带电粒子在匀强磁场中运动的多解和临界问题
- 格式:doc
- 大小:260.50 KB
- 文档页数:8
带电粒子在强磁场中运动的多解和临界问
题
引言
带电粒子在强磁场中的运动问题一直是物理学中的重要研究方
向之一。
在强磁场中,带电粒子在受到洛伦兹力的作用下呈现出多
解和临界现象,这在某些情况下对粒子的运动轨迹和性质产生重要
影响。
多解现象
在强磁场中,由于洛伦兹力的作用,带电粒子的运动方程出现
多解的情况。
这是由于洛伦兹力与粒子运动速度与磁场方向夹角的
正弦函数关系所导致的。
当速度与磁场方向夹角为不同值时,洛伦
兹力的大小和方向也会有所变化,从而使得粒子的运动轨迹不唯一。
临界现象
在某些情况下,带电粒子在强磁场中的运动可能会出现临界现象。
临界现象是指当带电粒子的运动速度与磁场强度达到一定比例
关系时,粒子的运动状态出现急剧变化,其轨迹和动力学性质发生
显著变化。
临界现象在物理学中具有重要的理论和实际意义,在磁共振成像、粒子加速器等领域的研究中得到了广泛应用。
结论
带电粒子在强磁场中运动的多解和临界问题是一个复杂而有趣的研究领域。
多解现象使得粒子的运动轨迹不唯一,而临界现象则带来了粒子运动状态的突变。
对这些问题的深入研究和理解将有助于推动物理学和应用科学的发展,为实际应用提供更多的可能性。
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
18.4.带电粒子在磁场中运动的临界、多解问题要点一. 带电粒子在磁场中运动的临界问题1.临界问题的特点带电粒子在磁场中运动,由于速度或大小的变化,往往会存在临界问题,如下所示为常见的三种临界草图。
临界特点:(1)粒子刚好穿出磁场的条件:在磁场中运动的轨迹与边界相切.(2)根据半径判断速度的极值:轨迹圆的半径越大,对应的速度越大.(3)根据圆心角判断时间的极值:粒子运动转过的圆心角越大,时间越长.(4)根据弧长(或弦长)判断时间的极值:当速率一定时,粒子运动弧长(或弦长)越长,时间越长.2.解题思路分析思路:以临界问题的关键词“恰好”“最大”“至少”“要使......”等为突破口,寻找临界点,确定临界状态,画出临界状态下的运动轨迹,建立几何关系求解.往往采用数学方法和物理方法的结合:1.利用“矢量图”“边界条件”结合“临界特点”画出“临界轨迹”。
2.利用“三角函数”“不等式的性质”“二次方程的判别式”等求临界极值。
一般解题流程:3.探究“临界轨迹”的方法1. “伸缩圆”动态放缩法定点粒子源发射速度大小不同、方向相同的同种带电粒子时,其轨迹半径不同,相当于定点圆在“伸缩”。
特点:1.速度越大,轨迹半径越大。
2.各轨迹圆心都在垂直于初速度方向的直线上。
应用:结合具体情境根据伸缩法,可以分析出射的临界点,求解临界半径。
2. “旋转圆”旋转平移法定点粒子源发射速度大小相同、方向不同的同种带电粒子时,其轨迹半径相同,相当于定点圆在“旋转”特点:1.半径相同,方向不同。
2.各轨迹圆心在半径为R的同心圆轨迹上。
旋转圆的应用:结合具体情境,可以分析圆心角、速度偏向角、弦切角、弧长、弦长的大小;求解带电粒子的运动时间.应用情景1.(所有的弦长中直径最长)速度大小相同、方向不同的同种带电粒子,从直线磁场边界上P点入射。
M点是粒子打到直线边界上的最远点(所有的弦长中直径最长).应用情景2.(所有的弦长中直径最长)速度大小相同方向不同的同种带电粒子,从圆形磁场边界上的P射入磁场;①若轨迹半径>磁场半径当PM距离为磁场直径时,粒子出射点与入射点之间的距离最远、共有弦最长、时间最长。
适用标准考点周期性与多解问题1.带电粒子电性不确立形成多解:受洛伦兹力作用的带电粒子,因为电性不一样,当速度同样时,正、负粒子在磁场中运动轨迹不一样,形成多解.如图 6 甲所示,带电粒子以速度v 垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为 b .2.磁场方向不确立形成多解:有些题目只磁感觉强度的大小,而不知其方向,此时一定要考虑磁感觉强度方向不确立而形成的多解.如图乙所示,带正电粒子以速度 v 垂直进入匀强磁场,如 B 垂直纸面向里,其轨迹为 a,如 B 垂直纸面向外,其轨迹为 b .3.临界状态不独一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,因为粒子运动轨迹是圆弧状,所以,它可能穿过去,也可能转过180 °从入射界面这边反向飞出,进而形成多解,如图丙所示.4.运动的周期性形成多解:带电粒子在局部是电场、局部是磁场的空间运动时,运动常常拥有来去性,进而形成多解,如图丁所示.一圆筒的横截面以下列图,其圆心为O.筒内有垂直于纸面向里的匀强磁场,磁感觉强度为B.圆筒下边有相距为 d 的平行金属板M 、N ,此中 M 板带正电荷, N 板带等量负电荷.质量为m、电荷量为q 的带正电粒子自M 板边沿的P 处由静止开释,经N 板的小孔S 以速度 v 沿半径 SO 方向射入磁场中.粒子与圆筒发生两次碰撞后仍从S 孔射出.设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的状况下,求:(1)M 、 N 间电场强度 E 的大小;(2)圆筒的半径 R.(3)保持M、N间电场强度 E 不变,仅将M 板向上平移,粒子仍从M 板边沿的P处由静止开释粒子自进入圆筒至从S 孔射出时期,与圆筒的碰撞次数n 。
1.以下列图,在纸面内有磁感觉强度大小均为B,方向相反的匀强磁场,虚线等边三角形ABC 为两磁场的理想界限。
三角形ABC 边长为 L,虚线三角形内为方向垂直纸面向外的匀强磁场,三角形外面的足够大空间为方向垂直纸面向里的匀强磁场。
带电粒子在磁场中的多解和临界问题1、如图14所示,边长为L 的等边三角形ABC 为两个有界匀强磁场的理想边界,三角形内的磁场方向垂直纸面向外,磁感应强度大小为B,三角形外的磁场(足够大)方向垂直纸面向里,磁感应强度大小也为B.把粒子源放在顶点A 处,它将沿∠A 的角平分线发射质量为m 、电荷量为q 、初速度为v= 的负电粒子(粒子重力不计). 求:1)从A 射出的粒子第一次到达C 点所用时间为多少?(2)带电粒子在题设的两个有界磁场中运动的周期.2、一匀强磁场,磁场方向垂直于xy 平面,在xy 平面上,磁场分布在以O 为中心的一个圆形区域内。
一个质量为m 、电荷量为q 的带电粒子,由原点O 开始运动,初速度为v ,方向沿x 正方向。
后来,粒子经过y 上的P 点,此时速度方向与y 轴的夹角为30°,P 到O 的距离为L ,如图所示。
不计 重力影响。
求:磁场的磁感应强度B 的大小和 xy 平面上磁场区域的半径R 。
4、如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60 T ,磁场内有一块平面感光板ab ,板面与磁场方向平行,在距ab 距离l =16 cm 处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是v =3.0×106 m/s ,已知α粒子的比荷=5.0×107 C/kg ,现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度.mqBL 3.如图所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里.P 为屏上的一小孔.PC 与MN 垂直.一束质量为m 、电荷量为-q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场的方向射入磁场区域.粒子入射方向在与磁场B 垂直的平面内,且散开在与PC 的夹角为θ的范围内.则在屏MN 上被粒子打中的区域的长度为( D ) A.2mv qB B.2mvcos θqBC.2mv (1-sin θ)qBD.2mv (1-cos θ)qB5、(2010年宿州模拟)一质量为m、电荷量为q的带负电的粒子,从A点射入宽度为d、磁感应强度为B的匀强磁场中,MN、PQ为该磁场的边界线,磁感线垂直于纸面向里,如图所示.带电粒子射入时的初速度与PQ成45°角,且粒子恰好没有从MN射出.(不计粒子所受重力)(1)求该带电粒子的初速度大小;(2)求该带电粒子从PQ边界射出的出射点到A点的距离.7、如图所示,在坐标系xOy中,第一象限内充满着两个匀强磁场a和b,OP为分界线,在区域a中,磁感应强度为2B,方向垂直纸面向里;在区域b中,磁感应强度为B,方向垂直纸面向外,P点坐标为(4l,3l).一质量为m,电荷量为q的带正电的粒子从P点沿y轴负方向射入区域b,经过一段时间后,粒子恰能经过原点O,不计粒子重力.(sin 37°=0.6,cos 37°=0.8).求:(1)粒子从P点运动到O点的时间最少是多少?(2)粒子运动的速度可能是多少?6.(2010年淄博模拟)如图所示,在真空中坐标系xOy平面的x>0区域内,有磁感应强度B=1.0×10-2 T的匀强磁场,方向与xOy平面垂直.在x轴上的P(10,0)点,有一放射源,在xOy平面内向各个方向发射速率v=1.0×104 m/s的带正电的粒子,粒子的质量为m =1.6×10-25 kg,电荷量为q=1.6×10-18 C,求带电粒子能打到y轴上的范围.答案 1、(1) (2)2、4、答案:20 cm5、qBmπ6qB m 3πqLm vB 3=LR 33=答案:(1)(2+2)dqB m 或(2-2)dqBm(2)2(2+1)d 或2(2-1)d6、7、解析:(1)设粒子的入射速度为v ,用R a 、R b 、T a 、T b 分别表示粒子在磁场a 区和b 区运动的轨道半径和周期,则:R a =mv 2qB,R b =mv qB ,T a =2πm 2qB =πm qB ,T b =2πm qB 粒子先从b 区运动,后进入a 区运动,然后从O 点射出时,粒子从P 运动到O 点所用时间最短.如图所示. tan α=3l 4l =34,得α=37° 粒子在b 区和a 区运动的时间分别为:t b =2(90°-α)360°T b, t a =2(90°-α)360°T a故从P 到O 时间为:t =t a +t b =53πm 60qB . 如图所示,当带电粒子打到y 轴上方的A 点与P 连线正好为其圆轨迹的直径时,A 点即为粒子能打到y 轴上方的最高点.因OP =R =10 cm ,AP =2R =20 cm ,则OA =AP 2-OP 2=10 3 cm当带电粒子的圆轨迹正好与y 轴下方相切于B 点时,B 点即为粒子能打到y 轴下方的最低点,易得OB =R =10 cm. 综上,带电粒子能打到y 轴上的范围为-10 cm ≤y ≤10 3 cm.。
物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。
1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。
2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。
(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。
【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。
一带电粒子的质量为m,电荷量为q(q>0)。
粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。
则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。
专题八带电粒子在磁场中运动的临界和多解问题考点一带电粒子在磁场中运动的临界极值问题多维探究解决带电粒子在磁场中的临界极值问题的关键(1)以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,运用动态思维,寻找临界点,确定临界状态,由磁场边界和题设条件画好轨迹、定好圆心,建立几何关系.(2)寻找临界点常用的结论:①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v一定时,弧长(或弦长)越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长.③当速度v变化时,圆心角越大,运动时间越长.题型1|求运动时间的极值例1 [2020·全国卷Ⅰ,18]一匀强磁场的磁感应强度大小为B,方向垂直于纸面向外,其边界如图中虚线所示,ab̂为半圆,ac、bd与直径ab共线,ac间的距离等于半圆的半径.一束质量为m、电荷量为q(q>0)的粒子,在纸面内从c点垂直于ac射入磁场,这些粒子具有各种速率.不计粒子之间的相互作用.在磁场中运动时间最长的粒子,其运动时间为( )A.7πm6qB B.5πm4qBC.4πm3qBD.3πm2qB题型2|求磁感应强度的极值例2 [2020·全国卷Ⅲ,18]真空中有一匀强磁场,磁场边界为两个半径分别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示.一速率为v的电子从圆心沿半径方向进入磁场.已知电子质量为m,电荷量为e,忽略重力.为使该电子的运动被限制在图中实线圆围成的区域内,磁场的磁感应强度最小为( )A.3mv2ae B.mvaeC.3mv4ae D.3mv5ae题型3 |求运动速度的极值例3 如图所示,在直角三角形abc区域(含边界)内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=60°,∠b=90°,边长ac=L.一个粒子源在a点将质量为m、电荷量为q的带正电粒子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中,速度的最大值是( )A.qBL2m B.√3qBL6mC.√3qBL4mD.qBL6m题型4|带电粒子通过磁场时的最大偏角例4 如图所示,半径R=10 cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切,磁感强度B=0.33 T,方向垂直纸面向里.在O处有一放射源S,可沿纸面向各方向射出速率均为v=3.2×106m/s的α粒子,已知α粒子的质量m=6.6×10-27 kg,电荷量q=3.2×10-19 C,则该α粒子通过磁场空间的最大偏转角为( ) A.30° B.45°C.60° D.90°题型5|求区域的长度范围例5 如图所示,在荧光屏MN上方分布了水平方向的匀强磁场,磁感应强度的大小B=0.1 T、方向与纸面垂直.距离荧光屏h=16 cm处有一粒子源S,以速度v=1×106=1×108C/kg的带正电粒子,不计粒子的重m/s不断地在纸面内向各个方向发射比荷qm力.则粒子打在荧光屏范围的长度为( )A.12 cm B.16 cmC.20 cm D.24 cm练1 [最小边界]如图所示,一带电质点质量为m,电荷量为q,以平行于x轴的速度v从y轴上的a 点射入图中第一象限所示的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v射出,可在适当的地方加一个垂直于xOy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径.(重力忽略不计)练2 [2020·全国卷Ⅱ,24] 如图,在0≤x≤h,-∞<y<+∞区域中存在方向垂直于纸面的匀强磁场,磁感应强度B的大小可调,方向不变.一质量为m、电荷量为q(q>0)的粒子以速度v0从磁场区域左侧沿x轴进入磁场,不计重力.(1)若粒子经磁场偏转后穿过y轴正半轴离开磁场,分析说明磁场的方向,并求在这种情况下磁感应强度的最小值B m;,粒子将通过虚线所示边界上的一点离开磁场.求粒子(2)如果磁感应强度大小为B m2在该点的运动方向与x轴正方向的夹角及该点到x轴的距离.题后反思解决临界极值问题的方法技巧(1)数学方法和物理方法的结合:如利用“矢量图”“边界条件”等求临界值,利用“三角函数”“不等式的性质”“二次方程的判别式”等求极值.(2)一个“解题流程”突破临界问题考点二带电粒子在匀强磁场中的运动的多解问题多维探究题型1|带电性质不确定例6 如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界.现有质量为m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入.要使粒子不能从边界NN ′射出,则粒子入射速率v 的最大值可能是多少?题型2|磁场方向不确定例7 (多选)一质量为m ,电荷量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是( )A. 4qB mB. 3qB mC. 2qB mD. qBm题型3|临界状态不唯一例8 匀强磁场区域由一个半径为R的半圆和一个长为2R、宽为R的矩形组成,磁场2的方向如图所示.一束质量为m、电荷量为+q的粒子(粒子间的相互作用和重力均不计)以速度v从边界AN的中点P垂直于AN和磁场方向射入磁场中.(1)当磁感应强度为多大时,粒子恰好从A点射出?(2)对应于粒子可能射出的各段磁场边界,磁感应强度应满足什么条件?题型4|带电粒子的周期性运动形成多解解决带电粒子在磁场中的周期性运动与多解问题,关键是对运动过程进行准确分析,找出周期性运动的规律,并用数学通式表达多解性.分析运动过程要注意两点:(1)注意磁场大小或方向的变化引起粒子运动轨迹的变化.(2)注意粒子的运动方向改变而使粒子的运动具有周期性和对称性.例9 [2021·广东韶关调研]如图所示,在无限长的竖直边界AC和DE间,上、下方分别充满方向垂直于平面ADEC向外的匀强磁场,上方磁场区域的磁感应强度大小为B0,OF为上、下方磁场的水平分界线.质量为m、所带电荷量为+q的粒子从AC边界上与O 点相距为a 的P 点垂直于AC 边界射入上方磁场区域,经OF 上的Q 点第一次进入下方磁场区域,Q 点与O 点的距离为3a .不考虑粒子重力.(1)求粒子射入时的速度大小;(2)若下方区域的磁感应强度B =3B 0,粒子最终垂直于DE 边界飞出,求边界DE 与AC 间距离的可能值.练3 (多选)如图所示,两方向相反、磁感应强度大小均为B 的匀强磁场被边长为L 的等边三角形ABC 理想分开,三角形内磁场垂直纸面向里,三角形顶点A 处有一质子源,能沿∠BAC 的角平分线发射速度不同的质子(质子重力不计),所有质子均能通过C点,质子比荷q m =k ,则质子的速度可能为( )A.2BkLB. BkL 2C. 3BkL 2D. BkL8练4 如图所示,在平面直角坐标系xOy 的第一象限y ≤a 范围内,存在垂直纸面向里磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 且带负电的粒子从坐标原点O 以速度大小为v 0=2qBa m沿不同方向射入磁场,不计粒子的重力,下列说法正确的是( )A .若粒子初速度沿y 轴正方向,则粒子在磁场中的运动时间为πm 3qBB .若粒子初速度沿y 轴正方向,则粒子在磁场中的运动时间为2πm 3qBC.粒子在磁场中运动的最长时间为πm3qBD.粒子在磁场中运动的最长时间为2πm3qB思维拓展“几何圆”模型在磁场临界极值问题中的应用模型1 “放缩圆”模型的应用如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大.可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上为定点,圆心位于PP′直线上,将半径放缩作轨迹例1 (多选)如图所示,正方形abcd区域内有垂直于纸面向里的匀强磁场,O点是cd边的中点.若一个带正电的粒子(重力忽略不计)从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法正确的是( )A.该带电粒子不可能刚好从正方形的某个顶点射出磁场B.若该带电粒子从ab边射出磁场,它在磁场中经历的时间可能是t0t0 C.若该带电粒子从bc边射出磁场,它在磁场中经历的时间可能是32t0 D.若该带电粒子从cd边射出磁场,它在磁场中经历的时间一定是53模型2 “旋转圆”模型的应用粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v0,则轨迹半径为R=mv0.如图所qB示带电粒子在磁场中做匀速圆周运动的圆心在以入射点、速度例2 如图所示,匀强磁场垂直于纸面,磁感应强度大小为B,一群比荷为qm大小为v的离子以一定发散角α由原点O出射,y轴正好平分该发散角,离子束偏转为( )后打在x轴上长度为L的区域MN内,则cosα2A .1-BqL 4mvB .12-BqL 4mvC .1-BqL 2mvD .1-BqLmv专题八 带电粒子在磁场中运动的临界和多解问题考点突破例1 解析:如图所示,设某一粒子从磁场圆弧ab̂上的e 点射出磁场,粒子在磁场中转过的圆心角为π+θ=π+2α,由于所有粒子在磁场中运动周期相同,粒子在磁场中做匀速圆周运动时,运动轨迹对应的圆心角越大,则运动时间越长.由几何关系可知,α最大时,ce 恰好与圆弧ab ̂相切,此时sin α=eO cO =12,可得α=π6,θ=2α=π3,设粒子在磁场中做匀速圆周运动的周期为T ,粒子在磁场中运动的最长时间t =T 2+T 6,又T =2πm qB ,解得t =4πm 3qB,故选C.答案:C例2 解析:为使该电子的运动被限制在图中实线圆围成的区域内,且磁感应强度最小,由qvB =mv 2r可知,电子在匀强磁场中的轨迹半径r =mv eB,当r 最大时,B 最小,故临界情况为电子轨迹与有界磁场外边界相切,如图所示,由几何关系知a 2+r 2=(3a-r )2,解得r =43a ,联立可得最小的磁感应强度B =3mv4ae,选项C 正确.答案:C例3 解析:由分析知,粒子沿着ab 边入射且运动轨迹与bc 边相切时满足题意,粒子运动轨迹如图所示.由几何关系知,粒子运动轨迹半径r =ab =12L ,则粒子速度的最大值v =2πr T =qBL 2m,A 正确. 答案:A例4 解析:放射源发射的α粒子的速率一定,则它在匀强磁场中的轨道半径为定值,即r =mv qB =6.6×10−27×3.2×1063.2×10−19×0.33m =0.2 m =20 cmα粒子在圆形磁场区的圆弧长度越大,其偏转角度也越大,而最长圆弧是两端点在圆形磁场区的直径上,又r =2R ,则此圆弧所对的圆心角为60°,也就是α粒子在此圆形磁场区的最大偏转角为60°.轨迹如图所示.选项C 正确.答案:C例5 解析:如图所示,粒子在磁场中做圆周运动的半径为R =mv qB =10 cm ,若粒子打在荧光屏的左侧,当弦长等于直径时,打在荧光屏的最左侧,由几何关系有x 1=√(2R )2−h 2=12 cm ;粒子的运动轨迹与荧光屏右侧相切时,打在荧光屏的最右侧,由几何关系有x 2=√R 2−(h −R )2=8 cm.根据数学知识可知打在荧光屏上的范围长度为x =x 1+x 2=12 cm +8 cm =20 cm ,选项C 正确.答案:C 练1解析:由于已知初速度与末速度的方向,可得偏向角φ=π2.设粒子由M 点进入磁场,由于φ=2β,可沿粒子偏转方向β=π4来补弦MN ,如图所示.由“切线、弦”可得圆心O 1,从而画轨迹弧MN .显然M 、N 为磁场边界上两点,而磁场又仅分布在一圆形区域内.欲使磁场面积最小,则弦MN 应为磁场边界所在圆的直径(图中虚线图),即得2r =MN .由几何知识,在Rt△MO 1O 2中可知R =√2r ,又因为R =mv qB,所以,这圆形磁场区域的最小半径 =√22R =√2mv 2qB . 答案:√2mv 2qB练2 解析:(1)由题意,粒子刚进入磁场时应受到方向向上的洛伦兹力,因此磁场方向垂直于纸面向里.设粒子进入磁场中做圆周运动的半径为R ,根据洛伦兹力公式和圆周运动规律,有qv 0B =m v 02 R ①由此可得R =mv 0qB② 粒子穿过y 轴正半轴离开磁场,其在磁场中做圆周运动的圆心在y 轴正半轴上,半径应满足R ≤h ③由题意,当磁感应强度大小为B m 时,粒子的运动半径最大,由此得B m =mv 0qh④(2)若磁感应强度大小为B m 2,粒子做圆周运动的圆心仍在y 轴正半轴上,由②④式可得,此时圆弧半径为R ′=2h ⑤粒子会穿过图中P 点离开磁场,运动轨迹如图所示.设粒子在P 点的运动方向与x 轴正方向的夹角为α,由几何关系sin α=h 2h =12⑥则α=π6⑦由几何关系可得,P 点与x 轴的距离为y =2h (1-cos α)⑧联立⑦⑧式得y =(2-√3)h ⑨答案:见解析 例6解析:题目中只给出粒子“电荷量为q ”,未说明是带哪种电荷,所以分情况讨论.若带电粒子带正电荷,则轨迹是图中与NN ′相切的14圆弧,轨迹半径R =mv Bq又d =R -R ·sin 45°解得v =(2+√2)Bqd m若带电粒子带负电荷,则轨迹是图中与NN ′相切的34圆弧,轨迹半径R ′=mv ′Bq 又d =R ′+R ′sin 45°解得v ′=(2−√2)Bqd m答案:(2+√2)Bqd m (q 为正电荷) 或(2-√2)Bqd m(q 为负电荷) 例7 解析:依题中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且这两种方向相反.在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛伦兹力的方向也是相反的.当负电荷所受的洛伦兹力与电场力方向相同时,根据牛顿第二定律可知4Bqv =m v 2R ,得v =4BqR m .此种情况下,负电荷运动的角速度为ω=v R =4Bq m ;当负电荷所受的洛伦兹力与电场力方向相反时,有2Bqv =m v 2R ,v =2BqR m ,此种情况下,负电荷运动的角速度为ω=v R =2Bq m.故AC 正确.答案:AC例8 解析:(1)由左手定则判定,粒子向左偏转,只能从PA 、AC 和CD 三段边界射出,如图所示.当粒子从A 点射出时,运动半径r 1=R 2.由qvB 1=mv 2r 1 得B 1=2mv qR. (2)当粒子从C 点射出时,由勾股定理得:(R -r 2)2+(R 2)2=r 22,解得r 2=58R 由qvB 2=mv 2r 2,得B 2=8mv 5qR据粒子在磁场中运动半径随磁场减弱而增大,可以判断:当B >2mv qR 时,粒子从PA 段射出;当8mv 5qR <B <2mv qR时,粒子从AC 段射出; 当B <8mv 5qR 时,粒子从CD 段射出.答案:(1)2mv qR(2)见解析例9 解析:(1)粒子在OF 上方的运动轨迹如图甲所示, 设粒子做圆周运动的半径为R ,由几何关系得R 2-(R -a )2=(3a )2,解得R =5a由牛顿第二定律得qvB 0=m v 2R解得v =5aqB 0m.(2)当B =3B 0时,粒子的运动轨迹如图乙所示,粒子在OF 下方的运动半径为r =53a .设粒子的速度方向再次与射入磁场时的速度方向一致时的位置为P 1,则P 与P 1的连线一定与OF 平行,根据几何关系知PP 1=4a若粒子最终垂直于DE 边界飞出,则边界DE 与AC 间的距离为L =nPP 1=4na (n =1,2,3,…).答案:(1)5aqB 0m(2)4na (n =1,2,3,…)练3 解析:因质子带正电,且经过C 点,其可能的轨迹如图所示,所有圆弧所对圆心角均为60°,所以质子运行半径r =L n (n =1,2,3…),由洛伦兹力提供向心力得Bqv =m v 2r ,即v =Bqr m =Bk ·L n(n =1,2,3…),选项B 、D 正确. 答案:BD 练4解析:本题考查带电粒子在平行边界磁场中运动的临界问题.粒子运动的速度为v 0=2qBa m ,则粒子运动的轨迹半径为r =mv 0qB =2a ,若粒子初速度沿y 轴正方向,由几何关系知粒子在磁场中运动偏转的角度为30°,则运动时间为t 1=30°360°T =112×2πr v 0=πm 6qB ,选项A 、B 错误;当轨迹与磁场上边界相切时,粒子在磁场中运动的时间最长,由几何关系可知,此时粒子在磁场中偏转的角度为120°,时间为t m =120°360°T =2πm 3qB,故选D. 答案:D 思维拓展 典例1解析:由题意可知带电粒子以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场,则知带电粒子的运动周期为T =2t 0.随粒子速度逐渐增大,轨迹由①→②→③→④依次渐变,由图可以知道粒子在四个边射出时,射出范围分别为OG 、FE 、DC 、BA 之间,不可能从四个顶点射出,所以A 项正确;当粒子从O 点沿纸面垂直于cd 边射入正方形内,轨迹恰好为半个圆周,即时间t 0刚好为半周期,从ab 边射出的粒子所用时间小于半周期t 0,从bc 边射出的粒子所用时间小于23T =4t 03,所有从cd 边射出的粒子圆心角都是300°,所用时间为5T 6=5t 03,故B 、C 项错误,A 、D 项正确.答案:AD典例2 解析:根据洛伦兹力提供向心力,有qvB =m v 2R ,得R =mvqB,离子通过M 、N 点的轨迹如图所示,由几何关系知MN =ON -OM ,过M 点两圆圆心与原点连线与x 轴夹角为α2,圆心在x 轴上的圆在O 点时的速度沿y 轴正方向,由几何关系可知L =2R -2R cos α2,解得cos α2=1-BqL 2mv,故选项C 正确.答案:C。