角的平分线说课稿定稿
- 格式:doc
- 大小:39.50 KB
- 文档页数:6
北师大版八年级数学下角平分线(2)说课稿第一篇:北师大版八年级数学下角平分线(2) 说课稿角平分线的性质(2)说课稿一、教材分析1、教材的地位和作用角平分线的概念在第一册的教材中已介绍过,它的性质很重要,在几何里证明线段或角相等时常常用到它们,同时在作图中也运用广泛,刚学过的运用HL 定理来证明直角三角形全等的方法为证明角平分线的性质定理和逆定理创造了条件。
性质定理和它的逆定理为证线段相等、角相等,开辟了新的途径,简化了证明过程。
2、重点与难点分析本节内容的重点是角平分线的性质定理,逆定理及它们的应用。
本节内容的难点是:a、角平分线定理和逆定理的应用;b、这两个定理的区别;c、学生对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用定理,仍然去找全等三角形,结果相当于重新证明了一次定理。
3、教学目标(一)知识目标:(1)掌握角平分线的画法;(2)掌握角平分线的性质定理和逆定理;(3)能够运用性质定理和逆定理证明两个角相等或两条线段相等;(二)能力目标:(1)通过定理的推导,培养学生的归纳能力(2)通过定理的初步应用,培养学生的逻辑推理能力及创新的能力.(三)情感目标:(1)通过学生的主动探索让学生体验获取数学知识的成就感;(2)通过对角平分线的进一步认识,渗透运用不同的观点,从不同的侧面认识事物的辩证思维方法。
二、教法学法学生是学习的主体,只的学生真正融入到课堂教学中,学生才会深切地感受到数学带给他们的乐趣。
这节课,我主要采用学生自己动手实践,观察,组织讨论等方法,多媒体引导,以学生为主,给学生提供足够的活动时间,充分发挥他们的个性,让学生在实践中感受知识的力量,通过观察,让学生在观察中发现,在发现中探索,在探索中创新。
充分发挥他们的主观能动性,最大限度的发挥他们的创造力。
让学生成为课堂的主人。
教师只是在学生的思维受阻的情况下进行适时的引导。
三、教学过程1、通过生活中的实例,创设情境通过实例1的思考与探索,让学生复习了点到直线的距离这一概念。
一、数学内容的本质、地位、作用分析1.数学内容的本质角的平分线的点到角的两边的距离相等。
2。
数学内容的地位和作用角的平分线的性质是全等三角形知识的运用和延续,它为后面证明线段相等、角相等的几何证明提供了一种新的、更为简单的证明方法。
本节分为两课时:第一课时让学生动手探究角的平分线的画法、角的平分线的性质;第二课时主要探究角的平分线的判定,并在此基础上进行简单应用.本节课是第一课时的内容,它不仅为学生动手操作、观察、交流等活动提供了良好的素材,同时也让学生学习了怎样从实际问题中建立数学模型、解决实际问题.二、教学目标分析1、教学目标根据课程标准要求、教材及学生的实际情况,我从知识与技能、过程与方法、情感态度与价值观三个方面确定教学目标。
1.知识与技能(1)会作已知角的平分线;(2)了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;(3)会利用角的平分线的性质进行证明与计算.2。
过程与方法在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力.3.情感、态度与价值观在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.2、目标分析:1.知识与技能(1)所谓“会作已知角的平分线”,就是让学生通过探究角平分仪的原理,从而抽象概括出用尺规做角的平分线的作法;(2)所谓“了解角的平分线的性质,能利用三角形全等证明角的平分线的性质”,就是让学生通过折纸归纳出角的平分线的性质,并能用三角形全等证明这个性质,体会用数学推理的方法证明猜想成立的必要性。
(3)所谓“会利用角的平分线的性质进行证明与计算”,就是通过变式训练,让学生会利用角的平分线的性质进行证明与计算.2。
过程与方法所谓“在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力”,就是在活动中,让学生通过自主探索、合作交流等方式,帮助学生积累数学活动的经验,发展有条理的思维及初步的演绎推理能力。
角的平分线说课稿一、说教材(1)作用与地位角的平分线是初中数学几何部分的基础内容,它不仅关系到角的基本性质,还与其他几何知识如三角形、多边形等内容紧密相连。
在教材中,角的平分线起着承上启下的作用,既是学习平面几何的重要基础,也为后续学习相似、圆等高级几何概念打下基础。
(2)主要内容本文主要介绍角的平分线的定义、性质和判定定理。
具体包括:- 角的平分线的定义:从角的顶点出发,将角分为两个相等角的射线;- 角的平分线的性质:角的平分线上的点到角的两边的距离相等;- 角的平分线的判定定理:一个射线若满足到角的两边距离相等,则该射线是角的平分线。
(3)与其他知识点的联系角的平分线与三角形全等、相似、圆的相关性质等知识密切相关。
例如,在学习三角形全等时,角的平分线可以作为其中的一个重要条件;在研究圆的性质时,圆的任意弦都是其所对圆心角的平分线。
二、说教学目标(1)知识与技能- 掌握角的平分线的定义、性质和判定定理;- 能够运用角的平分线解决实际问题;- 培养学生的观察、分析、推理能力。
(2)过程与方法- 通过观察、猜想、验证,让学生了解角的平分线的性质;- 通过实际操作,培养学生的动手能力和合作精神;- 通过启发式教学,引导学生发现角的平分线与三角形、圆等知识点的联系。
(3)情感态度与价值观- 培养学生对几何图形美的鉴赏能力;- 培养学生的逻辑思维和探究精神;- 增强学生对数学学习的兴趣和信心。
三、说教学重难点(1)重点- 角的平分线的定义、性质和判定定理;- 角的平分线在实际问题中的应用。
(2)难点- 角的平分线性质的推理证明;- 角的平分线与三角形、圆等知识点的联系。
四、说教法在教学角的平分线这一部分内容时,我计划采用以下几种教学方法,旨在提高学生的理解和应用能力,同时突出我的教学特色:(1)启发法我将通过提出问题引导学生思考,激发他们的探究欲望。
例如,我会先让学生观察不同角度的角,并提出问题:“如何才能准确地找到角的中心点?”通过这个问题,让学生自己尝试去发现角的平分线的概念。
角平分线性质说课稿一、教学目标:1. 知识目标:掌握角平分线的定义、性质及判定方法。
2. 能力目标:能够正确运用角平分线的定义和性质解决相关问题。
3. 情感目标:培养学生喜欢数学学习的积极态度,培养学生合作、探究的能力。
二、教学重点和难点:1. 教学重点:角平分线的定义和性质。
2. 教学难点:角平分线的证明方法。
三、教学过程:1. 导入引入(5分钟)老师可以通过提问的方式导入课题,例如:“在平面几何中,如何定义角平分线?”学生可以回答“角平分线是将一个角平分为两个相等的角的射线,称为角的平分线。
”引导学生回顾角的定义和相关术语,为后续学习做好准备。
2. 知识讲解(20分钟)(1)介绍角平分线的定义:角平分线是将一个角平分为两个相等的角的射线。
(2)角平分线的性质:a) 一个角只能有一条角平分线。
b) 一个角的两条平分线互相垂直。
c) 两个相邻的角的平分线在一条直线上。
(3)角平分线的判定方法:a) 用直尺将角的两边分别连成直线,然后使用量角器来测量角的大小,如果两个角的度数相等,则直线是角的平分线。
b) 判断两个角的度数,如果两个角的度数相等,则直线是角的平分线。
3. 角平分线性质的应用(35分钟)(1)利用角平分线的性质解决问题:a) 利用角平分线的定义和性质证明两个角大小相等。
b) 利用角平分线的性质证明两条线段相等。
c) 利用角平分线的性质计算未知角的大小。
(2)练习与讨论:a) 给出一些相关的练习题,让学生运用所学知识解决问题,并进行讨论。
b) 分小组进行合作探究,互相研究并解决问题,培养学生的合作和探究能力。
4. 拓展延伸(15分钟)(1)引导学生思考和讨论其他与角平分线相关的问题和性质,如角平分线与垂直线之间的关系。
(2)以小组为单位,给学生一些拓展性的问题,让他们运用所学知识进行综合分析和解决。
四、教学方式:1. 教师讲解与引导2. 学生合作探究与讨论3. 课堂练习与解答五、教学资源:1. 教材2. 黑板、彩色粉笔六、教学评价与反思:教师可以通过观察学生的参与度和问题解决能力来评价学生的学习情况。
12.3角的平分线的判定一、教材分析本教案是为了帮助八年级学生掌握如何判定12.3角的平分线。
本课程内容涉及数学八年级上册,属于几何部分的角相关知识。
二、教学目标1.理解平分线的概念;2.掌握判定12.3角的平分线的方法;3.运用所学知识解决实际问题。
三、教学内容本课程教学内容主要包括以下几点:1.什么是平分线?2.如何判定12.3角的平分线?3.如何应用所学知识解决实际问题?四、教学过程1. 导入新知识教师通过引入实际生活中的例子,向学生解释什么是平分线。
比如,一个圆上的半徑OA,与弦BC相交于D点,并且OD等于OA的一半。
问点D到弦BC的距离是多少?引导学生理解平分线的概念。
2. 判定12.3角的平分线教师通过示例引导学生学习如何判定12.3角的平分线。
示例1:已知三角形ABC,∠BAC = 30°,以角BAC为一条边作角的平分线。
步骤: - 构造∠BAE = ∠EAC。
- 证明∠BAE ≌ ∠EAC。
- 得出结论:AE 为角BAC的平分线。
示例2:已知四边形ABCD,∠DAB = 75°,以角DAB为一条边作角的平分线。
步骤: - 构造∠DAE = ∠EAB。
- 证明∠DAE ≌ ∠EAB。
- 得出结论:AE 为角DAB的平分线。
通过以上示例,学生将掌握判定12.3角的平分线的方法。
3. 解决实际问题教师给出一个具体的实际问题,让学生运用所学知识解决问题。
问题:在建筑设计中,角度的测量是非常重要的。
假设你是一名建筑师,设计了一个房间,其中一个角的度数为76°。
你需要确定这个角度的平分线,以确保房间的对称性。
请问应该如何确定该角度的平分线?解答: 1. 以该角度为一条边作角度的平分线。
2. 判定平分线是否在该角度的两侧,是否将该角度分为两个等分的角度。
3. 如果平分线满足上述条件,则该平分线即为所求的平分线。
4. 总结归纳教师与学生共同总结本节课所学内容,对判定12.3角的平分线做一个深入的总结。
12.3角的平分线的性质一、引入在前面的学习中,我们已经了解了各种各样的角,例如直角、锐角、钝角等等。
今天,我们要学习的是角的平分线的性质,即如何将一个角平分成两个相等的角。
二、角的平分线定义角的平分线指的是将一个角分成两个相等角的线段,我们可以通过划分一个角的平分线来得到两个相等的角,这也是一种特殊的角。
三、角的平分线性质性质1:平分线的存在性在任何一个角中,都存在唯一的一个平分线。
也就是说,给定一个角,我们总是可以找到一个线段将其平分成两个相等的角。
性质2:平分线的唯一性在一个角中,平分线是唯一的,即对于同一个角,只有一个线段可以将其平分为两个相等的角。
这也意味着,如果我们已经找到了一个平分线,那就不可能再找到其他平分线。
性质3:平分线和角度相交当平分线与角的两边相交时,得到的两个相等的角的顶点必然在平分线上。
也就是说,平分线与角度的两边的交点,同时也是两个相等角的顶点。
性质4:角的平分线相互垂直如果一个角的平分线与其边相交,那么这个交点与角的顶点和另一边的端点所构成的线段,将会是一个直角。
也就是说,平分线与角的其中一条边垂直。
四、解题方法在实际应用中,我们可以通过以下几种方法来证明角的平分线的性质:1.利用角平分线的定义,利用角的大小关系和各种性质进行推理,以得出结论。
2.利用平行线的性质和垂直线的性质,结合角的性质进行推理。
3.利用辅助线的方法,将问题转化为其他几何形状,然后运用已知的几何形状的性质进行推理。
五、例题演练例题1:如图所示,在三角形ABC中,角ACB的平分线CE将角ACB平分为两个相等的角,即∠ACE=∠ECB。
求证:∠ACB=180°。
提示:利用三角形的内角和定理。
示意图例题2:已知在平行四边形ABCD中,∠BCD=90°,平分线CE将∠BCD平分为两个相等的角。
求证:∠CED=45°。
提示:利用平行线的性质和角的性质进行推理。
例题3:在直角三角形ABC中,∠ACB=90°,角ACB的平分线CE和CD分别与AB相交于点E和D。
义务教育课程标准实验教科书八年级数学(上)第十一章第三节角的平分线的性质(一)说课稿角的平分线的性质(一)说课稿一、教材分析:1、本节教材的地位和作用:角的平分线的概念在七年级的教材中己介绍过,它的性质很重要,为证明线段相等或角的相等时开辟了新途径,同时在作图中也运用广泛,是直角三角形全等判定的延续,是轴对称图形的基础,并为以后九年级三角形内心的学习作了铺垫,鉴于这种认识,我认为本课不仅有广泛的实际应用,而且起着承上启下的作用,是今后作图、计算、证明的重要工具。
同时,可以培养学生的观察、分析、归纳能力,探究精神和创新意识2、教学目标的确定:(1)知识目标:1、掌握作已知角的平分线的方法;2、掌握角的平分线的性质。
(2)能力目标:1、提高综合运用三角形全等的有关知识解决问题的能力。
2、通过探究性质,培养学生的归纳的能力。
3、通过性质的应用,培养学生的逻辑思维能力及创新能力。
(3)、情感目标:在探讨作角的平分线的方法及角的平分线的性质过程中,培养学生探究问题的兴趣,增强解决问题的信心,通过合作交流、讨论,增强学生合作沟通能力,逐步培养学生的理性精神。
3、教学重、难点重点:角的平分线的性质的证明及运用难点:角的平分线的性质的探究二、学情分析:学生对角平分线的概念有了很好的理解,对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用性质,仍然去找全等三角形,结果相当于重新证明了一次性质,鉴于这种情况,教学应适时引导。
三、教学方法教法:直观演示法、设疑诱导法、操作发现法学法:动手操作法、自主探究法、观察发现法、合作交流法四、教学程序的设计(一)依据教材的编排和学生的认知规律,我设计了下面的教学流程:创设情景,引入新课——实物研究,提高认知——折纸建模,总结规律——模型转化,命题证明——课堂小结,反思升华。
(二)就以下五方面为重点对这节课进行说明:1、创设情景,引入新课(感知角的平分线)开始上课,讲一个小故事,小亮的妈妈是玩具厂的工人,她的工作就是在三角形的钢板上画角的平分线,一天爱动脑筋的小亮替妈妈做了一个平分角的仪器,在这个仪器中:AB=AD,DC=BC,沿AC画一条射线AE,则AE就是∠DAB平分线,同学们能说明它的道理吗?学生们很容易地画出图形,得出AE平分∠DAB,并能通过三角形全等来证明这个结论,我只是纠正证明过程中不严谨的地方,这个问题让学困生参与,以调动他们的学习积极性。
角的平分线的性质说课稿一、说教材本文《角的平分线的性质》是初中数学课程中的重要内容,它位于平面几何的教学单元中,起着承上启下的作用。
在小学阶段,学生已经对角有了一定的认识,而本节内容将在此基础上,深化学生对角的概念及其性质的理解,为后续学习相似三角形、圆等知识打下坚实的基础。
(1)作用与地位角的平分线作为几何图形中的重要元素,不仅在理论研究中具有基础性地位,而且在解决实际问题时也具有广泛的应用。
本节内容通过探究角的平分线性质,不仅加强了学生对几何图形的直观感知,而且培养了学生的逻辑思维能力和空间想象能力。
(2)主要内容本节课主要围绕角的平分线的性质展开,包括以下三个方面:1. 定义:角的平分线是从角的顶点出发,将角平分成两个相等角的射线。
2. 性质:角的平分线上的点到角的两边的距离相等。
3. 应用:利用角的平分线性质解决相关问题。
二、说教学目标学习本课,希望学生能够达到以下教学目标:1. 知识与技能:(1)理解并掌握角的平分线的定义;(2)掌握角的平分线的性质,并能够运用性质解决相关问题;(3)能够准确画出角的平分线。
2. 过程与方法:(1)通过实际操作,培养学生的动手能力;(2)通过探究角的平分线性质,提高学生的逻辑思维能力;(3)通过小组讨论,培养学生的合作意识。
3. 情感态度与价值观:(1)激发学生对几何学习的兴趣,培养学生的自主学习意识;(2)培养学生严谨、细致的学习态度。
三、说教学重难点1. 教学重点:(1)角的平分线的定义;(2)角的平分线的性质;(3)角的平分线的应用。
2. 教学难点:(1)角的平分线性质的推导过程;(2)如何准确画出角的平分线;(3)如何运用角的平分线性质解决实际问题。
四、说教法在教学《角的平分线的性质》这一节时,我计划采用以下几种教学方法,旨在提高学生的学习兴趣,增强理解和记忆,以及提升解决问题的能力。
1. 启发法:- 以生活中的实例引入角的平分线的概念,例如将一块蛋糕平均分给两个人,让学生感受到平分的重要性。
角平分线的性质的说课稿一、说教材《角平分线的性质》是初中数学课程中几何学模块的重要组成部分,位于平面几何的教学单元。
本节内容主要围绕角平分线的定义、性质及其应用进行展开,具有承前启后的作用。
在小学阶段,学生已经对角有了一定的认识,而本节内容旨在深化学生对角的概念的理解,并为后续学习相似三角形、圆等相关知识打下坚实基础。
(1)作用与地位:角平分线作为基本的几何概念,不仅有助于学生进一步理解角的性质,而且在解决实际问题时具有重要作用。
它是连接几何图形中的点、线、面关系的重要桥梁,是培养学生空间想象能力、逻辑推理能力的关键知识点。
(2)主要内容:本节课主要包含以下内容:a. 角平分线的定义:从一个角的顶点出发,把这个角分成两个相等的角的射线叫做这个角的平分线。
b. 角平分线的性质:角的平分线上的点到这个角的两边的距离相等。
c. 角平分线的判定定理:到角的两边距离相等的点,在这个角的平分线上。
二、说教学目标学习本课,学生需要达到以下教学目标:(1)理解并掌握角平分线的定义、性质及判定定理。
(2)能够运用角平分线的性质解决实际问题,提高解决问题的能力。
(3)通过自主探究、合作交流,培养空间想象能力和逻辑推理能力。
(4)激发学习兴趣,培养良好的学习习惯,增强团队合作意识。
三、说教学重难点(1)重点:角平分线的定义、性质及判定定理。
(2)难点:如何运用角平分线的性质解决实际问题,以及如何将角平分线与其他几何知识相结合,提高解题能力。
在后续的说教法和说学法中,我将着重突出教学亮点,通过创新的教学方法和手段,帮助学生更好地掌握本节课的重难点。
四、说教法在本节课的教学过程中,我计划采用以下几种教学方法,旨在激发学生的学习兴趣,提高他们的主动参与度和思考能力。
1. 启发法:- 我将以生活中常见的实例引入角平分线的概念,如折纸艺术中的对角线折叠,让学生直观感受角平分线的作用。
- 通过提问方式引导学生思考:如何准确地将一个角平分成两个相等的角?为什么这样的线具有特殊的性质?2. 问答法:- 在讲解角平分线的性质时,我会设计一系列问题,让学生通过回答问题来深入理解性质的本质。
《角的平分线的性质》新课标八年级数学上册一等奖说课稿《《角的平分线的性质》新课标八年级数学上册一等奖说课稿》这是优秀的说课稿文章,希望可以对您的学习工作中带来帮助!1、《角的平分线的性质》新课标八年级数学上册一等奖说课稿今天,我说课的题目是《角的平分线的性质》第一课时,下面,我从教材分析、教学内容、教学目标、学情分析、教法与学法、教学过程的设计等六个方面对我的教学设计加以说明.一、教材分析本节课选自新人教版教材《数学》八年级上册第十一章第三节,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.角平分线的性质为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.二.教学内容本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用.内容解析:教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力.作角的平分线是几何作图中的基本作图.角的平分线的性质是全等三角形知识的延续,也是今后证明两个角相等或证明两条线段相等的重要依据.因此,本节内容在数学知识体系中起到了承上启下的作用.三、教学目标1、基本知识:了解尺规作图的原理及角的平分线的性质.2、基本技能(1)会用尺规作图作角的平分线。
(2)会利用全等三角形证明角平分线的性质。
(3)能运用角的平分线性质定理解决简单的几何问题3、数学思想方法:从特殊到一般4、基本活动经验:体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性的一般过程的活动经验目标解析:通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.四、学情分析刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学重点定为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用,难点是角平分线的性质的探究教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的.方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.五、教法和学法本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”.鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合.教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT 课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.六.教学过程的设计活动1.创设情景[教学内容1]生活中有很多数学问题:小明家居住在一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连.问题1:怎样修建管道最短?问题2:新修的两条管道长度有什么关系,画来看一看.[整合点1]利用多媒体渲染气氛,激发情感.教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。
冀教版数学八年级上册《16.3 角的平分线》说课稿3一. 教材分析冀教版数学八年级上册《16.3 角的平分线》这一节主要介绍了角的平分线的性质和作法。
通过这一节的学习,使学生能够理解角的平分线的概念,掌握角的平分线上的点到角的两边的距离相等的性质,以及角的平分线的作法。
这一节内容是初中数学中重要的基础知识点,对于学生后续学习几何图形和其他数学知识有着重要的影响。
二. 学情分析在学习这一节内容之前,学生已经学习了角的概念、垂线的性质等基础知识,对于这些知识有一定的掌握。
但是,学生对于角的平分线的概念和性质可能还没有完全理解,需要通过本节课的学习来进行深化。
此外,学生可能对于角的平分线的作法还不够熟练,需要通过课堂练习和老师的指导来进行提高。
三. 说教学目标1.知识与技能目标:通过本节课的学习,使学生能够理解角的平分线的概念,掌握角的平分线上的点到角的两边的距离相等的性质,以及角的平分线的作法。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自主学习能力,使学生感受到数学的美妙和实际应用的价值。
四. 说教学重难点1.教学重点:角的平分线的性质和作法。
2.教学难点:角的平分线的性质的证明和角的平分线的作法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等教学方法,引导学生主动参与课堂,积极思考。
2.教学手段:利用多媒体课件、几何模型等教学手段,直观展示角的平分线的性质和作法,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过复习角的概念和垂线的性质,引出角的平分线的概念,激发学生的学习兴趣。
2.新课讲解:讲解角的平分线的性质和作法,引导学生通过观察、操作、思考、交流等方式,自主探究和学习。
3.课堂练习:布置一些有关角的平分线的练习题,让学生在实践中巩固所学知识。
4.总结提升:对本节课的内容进行总结,强调角的平分线的性质和作法的重要性,引导学生思考角的平分线在实际问题中的应用。
《角的平分线的性质》说课稿尊敬的各位评委、老师:大家好!今天,我说课的题目是《角的平分线的性质》第一课时,下面,我从教材分析、教学内容、教学目标、学情分析、教法与学法、教学过程的设计等六个方面对我的教学设计加以说明.一、教材分析本节课选自新人教版教材《数学》八年级上册第十一章第三节,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.角平分线的性质为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.二.教学内容本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用.内容解析:教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力.作角的平分线是几何作图中的基本作图.角的平分线的性质是全等三角形知识的延续,也是今后证明两个角相等或证明两条线段相等的重要依据.因此,本节内容在数学知识体系中起到了承上启下的作用.三、教学目标1、基本知识:了解尺规作图的原理及角的平分线的性质.2、基本技能(1)会用尺规作图作角的平分线。
(2)会利用全等三角形证明角平分线的性质。
(3)能运用角的平分线性质定理解决简单的几何问题3、数学思想方法:从特殊到一般4、基本活动经验:体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性的一般过程的活动经验5、目标解析:通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.四、学情分析刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学重点定为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用,难点是角平分线的性质的探究教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.五、教法和学法本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”.鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合.教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.六.教学过程的设计活动1.创设情景生活中有很多数学问题:小明家居住在一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连.问题1:怎样修建管道最短?问题2:新修的两条管道长度有什么关系,画来看一看.[整合点1]利用多媒体渲染气氛,激发情感.教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。
角平分线的说课稿一、教材分析1、教材的地位和作用角平分线是平面几何中的一个重要概念和性质,它在解决几何问题、证明全等三角形以及构建几何图形等方面都有着广泛的应用。
本节课的内容是在学生已经学习了三角形、全等三角形等知识的基础上进行的,为后续学习圆、相似三角形等知识奠定了基础。
2、教学目标(1)知识与技能目标理解角平分线的定义和性质,能够运用角平分线的性质解决相关的几何问题。
(2)过程与方法目标通过观察、操作、猜想、证明等活动,培养学生的逻辑推理能力和创新思维能力。
(3)情感态度与价值观目标让学生在探索角平分线的过程中,体验数学的乐趣,激发学生学习数学的兴趣,培养学生的合作精神和探究精神。
3、教学重难点(1)教学重点角平分线的性质定理及其证明。
(2)教学难点角平分线性质定理的应用。
二、教法分析1、启发式教学法通过设置问题情境,引导学生思考、探究,激发学生的学习兴趣和主动性。
2、直观演示法运用多媒体等教学手段,直观地展示角平分线的性质,帮助学生理解和掌握。
三、学法分析1、自主探究法让学生自主探究角平分线的性质,培养学生的自主学习能力和创新思维能力。
2、合作交流法组织学生进行小组合作学习,共同探讨问题,培养学生的合作精神和交流能力。
四、教学过程1、创设情境,引入新课通过展示一个角被平分的实际生活场景,如折叠的纸张、平分的角形蛋糕等,引导学生思考角平分线的概念,从而引入新课。
11 提出问题:如何准确地作出一个角的平分线?12 学生讨论并尝试用不同的方法作出角平分线。
2、探究角平分线的性质(1)让学生在已经作出的角平分线上任取一点,分别向角的两边作垂线段。
111 测量这些垂线段的长度,观察它们之间的关系。
112 小组交流讨论,得出猜想。
(2)引导学生证明猜想,得出角平分线的性质定理。
121 写出已知、求证。
122 分析证明思路。
123 完成证明过程。
3、角平分线性质的应用(1)通过例题讲解,让学生掌握运用角平分线性质解决问题的方法。
角的平分线说课稿
一、说教材
1、说教学目标:
知识目标:
(1)掌握角平分线的性质定理和逆定理;
(2)能够运用性质定理和逆定理证明两个角相等或两条线段相等;
(3)能够判定两个命题是否为互逆命题,并能写出一个命题的逆命题.
能力目标:
(1)通过“判断题”的练习,提高学生的辨析能力;
(2)通过公理的初步应用,培养学生的逻辑推理能力及创新的能力.
情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过知识的纵横迁移感受数学的辩证特征。
2、重点与难点分析:
本节内容的重点是角平分线的性质定理,逆定理及它们的应用。
性质定理和它的逆定理为证线段相等、角相等,开辟了新的途径,简化了证明过程。
本节内容的难点是:a、角平分线定理和逆定理的应用;b、这两个定理的区别;c、写命题的逆命题。
学生对证明两个三角形全等的
问题已经很熟悉了,所以证题时,不习惯直接应用定理,仍然去找全等三角形,结果相当于重新证明了一次定理。
对于原命题和逆命题,学生对条件和结论容易混淆,特别是没有明显的提示语言时,更易找不准条件和结论,这就成了教学的难点。
二、说教法
整堂课围绕“以复习为基础,以过程为主线,以思维为中心,以训练为手段”开展教学。
注重学生的参与度,通过提问、板演、讨论等多种形式,让学生直接参加课堂活动,将教与学融为一体。
具体说明如下:
(1)做好铺垫
新课引入前,作一个具体画图的练习:已知角画出它的角平分线;然后在平分线上任取一点,作出这一点到角两边的距离。
这样做一是复习了角平分线的定义和点到直线距离的定义;二是为本节课的学习奠定了图形基础。
(2)主动获取
利用上面的图形,观察这两个距离的关系,并证明自己的结论。
对基础条件比较好的同学会很容易得出结论并能用文字叙述出来。
对基础稍差一些的同学生得出结论并不难但让他们用文字叙述出来可能不
是很准确,此时教师要做指导。
这一环节的教学注意让学生通过观察、分析、推理等活动,主动提出此定理。
(3)激荡思维在上面定理的基础上,让学找出此定理的条件与结论,并交换条
件与结论得到一个新的命题,然后验证此命题的正确性如何?学生通过推理证明不难得到是一个真命题。
此时顺理成章地引出教材中的定理2。
最后注意强调:两个定理的区别与联系;原命题与逆命题、原定理与逆定理的关系及写出一个命题的逆命题的方法步骤。
这一环节完全是由学生给出定理的文字表述及证明过程。
(4)推向深入
进行必要的例题讲解,然后进行有层次阶梯性训练,以达到熟练地运用定理证明有关问题。
教学时,要注意引导学生分析问题解决问题的思考方法。
同时让学生总结积累证明线段相等、角相等的常见方法。
三、说教学过程:
1、新课引入
投影显示
问题:(1)画一个角的平分线;
(2)在这条平分线上任取一点P,标出P点到角两边的距离。
(3)说出这两段距离的关系并证明。
2、定理的获得
让学生用文字语言叙述出定理的内容
角平分线的性质定理:在角平分线上的点到这个角两边距离相等。
强调说明:
(1)定理的条件及结论的符号表示;
(2)定理的作用:直接证明两线段相等。
使用的前提是有角的平分线,关键是图中是否有“垂直”。
3、运用逆向思维,导出定理的逆定理
问题:将定理的条件与结论“换位”得到一个新命题,说出这个新命题的内容,并判断命题是真命题还是假命题?学生分析、讨论用文字叙述内容,老师作必要的提示。
逆定理:到一个角的两边距离相等的点,在这个角的平分线上。
强调:a逆定理的作用:证明角相等
b、二定理的区别与联系:性质定理说明了角平分线上点的纯粹性,即:只要是角平分线上的点,它到此角两边一定等距离,而无一例外;判定定理反映了角平分线的完备性,即只要是到角两边距离相等的点,都一定在角平分线上,而绝不会漏掉一个。
实际应用中,前者用来证明线段相等,后者用来证明角相等(角平分线)
4、原命题与逆命题
a、概念
b、写出互逆命题的关键。
c、原使命与逆使命的真假性并无一定的依存关系。
5、定理的应用(投影四个例题)
例1、已知:如图1,△ABC的角平分线BM、CN相交于点P.
求证:点P到三边AB、BC、CA的距离相等.
学生先分析,教师巡视并适当点拨。
投影显示学生的证明过程,师生共同纠正补充完善。
投影规范的书写格式:
(见书中例题)
此题设想:(1)语言要规范。
例“过点P作PD、PE、PF分别垂直于AB、BC、CA,垂足为D、E、F”这一段话一定要在证明中写出。
(2)几何证明中,常见“同理”二字,讲清“同理”适用的条件以免以后乱用。
例2、已知:如图2,PB、PC分别是△ABC
的外角平分线,相交于点P.
求证:P在∠A的平分线上
证明:(略)
设想:(1)证明“点在线上”这类问题的解决方法
(2)“一般解题方法”的运用
(3)投影显示学生的书写步骤,检查学生数学语言是否规范。
例3、写出下列命题的逆命题,并判断它们是真命题还是假命题(1)全等三角形的对应角相等;
(2)对顶角相等;
(3)如果,那么;
(4)直角三角形的两个锐角互余.
例4、已知:如图3,PB⊥AB,PC⊥AC,PB=PC,
D是AP上一点
求证:∠BDP=∠CDP
证明:(略)
设想:一般解题方法的教学。
6、课堂小结:教师引导学生总结
(1)角平分线的性质定理及逆定理;
(2)二定理的关系;
(3)一般解题方法
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
5、布置作业:
(a)书面作业P80#9
(b)思考题:
(1)已知:如图,在四边形ABCD中,
BC>AB,AD=DC,BD平分∠ABC.
求证:∠A+∠C=
(2)求证三角形的三条内角平分线交于一点。