵
int CreatSMatrix( Matrix* M ){
int temp, i,j;
printf("输入矩阵的行列数:");
scanf("%d,%d", &M->mu,&M->nu);
M->tu=0;
printf("按行序输入矩阵:\n");
for( i=1; i<=M->mu; i++){
M->rpos[i]=M->tu+1; //每计算完一行,给rpos[]赋值
for( j=1; j<=M->nu; j++){
scanf("%d",&temp );
if( temp ){ //非0值保存
M->matrix[M->tu+1].i= i;
M->matrix[M->tu+1].j= j;
M->matrix[M->tu+1].data=temp;
M->tu++;
}
}
}
return OK;
}
//打印稀疏矩阵
int Print( Matrix M){
int i;
if(M.tu==0){
printf("空矩阵\n\n");
return ERROR;
}
printf("i\tj\tdata\n");
for( i=1; i<=M.tu; i++ )
printf("%d\t%d\t%d\n", M.matrix[i].i,M.matrix[i].j,M.matrix[i].data);
return OK;
}
运行结果:。