地铁盾构施工测量技术
- 格式:docx
- 大小:207.93 KB
- 文档页数:7
1控制测量1.1平面控制测量:1.1.1平面控制测量概述:地铁施工领域里平面控制网分两级布设,首级为GPS 控制网,二级为精密导线网。
施工前业主会提供一定数量的GPS点和精密导线点以满足施工单位的需要。
施工单位需要做的是在业主给定的平面控制点上加密地面精密导线点,然后是为了向洞内投点定向而做联系测量,最后是在洞内为了保证隧道的掘进而做施工控制导线测量。
不管是地面精密导线还是洞内施工控制导线都是精密导线测量,虽然边长不满足四等导线的要求,但是基本上是采用四等导线的技术要求施测,其中具体技术要求在《地下铁道、轻轨交通工程测量规范》都有规定。
1.1.2地面平面控制测量:在业主交接桩后,施工单位要马上对所交桩位进行复测。
业主交桩数量有限,不一定能很好地满足施工的需要,所以经常要在业主所交桩的基础上加密精密导线点,以方便施工。
特别是在始发井附近,一定要保证有足够数量的控制点,不少于3个。
其具体技术要求在《地下铁道、轻轨交通工程测量规范》都有规定。
1.1.3 洞内平面控制测量洞内施工控制导线一般采用支导线的形式向里传递。
但是支导线没有检核条件,很容易出错,所以最好采用双支导线的形式向前传递。
然后在双支导线的前面连接起来,构成附合导线的形式,以便平定测量精度。
洞内施工控制导线一般采用在管片最大跨度附近安装牵制对中托架,测量起来非常方便,且可以提高对中精度,还不影响洞内运输。
强制对中托架尺寸形状要控制好,以便可以直接安装在管片的螺栓上面,不需要电钻打眼安装。
由于盾构施工一般都是双线隧道错开50环左右掘进,如果错开环数很大,后面掘进的盾构机由于推力很大,会对前面另一个洞的导线点产生影响。
特别是在左右线间距较小岩层很软时,影响很大,很容易导致测量出大错。
还有就是如果在曲线隧道里,管片上的导线点间的边角关系经常受盾构机的推力和地质条件的影响,所以要经常复测。
1.2 高程控制测量:1.2.1高程控制测量概述:高程控制测量主要包括地面精密水准测量和高程传递测量及洞内精密水准测量,在广州地铁领域里的精密水准测量也就是城市二等水准测量。
地铁盾构法隧道施工测量技术一、背景近年来,城市建设高速发展,地铁的运营也日益普及。
地铁作为城市公共交通的重要组成部分,对于城市的发展和居民的出行都具有重要意义。
而隧道施工是地铁建设的重要环节之一。
盾构法隧道施工具有施工周期短、对周边环境影响小等优点,已成为地铁隧道施工的主要方法之一。
在盾构法隧道施工过程中,施工测量技术的应用是确保施工质量的关键手段之一。
二、盾构法隧道施工测量技术盾构法隧道施工是通过在隧道两端或两侧设置起点和终点控制点来进行控制,盾构机按照预设的轨迹进行推进,同时进行测量,保证盾构隧道的质量。
盾构法隧道施工测量技术的主要内容包括:1. 隧道轨迹测量在盾构法隧道施工过程中,通过测量盾构机推进的路径和轨迹,对于盾构机的推进和控制都具有十分重要的意义。
常用的测量方法有:•外推法•内推法•三角测量法•中心线测量法•激光投影测量法2. 盾构机姿态测量盾构机姿态的测量是保证盾构隧道质量的一个重要方面。
通过常规测量以及精密仪器测量盾构机的姿态角,包括横倾、纵倾和翻滚等状态,保证盾构机按照设计要求推进,并在施工过程中不发生异常。
3. 其他测量隧道建设中还需要进行其他类型的测量,如地质构造测量、交通流量监测、气象、地下水位等测量。
三、盾构法隧道施工测量技术的意义盾构法隧道施工测量技术的应用,不仅能够保证施工质量,还能够有效降低盾构施工的风险和成本,保证施工进度的顺利进行。
同时,在施工完成后,通过对整个隧道进行测量,能够对隧道的使用情况进行监测,提高隧道的安全性和使用效益。
四、盾构法隧道施工测量技术的应用,在地铁建设中具有十分重要的意义。
通过不断提高测量技术的水平与能力,能够提高隧道施工的效率和质量,为城市的建设和居民的出行带来更多的便利。
盾构法地铁隧道施工测量误差控制技术措施和方法摘要:现代社会地铁隧道施工过程中经常会使用盾构法,但实际应用期间受到多种外界因素的影响,导致盾构机与隧道衬砌轴线出现偏差,若偏差值超出可控范围,将会为隧道后期施工以及地铁运行留下安全隐患。
针对此,本文将对盾构法施工状态下地铁隧道施工测量误差控制技术进行深入分析,降低实际测量误差,确保地铁隧道施工能够安全顺利展开。
关键词:盾构法地铁隧道施工;测量误差;控制技术;措施与方法前言:盾构机是一种地下掘进机,常用于地铁隧道工程施工过程中,基于其可移动的钢制外壳,隧道开挖施工的同时,还能进行支护、衬砌等多个工序的施工作业,对施工效率有大幅度的提升作用,可充分保障隧道工程施工的安全性,有效防止隧道内壁发生脱落或坍塌等危害。
但这一施工方法受其本身工艺的局限性较大,开挖施工期间必然会发生一定程度的横向贯通误差,例如,开挖准备工作中,起始方位角的测定出现一定偏差,最终引发隧道横向偏差,随着隧道开挖长度的增加,偏差也会越发严重,与其他测量误差情况相互结合,产生横向贯通误差。
因此施工人员必须加强对施工测量误差的重视,以免留下安全隐患。
1.地面施工测量误差控制措施第一,在测量起始控制点时,可利用强制对中标志缓解测量仪器导致的误差。
第二,应用卫星定位控制网,并将相互独立的基线共同组成一定数量的异步环,为卫星定位控制网增强精度与可靠性提供技术支撑。
第三,施工人员需要保障现场导线布设形式的科学性,可结合实际地质情况,运用附合导线或闭合导线等形式进行布设。
第四,保障现场布设附合导线边数与边长的合理性,边数不超过12条为佳,边长需要控制在100米以上,提升其边数与边长控制力度最大化的降低测量角误差。
第五,减少一定数量的控制点个数,增加每个控制点的间距,也能实现导线精度的提升[1]。
2.联系测量误差控制措施联系测量环节是地铁隧道掘进施工主要环节,实际施工期间,测量单位、施工单位以及总承包单位分别利用两井定向、一井定向、导线直接传递等方式进行测量,控制盾构掘进机进行作业。
盾构施工测量与监测一、施工测量测量是盾构推进轴线与设计轴线一致的保证,是确保工程质量的前提和基础.采用GPS定位技术完成对业主所给导线网、水准网及其它控制点的检核.在盾构机上配备SLS—T APD导向系统指导盾构机推进,降低人工测量的频率。
同时,严格贯彻二级测量复核制度,精测组精测并交桩于工程项目部测量组,工程项目部测量组复核并负责施工放样测量,确保隧道贯通精度。
1、地表控制测量我方中标后,立即组织精测组根据业主提供的工程定位资料和测量标志资料,对所给导线网、水准网及其它控制点用GPS定位技术进行复测;同时测设施工过程中使用的固定桩,并将测量成果书报请监理工程师及业主审查、批准。
(1)引测近井导线点利用业主及监理工程师批准的测量成果书由精测组以最近的导线点为基点,引测至少三个导线点至每个端头井附近,布设成三角形,形成闭合导线网。
(2)引测近井水准点利用业主及监理工程师批准的水准网,由精测组以最近的水准点为基点、将水准点引测至端头井附近,测量等级达到国家二等。
每端头井附近至少布设两个埋设稳定的测点,以便相互校核.2、联系测量(1)平面坐标传递用陀螺定向法将地面坐标及方向传递到竖井隧道中,见下图。
陀螺法坐标传递示意图用逆转点法测出地面上CD 和井下Z1Z2的陀螺方位角。
用全站仪做边角测量,测出L1、L2、L3、L4、L5、L6的边长及∠1、∠2、∠5、∠6、∠7的角度.利用空间三角关系计算∠3、∠4的角度,再结合控制点C 的坐标推算出Z1、Z2、Z3三点的坐标。
以Z1Z2、Z3Z2起始边作为隧道推进的起始数据.在整个施工过程中,坐标传递测量至少进行三次。
(2)高程传递用检定后的钢尺,挂重锤10kg 用两台水准仪在井上井下同步观测,将高程传至井下固定点。
用6~8个视线高,最大高差差值≤2mm ,整个区间施工中,高程传递至少进行三次。
3、地下控制测量线Z3陀螺法坐标传递示意图井下导线∠3∠4T1L4L3F1∠6∠5Z1L6L2∠1B C 重垂T 线垂重地面导线L1∠2F D∠7L5Z2(1)地下平面控制测量先以竖井联系测量的井下起始边为支导线的起始边,待明挖区间(盾构始发井)与中间风井连通后,立即进行贯通测量以明挖区间的左右线中线为支导线的起始边,沿隧道设计方向布设导线,直线段导线边长≥200m,曲线段导线边≥100m布设一点.导线采用左右角观测,圆周角闭合差≤2″。
盾构法隧道施工测量精度控制措施摘要:本文介绍了从地铁盾构施工全过程中从施工测量技术方面提高贯通精度的控制措施。
关键词:零位测量法、联系测量、陀螺定向、交叉导线;盾构法隧道是指使用盾构机,一边控制开挖面及围岩不发生坍塌失稳,一边进行隧道掘进、出渣,并在机内拼装管片形成衬砌、实施壁后注浆,不扰动围岩而修筑隧道的方法。
盾构施工的主要原理就是尽可能在不扰动围岩的前提下完成施工,从而最大限度地减少对地面建筑物及地基内埋设物的影响。
盾构法隧道施工测量按施工工艺分为始发测量、地下导线测量、掘进轴线测量、接收到达测量。
1.盾构始发测量控制措施1.1 盾构机零位测量盾构始发测量,在盾构始发前,需要进行盾构机零位测量,确定盾构机姿态与盾构内布设的特征点之间几何关系,为后期掘进过程通过特征点位置调整盾构机姿态提供可靠的依据。
盾构机零位姿态测量常用的方法为分中法、侧边法进行测量。
侧边法的测量方法是在靠近盾首、盾尾处分别悬挂一根钢丝,钢丝下端悬挂重锤并置于油桶中,通过测量钢丝上的反射片坐标来计算盾构机首、尾的平面坐标。
盾首的钢丝悬挂在靠近刀盘和盾体的接缝处,盾尾的钢丝悬挂至靠近盾构(或铰接油缸)中盾与尾盾接缝处,钢丝至盾首、盾尾的距离用钢尺量出,取多次量取距离的平均值作为最终的计算依据。
当现场受到条件限制无法悬挂两根钢丝时,也可以悬挂一根钢丝,偏移计算出盾构中心线坐标。
高程测量:根据盾首、盾尾测量计算的平面坐标,将盾首、盾尾平面坐标测放至盾体顶面,利用全站仪三角高程直接测得盾首、盾尾处高程,通过反算得到盾首、盾尾的中心高程。
分中法测量:在盾首、盾中、盾尾按图1.1-4的方法找到盾体中心,使用全站仪分别测量盾首、盾中、盾尾中心C点的坐标,通过反算得到盾首和盾尾的坐标。
本次结合实际项目分别采用分中法、侧边法悬挂2根钢丝测量结果如下:虽然测量结果相近,但侧边法与设计值对比相差较小,如果现场有条件尽量采用侧边法悬挂2根钢丝进行施测。
盾构测量知识点总结盾构是一种在地下挖掘隧道的机械设备,广泛应用于城市地铁、地下管线等工程中。
盾构测量是盾构施工中不可或缺的一个环节,它负责确定隧道的位置、方向和姿态,确保盾构在地下进行准确、安全的施工。
在盾构测量中涉及到很多基本概念、原理和技术,下面就盾构测量的知识点进行总结分析。
一、盾构测量基本概念1. 盾构测量的定义盾构测量是指利用测量技术手段对盾构进行控制和监测。
它是盾构施工中的重要环节,主要包括盾构的导向、水平、垂直和姿态控制。
盾构测量的目的是确保盾构在地下进行准确、安全的施工。
2. 盾构测量的作用盾构测量的作用主要包括以下几方面:(1)确定盾构的位置、方向和姿态。
(2)监测盾构的变形、位移和姿态变化。
(3)调整和控制盾构的导向、水平和垂直度。
(4)确保盾构在地下进行准确、安全的施工。
3. 盾构测量的方法盾构测量主要包括以下几种方法:(1)导向测量:用于确定盾构的位置和方向。
(2)水平测量:用于控制盾构的水平度。
(3)垂直测量:用于控制盾构的垂直度。
(4)姿态测量:用于控制盾构的姿态。
二、盾构测量原理1. 盾构测量的基本原理盾构测量的基本原理是利用测量仪器和设备对盾构进行控制和监测。
它主要包括以下几个方面的原理:(1)测量原理:利用测距仪、角度仪等测量仪器对盾构进行定位和测量。
(2)控制原理:利用控制系统对盾构的位置、方向和姿态进行调整和控制。
(3)监测原理:利用监测系统对盾构的变形、位移和姿态变化进行监测和分析。
2. 盾构测量的误差分析盾构测量中存在着不可避免的误差,主要包括以下几种误差:(1)仪器误差:由于测量仪器本身的精度和稳定性导致的误差。
(2)环境误差:由于地下环境、地质条件等因素导致的误差。
(3)操作误差:由于人为操作不当导致的误差。
(4)系统误差:由于盾构控制系统本身的误差导致的误差。
盾构测量的误差分析对于准确测量和控制盾构非常重要,需要采取相应措施来减小误差并提高测量精度。
一、方案概述本专项方案旨在为盾构施工提供精确的测量服务,确保施工过程符合设计要求,保障工程质量和施工安全。
本方案将详细阐述盾构施工测量的目的、内容、方法、精度要求以及实施步骤。
二、测量目的1. 确保盾构掘进方向、姿态和速度符合设计要求。
2. 监测盾构隧道结构的变形和受力情况,及时发现并处理异常情况。
3. 为施工管理和质量验收提供数据支持。
三、测量内容1. 地面控制测量:包括平面控制测量和高程控制测量。
2. 竖井联系测量:将地面控制网传递至竖井,建立竖井内的控制网。
3. 地下控制测量:包括平面控制测量和高程控制测量,用于指导盾构掘进。
4. 掘进施工测量:监测盾构姿态、掘进速度和隧道结构变形。
5. 竣工测量:对隧道结构进行测量,为质量验收提供依据。
四、测量方法1. 平面控制测量:采用GPS、全站仪等仪器进行测量,按照《城市轨道交通工程测量规范》GB50308的规定执行。
2. 高程控制测量:采用水准仪进行测量,按照《城市轨道交通工程测量规范》GB50308的规定执行。
3. 竖井联系测量:采用GPS、全站仪等仪器进行测量,将地面控制网传递至竖井。
4. 地下控制测量:采用全站仪进行测量,按照《地下铁道、轻轨交通工程测量规范》执行。
5. 掘进施工测量:采用全站仪进行测量,监测盾构姿态、掘进速度和隧道结构变形。
6. 竣工测量:采用全站仪进行测量,按照《地铁隧道工程盾构施工技术规范》DG/TJ08-2041-2008执行。
五、精度要求1. 地面控制测量:平面控制点精度应达到±0.5cm,高程控制点精度应达到±0.5mm。
2. 竖井联系测量:平面控制点精度应达到±0.5cm,高程控制点精度应达到±0.5mm。
3. 地下控制测量:平面控制点精度应达到±0.5cm,高程控制点精度应达到±0.5mm。
4. 掘进施工测量:盾构姿态精度应达到±0.5cm,掘进速度精度应达到±1cm/min,隧道结构变形精度应达到±0.5cm。
盾构施工测量技术要求为了进一步加强盾构施工测量的管理,更好的在掘进过程中监控盾构姿态,确保盾构掘进方向正确,并且使各相关单位、部门及时掌握盾构掘进姿态情况,现对盾构施工测量要求如下:一、控制测量1、地面控制测量与联系测量应同步进行,在隧道贯通前,测量次数不能少于四次。
宜在盾构始发前、隧道掘进至100m、300m以及距贯通面100~200m时分别进行一次。
当地下起始边方位角较差小于12″时,可取各次测量成果的平均值作为后续测量的起算数据指导隧道贯通。
2、地下平面控制点布设应采用强制对中装置,隧道内控制点间平均边长宜为150m,曲线隧道控制点间距不应小于60m。
地下控制点应避开强光源、热源、淋水等地方,控制点间视线距隧道壁应大于0.5m。
每次向前延伸地下控制导线前,应从地下起始边开始进行延伸测量。
3、地下控制点布设完毕,在隧道贯通前应至少测量三次,地下控制导线的起始边应取第1条规定的平均值。
重合点重复测量坐标值的较差应小于30×d/D(mm),其中d为控制导线长度,D为贯通距离,单位为米。
满足要求时,应取逐次平均值作为控制点的最终成果指导隧道贯通。
4、地下控制点延伸测设,施工单位每次向前延伸新的控制点时,新控制点的测量成果必须经过监理单位检验复核,第三方复测审批。
施工导线延伸布设新点时,测量成果需报送监理检验。
5、对于控制测量、联系测量必须遵循“施工单位先测,监理单位检验复核,第三方复测审批”的原则,施工单位的测量成果必须经过监理单位、第三方审批合格后,方能用于指导施工。
二、盾构姿态及管片姿态测量1、盾构机姿态测量的内容包括平面偏差、高程偏差、俯仰角、方位角、滚转角及切口里程;管片姿态测量内容至少包括平面偏差、高程偏差。
2、盾构机姿态测量标志不少于3个,且标志点间距离应尽量大。
3、对于配备导向系统的盾构机,在始发前,必须利用人工测量的方法测定盾构机的初始姿态,成果应与导向系统测得的成果一致;在始发10环内,每一环都应对盾构机姿态进行人工测量;在盾构机正常掘进过程中,盾构人工姿态测量应在导向系统换站后进行;在到达接收井前50环内应增加人工测量频率。
地铁盾构区间测量方案大全地铁隧道盾构区间的测量方案是确保隧道施工质量和安全的重要环节。
在盾构施工前、中、后期都要进行测量,以保证施工的准确性和合格性。
下面是一套较为完整的地铁隧道盾构区间测量方案,详细介绍了不同阶段的测量方法和步骤。
一、前期测量1.地质勘探:在施工前要进行地质勘探,包括地质红线勘探、地下水位勘探、地下管线勘探等,以确定施工过程中可能出现的困难和风险。
2.基本测量:进行工程控制点布设,确定控制网的桩号和坐标,建立起起始坐标系。
3.示坡测量:通过对工地场地的土方开挖示坡进行测量,来验证土方开挖的形状和坡度是否符合设计要求。
二、中期测量1.盾构控制:在盾构施工过程中,需要实时掌握盾构机头的位置和姿态,以确保隧道的准确推进。
通过在隧道内部安装测量仪器,如激光测距仪、全站仪等,实时监测盾构机的变化,并校正施工参数。
2.地表沉降监测:通过在盾构区间的地表上安装沉降测点,测量管道施工对地表沉降的影响,以了解施工对地下管线和建筑物的影响程度,及时采取相应的补救措施。
3.地下水位监测:在盾构区间附近进行井点测量,实时监测地下水位的变化,确保施工过程中地下水的变化不会对隧道施工和周边环境造成不利影响。
三、后期测量1.隧道精度测量:在盾构掘进结束后,对隧道的内外侧壁进行测量,以确定隧道的几何形状和尺度是否符合设计要求。
2.拱顶变形监测:用全站仪等仪器进行拱顶变形观测,以监测隧道拱顶的变形情况,确保拱顶的稳定性和安全性。
3.管道斜度测量:通过测量隧道内铺设的管道斜度和异型构造,查验隧道的排水情况和交通条件,同时要验证管道的几何尺寸和位置是否与设计一致。
4.管道应力监测:通过在管道上安装应力计等仪器,实时监测管道的应力变化,以了解施工过程中管道的受力情况和稳定性。
通过以上的测量方案,可以有效地控制和监测隧道盾构区间的施工过程,保证隧道的质量和安全,同时也为隧道的设计和后续的运营提供了重要的参考数据。
盾构施工测量技术盾构法隧道施工是一项综合性的施工技术,它是将隧道的定向掘进、运输、衬砌、安装等各工种组合成一体的施工方法。
其埋设深度可以很深,不受地面建筑、天气和交通等的影响,机械化和自动化程度很高,是一种先进的土层隧道施工方法,广泛应用于城市地铁、越江隧道等的施工中。
盾构施工测量主要是控制盾构的位置和推进方向,目的是确保盾构按照设计轴线推进,管片拼装后型后满足隧道轴线误差控制要求。
利用洞内导线点测定盾构机的位置(当前空间位置和轴线方向),通过推进油缸施以不同的推力,调整盾构的位置和推进方向,使盾构机的掘进按照设计的线路方向推进。
盾构推进只是盾构施工技术的一部分,在整个施工过程中,施工测量还包括地面测量(地面控制测量﹑沉降观测和井位放样等)﹑联系测量(方位传递﹑坐标传递和高程传递等)以及地下施工测量(地下导线点的测设、洞门钢环的安装、始发台的定位、反力架的定位、盾构始发测量﹑盾构掘进过程中的测量、隧道沉降测量﹑联络通道的施工测量、盾构到达测量、贯通测量、断面测量以及竣工测量等)。
每一步的测量工作都十分重要,直接影响下一步的施工。
在各项工作中,最为重要的是地面控制测量﹑联系测量﹑地下控制测量和盾构施工测量。
这些工作决定着隧道能否达到设计要求,盾构机能否准确进入接受井并确保隧道准确贯通。
一、地面控制测量1、地面平面控制测量对于隧道工程,地面控制测量的主要任务是建立合适的测量控制系统,提供可靠的地面控制点,为联系测量和地下控制测量提供起算依据,同时也作为以后复核测量和竣工测量的起算数据。
地面测量控制网的点位和起算数据由建设单位负责提供,一般要求暗挖隧道的地面控制网精度不应低于国家四等三角网测量的技术指标及精度要求,同时要根据盾构隧道的贯通长度、联系测量和地下控制导线的精度等条件,估算地面控制网应达到的精度。
施测时,以现有平面GPS控制点为依据布置平面控制点,建立地面导线控制网。
2、地面高程控制测量以现有的二等水准点从工作井至接收井布设水准线路,用此精密水准点来控制隧道的施工高程。
盾构施工测量技术盾构是一种重要的地下建筑施工技术,也是地下铁道、管道等重要交通基础设施建设的关键技术之一。
在盾构施工中,测量技术是非常重要的一环,能够有效地保证施工的质量和进度。
本文将介绍盾构施工测量技术的相关内容。
一、盾构施工测量工作的目的盾构施工测量工作的主要目的是:1.确认隧道的轴线及其地貌特征;2.分析隧道的地质条件及稳定性;3.确定隧道工作面的位置和方向;4.监测隧道结构的位移和变形;5.评价和控制隧道施工质量。
二、盾构施工测量的方法盾构施工测量主要采用以下方法:1.传统测量法传统测量法主要包括三角测量、水平测量、高程测量、方位角等传统测量方法。
这种方法的优点是精度高,缺点是测量效率低,需要投入大量人力物力。
2.全站仪测量法全站仪是一种高精度的测量仪器,其能够满足盾构施工测量的高精度要求。
全站仪测量法是一种快速、高效的测量方法,能够准确地获取隧道轴线、隧道地貌、隧道变形等信息。
3.三维激光扫描法三维激光扫描法是一种先进的测量方法,它可以直接获取隧道内部的三维点云数据,对隧道的结构进行完整的建模和分析。
这种方法最大的优点是测量效率高,精度高,可以快速获取隧道内部信息。
三、盾构施工测量技术的实施盾构施工测量技术的实施主要包括以下几个阶段:1.规划阶段:在盾构施工规划阶段,要制定详细的测量方案,确定测量的范围和精度要求。
2.施工前期:在盾构施工的前期,要进行初步测量,确定盾构轴线和地貌等信息,以及确定隧道工作面的位置和方向。
3.施工中期:在盾构施工的中期,要采用全站仪、激光扫描等测量方法,对隧道轴线、地貌以及隧道结构进行测量和监测。
4.施工后期:在盾构施工的后期,要对隧道结构进行最终验收测量和结构监测,并进行开挖指数控制。
四、盾构施工测量技术的应用盾构施工测量技术在地下建筑施工中有着广泛的应用,包括地铁、管道、电缆隧道等建设项目。
盾构施工测量技术能够提升施工进度和质量,控制地下建筑施工质量和安全。
盾构法隧道测量
盾构法是修建地铁、隧道等地下项目中的一种常见方法。
在盾构法隧道施工过程中,测量工作是非常重要的环节之一,以确保施工的精度和安全。
下面是关于盾构法隧道测量的一些基本知识。
一、测量方法
1.定位测量
定位测量是确定盾构机前进位置和建筑物结构的位置。
包括定位测量的设备有钢筋探测仪、测量仪器、万能仪器、激光测距仪等。
2.导向测量
导向测量是确定盾构机推进方向和隧道的姿态和位置。
这种测量方法包括角度测量、方位测量和测高测量。
导向测量设备包括导向测量仪、方位仪、全站仪等。
二、测量标准
在盾构法隧道测量中,需要遵循国家和地方相应的标准规定。
比如,在测量高程时,需要使用校准合格的高程仪和三角测量法。
同时,在测量过程中需要考虑因素包括土层的不均匀性,地下水位的影响,以及隧道的变形等。
三、测量工作流程
盾构法隧道测量的流程包括准备工作、测量前期、进尺测量和数据处理等环节。
测量前期需要根据设计图纸和实际的地形情况确定测量基准点和控制点。
在进尺测量的过程中,需要记录盾构机的前进位置、姿态、深度以及地质情况
等数据。
数据处理需要使用专业软件进行,以得出相应的测量结果。
综上所述,盾构法隧道测量是非常重要的一环,需要进行严格的操作和技术保障。
在测量过程中需要注意安全,预防各种意外情况的发生。
同时,需要结合实际情况变化,及时调整工作方案,确保最终测量结果的准确性。
盾构隧道平面控制测量技术一、影响盾构贯通误差的主要来源及应对措施盾构轴线的控制是盾构隧道施工中一项关键技术,精心掌控好盾构的推进轴线,是保证盾构法施工工程质量和隧道顺利贯通的先决条件。
盾构隧道内施工控制测量不同于地表建筑物(如房建、桥梁等)的控制测量。
在房建、桥梁控制测量工作中,所测成果可在相同时间段内采用不同的测量方法和手段进行检核,能够及时发现所测成果精度高低和正确与否。
而隧道控制测量成果的精度,则必须等到全隧贯通后方能得到验证。
可以说隧道贯通误差的大小是检验隧道内外控制测量质量精度高低的重要标准之一。
下面就影响盾构隧道贯通误差的几个主要误差来源及其针对几个主要误差来源的解决措施作相应的浅析。
1、影响盾构隧道贯通误差的几个主要来源在盾构法施工的隧道中,影响隧道贯通误差主要来源于以下几个方面:1.1地面控制测量引起的横向误差;1.2盾构始发井与接收井联系测量误差;1.3盾构始发井与接收井洞门中心测量误差;1.4盾构初始姿态的定位测量误差;1.5地下导线传递过程中的测量误差。
2、对影响盾构隧道贯通误差来源的解决方案在测量工作的实施中,针对影响盾构隧道贯通误差的几个主要误差来源,除加强和提高测量人员技术熟练程度、使用高精度等级测量仪器外,主要应用了以下几种方法:2.1 合理优化水平控制网,提高地面控制测量精度对于地面控制测量引起的横向误差,比较有效的方法是对网形进行合理的优化。
在工程控制网的技术设计中,首先应考虑的是控制网的精度指标,其次才是网的费用指标。
盾构隧道工程的控制网,是由业主提供的。
而在业主提供的控制中,由于在布设时和布控后随着周围环境的变化及测量使用的仪器不同等,施工单位在使用业主提供的控制网时,一般都需对网点进行增设加密,形成有利的闭合检核条件,从而保证地面控制网的精度指标。
2.2 使用多种测量方法,减小竖井联系测量误差盾构始发井和接收井处竖井联系测量,以住因考虑多是短边传递坐标方位角,在规范中联系测量允许误差为±20mm。
概述地铁盾构隧道工程测量技术相关内容1. 盾构隧道测量概述地下工程测量是指建设和运营地表下面工程建筑物需要进行的测量工作,包括地下工程勘察设计、施工和运营各个阶段的测量工作。
地下工程测量的任务是保证线状工程在规定误差范围内正确贯通,保证面状工程按设计要求竣工。
盾构方法以其独特的施工工艺特点和较高的技术经济优越性,在隧道施工中得到广泛应用,从18世纪末盾构机问世以来,与盾构施工相伴而生的盾构施工测量,一直在为盾构施工起着保驾护航的作用。
盾构法隧道工程施工,需要进行的测量工作主要包括以下几点。
(1)地面控制测量:在地面上建立平面和高程控制网;(2)联系测量:将地面上的坐标、方向和高程传到地下,建立地面地下统一坐标系统;(3)地下控制测量:包括地下平面和高程控制;(4)隧道施工测量:根据隧道设计进行放样,指导开挖及衬砌的中线和高程测量。
2. 隧道贯通误差介绍地下工程测量与地面工程测量相比,尽管测设方法有很多共同之处,但地下工程测量仍有其特殊性。
线状地下工程逐步开挖、施工面狭窄、不同工段之间不能通视,因此,测量工作不能互相照应,不便组织检核,出了差错很难及时发现,整个测量工作的正确性只有到开挖工段间贯通后才能得以证明。
可见侧量工作在地下工程建设中具有十分重要的作用,稍有疏忽必将造成无可挽回的损失。
盾构法隧道施工中,地面控制测量、联系测量、地下控制测量和细部放样的误差积累,将使开挖工作面的施工中线不能理想衔接,产生的错开现象称为贯通误差。
贯通误差在线路中线方向的投影长度称为纵向贯通误差(简称纵向误差),在垂直于中线方向的投影长度称为横向贯通误差(简称横向误差),在高程方向的投影长度称为高程贯通误差(简称高程误差)。
纵向误差只影响隧道中线的长度,与工程质量关系不大,对隧道贯通没有多大影响;高程误差仅影响接轨点的平顺(边掘进边铺轨的隧道尤为突出)或隧道的坡度,要求较高,实践表明,应用一定的测量方法,容易达到所需的精度要求。
地铁盾构测量个人总结一、背景介绍地铁盾构测量是指在地铁隧道施工过程中,使用测量仪器设备对盾构机的运行情况进行监测和测量。
通过对盾构机的姿态、挤压力、挖掘速度等参数进行实时监测和记录,可以确保盾构机的施工安全和施工质量。
本文对于地铁盾构测量的个人经验进行总结和分享。
二、测量设备的选择地铁盾构测量中最常用的设备包括全站仪、水平仪、倾角仪等。
在选择测量设备时,需要考虑到设备的精度、稳定性、适用范围等因素。
比如,全站仪是一种精度较高的测量设备,适用于大范围的测量任务;水平仪则适用于对准参考线进行水平测量。
我在实践中发现,不同设备的特点和使用方法有所不同,需要根据具体情况进行选择。
同时,还需要注意对设备进行良好的维护和保养,以确保其正常运行和测量精度。
三、测量操作的注意事项在进行地铁盾构测量时,需要注意以下几个方面的问题:1. 环境因素地铁隧道施工环境通常比较复杂,存在噪声、灰尘等干扰因素。
在进行测量时,需要确保测量设备和传感器的正常运行,避免受到外界干扰。
此外,还需要注意防尘、防水等措施,确保设备的使用寿命和测量精度。
2. 操作规程地铁盾构测量需要遵循一定的操作规程和标准,包括设备的使用方法、测量的步骤、数据的记录和处理等。
在实践中,我发现严格按照规程进行操作,能够极大地提高测量的准确性和可靠性。
3. 数据处理与分析地铁盾构测量所得到的原始数据需要进行处理和分析,得出有价值的结论。
在处理数据时,需要注意数据的准确性和可靠性,并且运用适当的数学和统计方法进行分析。
只有对数据进行深入分析,才能及时发现问题并采取相应的措施。
四、经验总结与展望在进行了一段时间的地铁盾构测量工作后,我积累了一些经验,并对以后的工作做了一些展望。
首先,依靠丰富的实践经验和不断学习新知识,我对地铁盾构测量的原理和方法有了更深入的理解,并且能够更好地应用于实际工作中。
其次,我认识到地铁盾构测量是一个需要团队合作的任务。
只有与其他岗位的人员紧密配合,才能更好地完成工作任务,确保盾构机的施工安全和施工质量。
1.控制测量1.1平面控制测量1.1.1平面控制测量概述:地铁施工领域里平面控制网分两级布设,首级为GPS控制网,二级为精密导线网。
施工前业主会提供一定数量的GPS点和精密导线点以满足施工单位的需要。
施工单位需要做的是在业主给定的平面控制点上加密地面精密导线点,然后是为了向洞内投点定向而做联系测量,最后是在洞内为了保证隧道的掘进而做施工控制导线测量。
不管是地面精密导线还是洞内施工控制导线都是精密导线测量,虽然边长不满足四等导线的要求,但是基本上是采用四等导线的技术要求施测,其中具体技术要求在《地下铁道、轻轨交通工程测量规范》都有规定。
1.1.2地面平面控制测量:在业主交接桩后,施工单位要马上对所交桩位进行复测。
业主交桩数量有限,不一定能很好地满足施工的需要,所以经常要在业主所交桩的基础上加密精密导线点,以方便施工。
特别是在始发井附近,一定要保证有足够数量的控制点,不少于3个。
其具体技术要求在《地下铁道、轻轨交通工程测量规范》都有规定。
1.1.3 洞内平面控制测量洞内施工控制导线一般采用支导线的形式向里传递。
但是支导线没有检核条件,很容易出错,所以最好采用双支导线的形式向前传递。
然后在双支导线的前面连接起来,构成附合导线的形式,以便平定测量精度。
洞内施工控制导线一般采用在管片最大跨度附近安装牵制对中托架,测量起来非常方便,且可以提高对中精度,还不影响洞内运输。
强制对中托架尺寸形状要控制好,以便可以直接安装在管片的螺栓上面,不需要电钻打眼安装。
由于盾构施工一般都是双线隧道错开50环左右掘进,如果错开环数很大,后面掘进的盾构机由于推力很大,会对前面另一个洞的导线点产生影响。
特别是在左右线间距较小岩层很软时,影响很大,很容易导致测量出大错。
还有就是如果在曲线隧道里,管片上的导线点间的边角关系经常受盾构机的推力和地质条件的影响,所以要经常复测。
1.2高程控制测量1.2.1高程控制测量概述:高程控制测量主要包括地面精密水准测量和高程传递测量及洞内精密水准测量,在广州地铁领域里的精密水准测量也就是城市二等水准测量。
不管是地面还是洞内都采用的是城市二等水准测量。
其技术要求在《地下铁道、轻轨交通工程测量规范》都有规定。
1.2.2 地面高程控制测量地面水准测量按城市二等水准的要求施测。
1.2.3洞内高程控制测量洞内由于轨道上钢枕太多,轨道下的泥水经常盖到钢枕上来了,立尺很不方便,用水准仪配因钢尺测量非常麻烦。
而采用全站仪三角高程测高差的办法传递高程就很方便。
见图1。
当然此时一定要保证前后视的棱镜高要不变,由于不需要量仪器高,而是通过测量前后两个点的高差来传递高程,所以往返观测取平均值精度可以满足施工的需要。
这在我们仑官区间左、右线都得到证实,仑官区间约1.5公里,高程贯通误差左线是8㎜、右线都在11㎜左右。
图1全站仪三角高程测量传递高程1.3联系测量1.3.1 定向测量地铁施工规定,在任何贯通面上,地下测量控制网的贯通中误差,横向不超过±50㎜,竖向不超过±25㎜。
联系测量主要有一井定向(联系三角形定向)、两井定向、铅垂仪陀螺经纬仪联合定向、导线定向四中方式,其中我们施工单位一般都没有陀螺经纬仪,所以很少采用铅垂仪陀螺经纬仪联合定向。
用导线定向精度最好且最方便,但是用导线定向受始发井的长度和深度制约,一般也很少用。
所以一般都采用一井定向(联系三角形定向)或两井定向,其中用两井定向受地面及洞内各种因素的制约要少,很方便,但是在同样的始发井长度和深度的情况下最好采用一井定向(联系三角形定向),这样有利于提高井下定向的精度。
这在我们仑大始发井的多次联系测量中得到证实。
虽然一井定向(联系三角形定向)对场地要求较高,做起来也很麻烦,但是定向精度很有保证。
联系测量向洞内投点时把点间距尽量拉大些,在始发井底板,最好投四个点,保证始发井两端都各有两个控制点。
且尽量保证每次联系测量投点时都投在这四个点上。
以便取多次联系测量的加权平均值做为最终的始发控制点坐标。
图2一井定向联系测量示意图图3两井定向联系测量示意图1.3.2 高程传递测量向洞内传递高程一般采用悬挂钢尺的方法,一定要注意加温度和尺长改正,才能保证导入井下的水准点的精度。
如果有斜井或通道,也可以用水准测量的方法向井下传递高程。
如果全站仪的仰俯角不大的话还可以直接用全站仪三角高程测高差的办法传递高程。
图4钢尺导入法传递高程2、导向系统2.1导向系统介绍2.1.1VMT导向系统概述:在掘进隧道的过程中,为了避免隧道掘进机(TBM)发生意外的运动及方向的突然改变,必须对TBM的位置和DTA(隧道设计轴线)的相对位置关系进行持续地监控测量。
TBM能够按照设计路线精确地掘进,则对掘进各个方面都有好处(计划更精确,施工质量更高)。
这就是TBM采用“导向系统”(SLS)的原因。
德国VMT公司的SLS-T系统就是为此而开发,该系统为使TBM沿设计轴线(理论轴线)掘进提供所有重要的数据信息。
SLS-T系统功能完美,操作简单。
2.1.2导向系统基本组成与功能导向系统是由激光全站仪(TCA)、中央控制箱、ESL靶、黄盒子和计算机及掘进软件组成。
其组成见下图:图5导向系统组成2.1.2.1全站仪(TCA)具有伺服马达,可以自动照准目标和跟踪,并可发射激光束,主要用于后视定向,测量距离、水平角和竖直角,并将测量结果传输到计算机。
2.1.2.2ESL靶也称光靶板,是一台智能性型的传感器。
ELS接收全站仪发射的激光束,测定水平和垂直方向的入射点。
偏角由ELS上激光的入射角确认,坡度由该系统内的倾斜仪测量。
ELS 在盾构机体上的位置是确定的,即对TBM坐标系的位置是确定的。
2.1.2.3中央控制箱主要的接口箱,它为黄盒子(继而为激光全站仪)及ELS靶提供电源。
2.1.2.4黄盒子它主要为全站仪供电,保证全站仪工作和与计算机之间的通信和数据传输。
2.1.2.5计算机及掘进软件SLS-T软件是自动导向系统数据处理和自动控制的核心,通过计算机分别与全站仪和E LS通信接收数据,盾构机在线路平、剖面上的位置计算出来后,以数字和图形在计算机上显示出来。
如下图所示:图6 VMT导向系统盾构姿态显示2.1.3导向基本原理洞内控制导线是支持盾构机掘进导向定位的基础。
激光全站仪安装在位于盾构机的右上侧管片上的拖架上,后视一基准点(后视靶棱镜)定位后。
全站仪自动掉过方向来,收寻E LS靶,ELS接收入射的激光定向光束,即可获取激光站至ELS靶间的方位角、竖直角,通过ELS棱镜和激光全站仪就可以测量出激光站至ELS靶间的距离。
TBM的仰俯角和滚动角通过ELS靶内的倾斜计来测定。
ELS靶将各项测量数据传向主控计算机,计算机将所有测量数据汇总,就可以确定TBM在全球坐标系统中的精确位置。
将前后两个参考点的三维坐标与事先输入计算机的DTA(隧道设计轴线)比较,就可以显示盾构机的姿态了。
2.2导向系统应用2.2.1 始发托架和反力架定位盾构机初始状态主要决定于始发托架和反力架的安装,因此始发托架的定位在整个盾构施工测量过程中显得格外重要。
盾构机在曲线段始发方式通常有两种:切线始发和割线始发。
始发托架的高程要比设计提高约1~5㎝,以消除盾构机入洞后“栽头”的影响。
反力架的安装位置由始发托架来决定,反力架的支撑面要与隧道的中心轴线的法线平行,其倾角要与线路坡度保持一致。
2.2.2 移站2.2.2.1激光站人工移站盾构机的掘进时的姿态控制是通过全站仪的实时测设ELS的坐标,反算出盾构机盾首、盾尾的实际三维坐标,通过比较实测三维坐标与DTA三维坐标,从而得出盾构姿态参数。
随着盾构机的往前推进,每隔规定的距离就必须进行激光站的移站。
激光站的支架用角钢和钢板做成可以安装在管片螺栓的托架形似, 托架的底板采用400×400×10mm钢板,底板中心焊上仪器连接螺栓,长1㎝。
采取强制对中,减少仪器对中误差。
托架安装位置在隧道右侧顶部不受行车的影响和破坏的地方。
安装时,用水平尺大致调平托架底板后,将其固定好,然后可以安装前视棱镜或仪器。
托架示意图如下图8:图8 激光站的托架示意图一般在后视靶托架即将脱出盾构机最后一节台车后进行,这样就可以直接站在盾构机上移站,不需要搭楼梯,既安全又方便。
把前视棱镜安装在后视托架后,测量出棱镜中心到托架底板的高程,然后直接从下面的测站采用极坐标测量方式测出托架的三维坐标。
然后在后视靶托架上设站,前视直接采用极坐标测量方式测出激光站托架的三维坐标。
然后把后视棱镜安装在后视靶托架上,把激光全站仪安装在激光站托架上整平,把黄盒子固定好,给全站仪接上电源,手动把全站仪瞄准后视棱镜,瞄准的精度在±10㎝左右,然后把全站仪电源关闭。
接着在主空室里,启动SLS-T,按“编辑器—F2”进入编辑器窗口,进入激光站编辑窗口,输入激光全站仪中心和后视靶棱镜中心的三维坐标。
按“保存”键保存,然后关闭编辑器窗口。
再按“定位—F5”键,给激光全站仪定位。
定位完成后,再按“方位检查—F5”键,检查激光站和后视棱镜的坐标有没有错误。
如果超限,将会显示差值,如果不超限,那么将不显示。
最后再按“推进—F4”就完成了激光站的人工移站的全过程。