9-3 磁场对载流导线的作用
- 格式:ppt
- 大小:601.50 KB
- 文档页数:15
大学物理东南大学第七版上册第四章知识点总结一.静电场:1.真空中的静电场库仑定律→电场强度→电场线→电通量→真空中的高斯定理r适用范围:真空中静止的两个点电荷F⑵电场强度定义式:Eqo⑶电场线:是引入描述电场强度分布的曲线。
曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。
静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。
⑷电通量:通过任一闭合曲面S的电通量为e S dS方向为外法线方向1E dS⑸真空中的高斯定理:e S o E dSqi1int只能适用于高度对称性的问题:球对称、轴对称、面对称应用举例:球对称:0均匀带电的球面E Q4r20(r R)(r R)均匀带电的球体Qr40R3E Q240r(r R)(r R)轴对称:无限长均匀带电线E2or0(r R)无限长均匀带电圆柱面E(r R)20r面对称:无限大均匀带电平面E E⑹安培环路定理:dl0l2o★重点:电场强度、电势的计算电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理电势的定义式:UA AP E dl(UP0)B电势差的定义式:UAB UA UB A电势能:Wp qo PP0E dlE dl(WP00)2.有导体存在时的静电场导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布⑴导体静电平衡条件:Ⅰ.导体内部处处场强为零,即为等势体。
Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等势面⑵导体静电平衡时电荷分布:在导体的表面⑶空腔导体静电平衡时电荷分布:Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。
Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q的点电荷):静电平衡时,空腔内表面带-q电荷,空腔外表面带+q。
3.有电介质存在时的静电场⑴电场中放入相对介电常量为r电介质,电介质中的场强为:E⑵有电介质存在时的高斯定理:S D dS q0,int E0r各项同性的均匀介质D0rE⑶电容器内充满相对介电常量为r的电介质后,电容为C rC0★重点:静电场的能量计算①电容:②孤立导体的电容UU U举例:平行板电容器C圆柱形电容器 C4oR1R2os球形电容器CR2R1d2oL R2ln(R1Q211Q U C(U)2 ③ 电容器储能公式We2C22④静电场的能量公式We wedV E2dVVV12二.静磁场:1.真空中的静磁场磁感应强度→磁感应线→磁通量→磁场的高斯定理⑴磁感应强度:大小B F方向:小磁针的N极指向的方向 qvsin⑵磁感应线:是引入描述磁感应强度分布的曲线。
磁场对载流导线的作用力
当通过一条载流导线时,电流会在导线周围形成一个磁场。
这个磁场会对导线产生一个作用力,这个作用力叫作洛伦兹力。
洛伦兹力的大小和方向由多个因素决定。
首先,它与导线所承受的电流强度成正比。
其次,它与导线所处的磁场强度成正比。
最后,它的方向由右手定则决定,即当你把右手伸向导线,让四个手指指向磁场方向,大拇指所指的方向就是洛伦兹力的方向。
当导线与磁场垂直时,洛伦兹力会把导线推向磁场的一侧,导致导线偏离原来的路径。
如果导线是直的,则它将被推成一个弧形。
如果导线是一个闭合回路,则洛伦兹力将引起回路的旋转。
洛伦兹力的应用十分广泛。
它可以用于制作电动机、电磁铁和电子束加速器等设备。
此外,洛伦兹力也是磁共振成像(MRI)技术的基础,这种技术可以用于诊断和治疗许多疾病。
磁场对载流导体的作用我们知道运动电荷在磁场中要受到磁场力给予的作用力,即洛仑兹力。
电流是由电荷的定向运动产生的,因此磁场中的载流导体内的每一定向运动的电荷,都要受到洛仑兹力。
由于这些电荷(例如金属导体中的自由电子)受到导体的约束,而将这个力传递给导体,表现为载流导体受到的一个磁场力,通常称为安培力,下面我们从运动电荷所受到的洛仑兹力导出安培力公式。
如图1表示一个固定不动的电流元,其电流强度为I ,横截面为dS ,长为dl 。
设在电流元范围内有相同的磁感应强度B 。
则金属载流导体内每一定向运动的电子所受到的洛仑兹力为B ev f ⨯-=,v 为电子定向漂移速度,与电流密度矢量j 方向相反(nev j =,n 为导体单位体积的自由电子数)。
电流元内作定向运动的自由电子数ndSdl N =,因而电流元内作定向运动的电子所受到的合力为B dSdlj B nev dSdl B ev N dF ⨯=⨯-=⨯-=)()(在电流元的条件下,我们用dl 来表示其中电流密度的方向,并注意到电流强度dS j I ⋅=,于是上式表示为:B Idl dF ⨯=。
(1)式(1)式为电流元Idl 内定向运动的电子所受到的合磁场力。
如前所述,这个力被传递给载流体,表现为电流元这个载流导体所受到的磁场力。
通常称(1)式为安培力公式。
(1)式由运动电荷在磁场中受到的磁场力B ev f ⨯-=推导而得。
但在历史上(1)式首先是由实验得出的,因此不少作者将(1)式作为基本实验定律,从(1)式导出B ev f ⨯-=,并用(1)式给磁感应强度B 下定义。
由(1)式原则上可以求得任意形状的电流在磁场中所受到的合力,即求积分⎰⨯=l B Idl F 0,l 为在磁场中的导线长度。
下面我们来探讨一下金属载流导体(例如金,铜,铝,银等)中,定向运动的电子所受到的洛仑兹力是怎样成为载流导体的安培力的。
如图2所示,因为载流导体中每一个定向运动的电子,都要受到一个洛仑兹力B ev f ⨯-=,方向沿z 轴正方向。