第二十二章 二次函数单元检测
- 格式:doc
- 大小:186.17 KB
- 文档页数:7
第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。
第二十二章二次函数学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知二次函数223y x x =--,点P 在该函数的图象上,点P 到x 轴、y 轴的距离分别为1d 、2d .设d d d =+,下列结论中:①④231(x 4点B C .52D .535.已知二次函数2y x bx c =++的图象上有三个点()11,y -)、()21,y 、()33,y ,若13y y =,则( ).A .21y c y >>B .12c y y <<C .12c y y >>D .21y c y <<6.已知二次函数y=ax 2+bx+c (a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a <b <﹣2a (3)abc >0;(4)5a ﹣b+2c <0; 其中正确的个数为( )78①93的“特征数”为[1,2,3]-.若“特征数”为12,2,2m m m --⎢⎥⎣⎦的二次函数的图象与x 轴只有一个交点,则m的值为( )A .2-或2B .12-C .2-D .210.某同学在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()21349y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则该同学此次掷球的成绩(即OA 的长度)是( )A .4mB .6mC .8mD .9m11.已知函数223y x x =-+,当0x m ≤≤时,有最大值3,最小值2,则m 的取值范围是( )A .1m ≥B .02m ≤≤C .12m ≤≤D .2m ≤12.有一拱桥洞呈抛物线状,这个桥洞的最大高度是16 m ,跨度为40 m ,现把它的示意图(如图)放在平面直角坐标系中,则抛物线的表达式为( )A .281255x y x =+B .218255y x x =-+C .251825y x x =--D .25125168y x x +=+ 二、填空题13.已知抛物线22161y x x =-+,则这条抛物线的对称轴是直线 .14.已知抛物线()21433y x =--的部分图象如图所示,则图象再次与x 轴相交时的坐标是 .15.已知抛物线()20y ax bx c a =++≠图象的顶点为()2,3P -,且过()3,0A -,则抛物线的关系式为 .16.已知222b c c a a bk a b c+++===,0a b c ++≠,将抛物线22y x =向右平移k 个单位,再向上平移2k 个单位后,所得抛物线的表达式为 .对于平移后的抛物线,当25x ……时,y 的取值范围是 .17.设关于x 的方程()2440x k x k +--=有两个不相等的实数根12,x x ,且1202x x <<<,那么k 的取值范围是 .三、解答题18.己知二次函数y =ax 2+bx +c (a ,b ,c 均为常数且0a ≠).(1)若该函数图象过点(1,0)A -,点(3,0)B 和点(0,3)C ,求二次函数表达式:(2)若21b a =+,2c =,且无论a 取任何实数,该函数的图象恒过定点,求出定点的坐标.(4)将这个函数的图象向右平移2个单位长,向上平移1个单位长,写出平移后的二次函数解析式.20.高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x (元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).(1)试写出y与x之间的函数关系式(不写x的取值范围);(2)试写出z与x之间的函数关系式(不写x的取值范围);(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?21.珊珊度假村共有客房50间供游客居住,当每个房间的定价为每天200元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加10元,就会有1个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天20元的各种费用.设每个房间的定价增加x元,每天的入住量为y个,度假村住宿每天的利润为w元.(1)求y与x的函数关系式;(2)求w与x的函数关系式,并求客房收入每天的最大利润是多少?(3)当x为何值时,客房收入每天的利润不低于10350元?22.篮球是一项广受喜爱的运动.学习了二次函数后,小江同学打篮球时发现,篮球投出时在空中的运动可近似看作一条抛物线,于是建立模型,展开如下研究:如图,篮框距离地面3m,某同学身高2m,站在距离篮球架4mL 处,从靠近头部的O点将球正对篮框投出,球经过最高点时恰好进入篮框,球全程在同一水平面内运动,轨迹可看作一条抛物线C.不计篮框和球的大小、篮板厚度等.(1)求抛物线C的表达式;(2)研究发现,当球击在篮框上方0.2m及以内范围的篮板上时,球会打板进框.若该同学正对篮框,改用跳投的方式,出手点O位置升高了0.5m,要能保证进球,求L的取值范围.(计算结果保留小数点后一位)23.如图1,在平面直角坐标系中,是坐标原点,抛物线与轴正半轴交于点,与轴交于点,连接,点分别是的中点.,且始终保持边经过点,边经过点,边与轴交于点,边与轴交于点.(1)填空,的长是 ,的度数是 度(2)如图2,当,连接①求证:四边形是平行四边形;②判断点是否在抛物线的对称轴上,并说明理由;(3)如图3,当边经过点时(此时点与点重合),过点作,交延长线上于点,延长到点,使,过点作,在上取一点,使得(若在直线的同侧),连接,请直接写出的长.24.如图,抛物线239344y x x =-++与x 轴交于点A ,与y 轴交于点B .在线段OA 上有一动点(m,0)E (不与,O A 重合),过点E 作x 轴的垂线交AB 于点N ,交抛物线于点P ,过点P 作PM AB ⊥于点M .(1)求直线AB的函数解析式;(参考答案:题号12345678910答案B D B A D A C D C D 题号1112 答案CB1.B 2.D 3.B 4.A 5.D 6.A 7.C 8.D 9.C 10.D 11.C 12.B 13.4x =14.(7,0)15.23129y x x =---16.22(1)2y x =+-1670x ……17.-2<k <0 18.(1)223y x x =-++(2)()0,2,()2,0-19.(1)221y x =-;(2)17;(3)略;(4)2288y x x =-+.20.(1)y=-110x+30;(2)z=-110x 2+34x-3200;(3)第二年的销售单价应确定在不低于120元且不高于220元的范围内.21.(1)5010x y =-(2)(3)22(2)2312 24。
第二十二章 二次函数一、选择题(每题3分,共24分)1.下列各式中,y 是x 的二次函数的是( )A .y =1x 2B .y =x 2+1x +1C .y =2x 2−1D .y =x 2−12.下列抛物线中,与y =−3x 2+1抛物线形状、开口方向完全相同,且顶点坐标为(−1,2)的是( )A .y =−3(x +1)2+2B .y =−3(x−1)2+2C .y =3(x +1)2+2D .y =−3(x +1)2+23.在平面直角坐标系中,将二次函数y =3x 2的图象向下平移3个单位长度,所得函数的解析式为( )A .y =3x 2−1B .y =3x 2+1C .y =3x 2−3D .y =3x 2+34.若A (−1,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y =−(x−2)2+k 的图象上,则y 1,y 2,y 3的大小关系为( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 3<y 2<y 15.二次函数y =−x 2−2x +c 2−2c 在−3≤x ≤2的范围内有最小值为−5,则c 的值( )A .3或−1B .−1C .−3或1D .36.已知二次函数y =x 2−3x +m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2−3x +m =0的两实数根是( )A .x 1=0,x 2=−1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=37.如图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面3m ,水面宽6m .如图(2)建立平面直角坐标系,则抛物线的解析式是( )A .y =−13x 2B .y =13x 2C .y =−3x 2D .y =3x 28.如图,已知经过原点的抛物线y =a x 2+bx +c(a ≠0)的对称轴是直线x =−1,下列结论中:①ab >0,②a +b +c >0,③当−2<x <0时y <0.正确的个数是( )A.0个B.1个C.2个D.3个二、填空题(每题4分,共20分)9.抛物线y=−3(x−1)2−2的对称轴是直线 .10.若y=(m−2)x m2−2+x−3是关于x的二次函数.则m的值为 .11.抛物线y=a x2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点为(3,0),对称轴为直线x=1,则当y≤0时,x的取值范围是 .12.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m处达到最高,高度为5m,水柱落地处离池中心距离为6m,则水管的长度OA是 m.13.如图,在平面直角坐标中,抛物线y=a x2+bx(a>0)和直线y=kx(k>0)交于点O和点A,则不等式a x2 +bx<kx的解集为 .三、解答题(共56分)14.如图所示,二次函数y=a x2+bx+c(a≠0)的图保与x轴相交于A,B两点,其中点A的坐标为(−1,0),M(2,9)为抛物线的顶点.(1)求抛物线的函数表达式.(2)求△MCB的面积.15.如图所示,在平面直角坐标系中,二次函数y=a x2+4x−3的图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后的图象所对应的二次函数的表达式. 16.已知,一个铝合金窗框如图所示,所使用的铝合金材料长度为18m.设AB长为xm,窗户的总面积为Sm2.(1)求S关于x的函数表达式.(2)若AB的长不能低于2m,且AB<BC,求此时窗户总面积S的最大值和最小值.17.第十九届亚运会在杭州隆重举办,政府鼓励全民加强体育锻炼,李明在政府的扶持下投资销售一种进价为每件50元的乒乓球拍.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=−10x+900.(1)设月利润为W(元),求W关于x的函数表达式.(2)销售单价定为每件多少元时,所得月利润最大?最大月利润为多少元?(3)若物价部门规定这种乒乓球拍的销售单价不得超过75元,李明想使获得的月利润不低于3000元,求销售单价x的取值范围.18.如图,二次函数y=a x2+bx+c的图象交x轴于A(−1,0),B(2,0),交y轴于C(0,−2).(1)求二次函数的解析式;(2)若点M为该二次函数图象在第四象限内一个动点,求点M运动过程中,四边形ACMB面积的最大值;(3)点P在该二次函数图象的对称轴上,且使|PB−PC|最大,求点P的坐标。
第二十二章二次函数单元测试人教版2024—2025学年九年级上册一、选择题(每小题3分共12小题,满分36分)1.下列函数中,属于二次函数的是()A.y=x﹣3 B.y=x2﹣(x+1)2 C.y=x(x﹣1)﹣1D.2.抛物线y=﹣2(x﹣3)2﹣4的顶点坐标()A.(﹣3,4)B.(﹣3,﹣4)C.(3,﹣4)D.(3,4)3.抛物线y=x2+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=0D.直线y=14.若抛物线y=x2+bx+c与x轴交于(1,0),(3,0),则b和c的值为()A.b=4,c=﹣3B.b=﹣4,c=3C.b=﹣4,c=﹣3D.b=4,c=﹣35.函数y=(x+2)(x﹣1)图象与x轴的交点坐标为()A.(0,﹣2)B.(﹣2,0)、(1,0)C.(2,0)、(1,0)D.(2,0)、(﹣1,0)6.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣257.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+5 8.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0)B.(4,0)C.(5,0)D.(﹣6,0)9.若抛物线y=x2﹣2x﹣1与x轴的交点坐标为(a,0),则代数式a2﹣2a+2025的值为()A.2027B.2026C.2025D.202410.抛物线y=﹣x2+2x+1与x轴两交点之间的距离是()A.4B.2C.2D.011.二次函数y=x2﹣2x﹣3的图象与y轴的交点坐标是()A.(0,﹣3)B.(1,0)C.(1,﹣4)D.(3,0)12.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1.下列结论中:①abc>0;①2a+b=0;①方程ax2+bx+c=3有两个不相等的实数根;①抛物线与x轴的另一个交点坐标为(﹣2,0);①若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.其中正确的有()A.5个B.4个C.3个D.2个二、填空题(每小题3分共6小题,满分18分13.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=.14.二次函数y=﹣x2+2kx+3的对称轴是x=2,则k=.15.已知函数y=﹣(x﹣1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1y2(填“<”、“>”或“=”)16.抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c=.17.如图,各抛物线所对应的函数解析式分别为:①y=ax2;①y=bx2;①y=cx2;①y=dx2.比较a,b,c,d的大小,用“>”连接为.18.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.二次函数单元检测卷答题卡姓名:____座位号:______ 准考证号:_______一、选择题(每小题3分共12小题,满分36分)题号123456789101112答案二、填空题(每小题3分共6小题,满分18分)13、_________ 14、___________ 15、_______________16、_________ 17、___________ 18、_______________三、解答题(满分46分)19.(6分)已知抛物线y=x2+(b﹣2)x+c经过点M(﹣1,﹣2b).(1)求b+c的值.(2)若b=4,求这条抛物线的顶点坐标.20.(6分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.21.(8分)服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件70元,经市场调查发现:日销售量y(件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式.(2)求该服装店要想销售这批秋衣日获利750元,售价应定多少元?(3)请销售单价为多少元时,该服装店日获利最大?最大获利是多少元?22.(8分)如图,直线y=﹣x﹣2交x轴于点A,交y轴于点B,抛物线y=a(x﹣h)2的顶点为A,且经过点B.(1)求该抛物线对应的函数解析式;(2)若点C(m,﹣)在该抛物线上,求m的值;(3)请在抛物线的对称轴上找一点P,使PO+PB的值最小,求出点P的坐标.23. (9分)小明根据学习函数的经验,对函数y=x 4﹣5x 2+4的图象与性质进行了 探究.下面是小明的探究过程,请补充完整:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应数值如下表:x …﹣2﹣112…y …4.33.20 ﹣2.2 ﹣1.4 02.83.74 3.7 2.8 0 ﹣1.4 ﹣2.2 m 3.2 4.3 …(1)其中m= ;(2)如图,在平面直角坐标系xOy 中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质 ; (4)进一步探究函数图象发现:①方程x 4﹣5x 2+4=0有 个互不相等的实数根;①有两个点(x 1,y 1)和(x 2,y 2)在此函数图象上,当x 2>x 1>2时,比较y 1和y 2的大小关系为:y 1 y 2(填“>”、“<”或“=”); ①若关于x 的方程x 4﹣5x 2+4=a 有4个互不相等的实数根,则a 的取值范围是 .24.已知直线y=x+2分别交x轴、y轴于A、B两点,抛物线y=x2+mx﹣2经过点A,和x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是抛物线上的动点,且在第三象限,求①ABD面积的最大值;(3)如图2,经过点M(﹣4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE•OF的值.。
2023-2024学年人教版九年级数学上册《第二十二章 二次函数》单元测试卷附有答案学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.关于抛物线22y x x =-+,下列说法错误的是( ) A .该抛物线经过原点B .该抛物线的对称轴是直线1x =C .该抛物线的最大值为1D .当0x >时,y 随x 增大而减小2.已知一次函数y =ax +b 的图象如图所示,那么二次函数y =ax 2+bx +1的图象大致为( )A .B .C .D .3.用20cm 长的绳子围成一个矩形,如果这个矩形的一边长为xcm ,面积是Scm 2,则S 与x 的函数关系式为( )A .S =x (20﹣x )B .S =x (20﹣2x )C .S =x (10﹣x )D .S =2x (10﹣x )4.将抛物线向左平移2个单位后,得到的抛物线的解析式是( ) A . B . C .D .5.若抛物线2y x bx c =++与x 轴两个交点之间的距离为2,抛物线的对称轴为直线1x =,将此抛物线向左平移3个单位,再向下平移2个单位,得到的新抛物线的顶点坐标为( ) A .(2,3)--B .(1,3)-C .(3,2)-D .(2,3)-6.如图所示,抛物线2y ax bx c =++(0a ≠)的对称轴为直线1x =,与y 轴的一个交点坐标为()0,3,其部分图象如图所示,下列结论:①<0abc ;①40a c +>;①方程20ax bx c ++=有一个实根大于2;①当0x <时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个7.下列抛物线平移后可得到抛物线y=-(x -2)2的是( ) A .y=-x 2B .y=x 2-2C .y=(x -2)2+1D .y=(2-x )28.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论正确的是( ) ①abc <0;①a+c >0;①2a+b=0;①关于x 的一元二次方程ax 2+bx+c=0的解是x 1=﹣1,x 2=3①b 2<4acA .①①①B .①①①①C .①①①D .①①①9.设函数221y x kx k =-+-(k 为常数),下列说法正确的是( )A .对任意实数k ,函数与x 轴都没有交点B .存在实数n ,满足当x n ≥时,函数y 的值都随x 的增大而减小C .k 取不同的值时,二次函数y 的顶点始终在同一条直线上D .对任意实数k ,抛物线221y x kx k =-+-都必定经过唯一定点 10.在平面直角坐标系中,若点()11,M x y ,()()2212,N x y x x <是抛物线()220y mx x m m =-+>上的两点,且满足124x x +=时,都有12y y >,则m 的取值范围是( )A .102m <<B .104m <<C .12m >D .1142m <<二、填空题(共8小题,满分32分)11.二次函数y=﹣2(x ﹣1)2+3的图象与y 轴的交点坐标是 .12.若点A(2,m )在函数21y x =-的图象上,则点A 关于x 轴的对称点的坐标是 . 13.把抛物线2y x =-向右平移1个单位,再向上平移3个单位,得到抛物线()213y x =--+. ( )14.已知抛物线22y x mx m =-++,当21x -<<时,y 随x 的增大而增大,m 的取值范围是 . 15.已知抛物线y =ax 2(a ≠0)过点(﹣2,6),在下列5个点中,对于不在此抛物线上的一点P ,将点P 平移到点P ′,使点P ′在此抛物线上,写出点P 的坐标及平移方法:(1,32),(﹣1,32),(1,﹣32),(2,8),(2,3)答: .16.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为 .17.若将图中的抛物线y =x 2-2x +c 向上平移,使它经过点(2,0),则此时的抛物线位于x 轴下方的图象对应x 的取值范围是 .18.如图所示,二次函数y=ax2+bx+c(a≠0)的图象,有下列4个结论:①abc>0;①b>a+c;①4a+2b+c>0;①b2﹣4ac>0;其中正确的是.三、解答题(共6小题,每题8分,满分48分)19.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,并让顾客得到实惠,则每件商品的售价应为多少元?(2)如果要使商场一天获得最大利润,每件衬衫应降价多少元?20.已知二次函数2=++过点A(1,0),B(-3,0),C(0,-3)y ax bx c(1)求二次函数的解析式;(2)在抛物线的对称轴上求点F,使AF+CF最小,求点F的坐标.(3)在抛物线上存在一点P使△ABP的面积为6,求点P的坐标.21.如图,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x 轴正半轴于点B (4,0),交直线AD 于点D (3,52),过点D 作DC ①x 轴于点C .(1)直接写出:a = ,b = ;(2)点P 为x 轴正半轴上一动点,过点P 作PN ①x 轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求①PCM 面积的最大值.22.函数y=ax 2(a≠0)的图象与直线y=2x ﹣3交于点(1,b ). (1)求a 和b 的值.(2)求抛物线y=ax 2的解析式,并求出顶点坐标和对称轴.(3)求抛物线与直线y=﹣2的两个交点及顶点所构成的三角形的面积.23.如图,已知抛物线()20y ax bx c a =++≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点()0,3C .(1)求拋物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使CMP为等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.24.在平面直角坐标系xOy中,抛物线23=-++与x轴交于点A和点B(点A在点By x mx左侧),(1)若抛物线的对称轴是直线x=1,求出点A和点B的坐标,并画出此时函数的图象;(2)当已知点P(m,2),Q(-m,2m-1).若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.参考答案:12.(2,-3)13.√14.m1≥15.(1,﹣32)向上平移3个单位,点(2,8)向下平移2个单位16.0<a<617.0<x<218.①①①.19.(1)92(2)520.(1)223y x x=+-;(2)F(1-,2-);(3)P(17-+,3)或(17--,3)或(0,3-)或P(2-,3-).21.(1)﹣34和114;(2)最大值为251622.(1)a=-1,b=-1;(2) 顶点坐标(0,0),对称轴x=0;(3)6 23.(1)223y x x=--+(2)存在,点P坐标为(1,6)-或(1,10)-或(1,10)--或5 (1,)3 -24.(1)点A坐标为(-1,0),点B坐标为(3,0);(2)m≤-2 或m≥1。
第二十二章 二次函数 单元测试一、单选题1.下列各式中,y 是x 的二次函数的是( ) A .y=mx 2+1(m≠0) B .y=ax 2+bx+cC .y=(x ﹣2)2﹣x 2D .y=3x ﹣12.二次函数y =2(x −3)2+2的二次项系数、一次项系数、常数项分别为( ) A .2,12,20 B .2x 2,-12,20 C .2,-12,20 D .2,-12x ,203.关于二次函数y=2x 2+x-1,下列说法正确的是( ) A .图像与y 轴的交点坐标为(0,1)B .图像的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-984.抛物线y =a (x ﹣1)2+k 与x 轴的一个交点坐标为(﹣1,0),则此抛物线与x 轴的另一个交点坐标为( ) A .(72,0)B .(3,0)C .(52,0)D .(2,0)5.已知点(x 1,y 1)(x 2,y 2)在抛物线y =(x ﹣h )2+k 上,如果x 1<x 2<h ,则y 1,y 2,k 的大小关系是( ) A .y 1<y 2<kB .y 2<y 1<kC .k <y 1<y 2D .k <y 2<y 16.将y =3x 2通过平移,先向上平移2个单位,再向左平移3个单位,可得到抛物线是( )A .y =3(x +3)2−2B .y =3(x +3)2+2C .y =3(x +2)2−3D .y =3(x −2)2+37.已知二次函数y =ax 2+bx +1(a ≠0)图象的顶点在第一象限,且图象经过点(−1,0),若a +b 为整数,则ab 的值为( ) A .−2B .1C .−34D .−148.关于抛物线y 1=x 2+k 与直线y 2=kx +1在同一直角坐标系的图象,其中不正确的是( )A .B .C.D.9.已知二次函数与轴交点的横坐标为、(<),则对于下列结论:①当时,;②方程有两个不相等的实数根、;③x1<−1,x2>−1;④,其中正确的结论是()A.①②B.②③C.②④D.③④10.如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为()A.y=5−x B.y=5−x2C.y=25−x D.y=25−x2 11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc> 0;②b2<4ac;③2c<3b;④a+2b>m(am+b)(m≠1);⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2,其中正确的结论有()A.2个B.3个C.4个D.5个12.如图,分别过点P n(n,0)(n为正整数)作x轴的垂线,交二次函数y=12x2(x>0)的图象于点A n,交直线y=−12x(x>0)于点B n,则1A1B1+1A2B2+⋯+1A nB n的值为()x2+1向右平移2个单位,再向上平移4个单位,得到的抛物线的解13.把抛物线y=−13析式是.14.二次函数y=x2﹣2x+6化为y=(x﹣m)2+k的形式,则m+k=.15.如图是二次函数y= ax²+bx+c的图象的大致位置,其中抛物线与y轴交于点(0,1),则关于x的一元二次方程x²-2x+ab+c=0的根的情况是.x2+x+ 16.体育测试时,初三一名学生推铅球,已知铅球所经过的路线为抛物线y=−11212的一部分,该同学的成绩是.17.一个涵洞成抛物线形,它的截面如图,当水面宽AB=1.6米时,涵洞顶点与水面的距离为2.4m.涵洞所在抛物线的解析式是.18.二次函数y=2x2−x−1与x轴分别交于A、B两点,其顶点为C,则三角形ABC的面积为.19.某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元)的关系满足:y=−2x+400;(2)工商部门限制销售价x满足:70⩽x⩽150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是(填序号).20.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,设运动的时间为t秒,四边形APQC的面积为S mm2,请写出S与t的函数关系式,并标注t的取值范围;三、解答题21.直线y=4x−3与抛物线y=x2交于B、C(B左C右)两点.(1)直接写出B、C点的坐标;(2)在y轴上是否存在一点P,使△PBC的周长最小时,求P点坐标;(3)抛物线y=x2左平移1个单位,再下移4个单位,在备用图中画出图象,直线y=kx交抛物线于M、N两点,且OM=ON,求k的值.22.已知抛物线y=ax2+x+2(a≠0).(1)若抛物线经过点(−1,0),求a的值,并写出它的顶点坐标:(2)若抛物线经过一、二、三象限,求a的取值范围:(3)当a取a1时,抛物线与x轴正半轴交于点A(m,0);当a取a2时,抛物线与x轴交于点B(n,0).若点A在点B左边,试比较a1与a2的大小.23.垃圾分类作为一个公共管理的综合系统工程,需要社会各个方面共同发力.洛阳市某超市计划定制一款家用分类垃圾桶,独家经销,生产厂家给出如下定制方案:不收设计费,定制不超过200套时.每套费用60元;超过200套后,超出的部分8折优惠.已知该超市定制这款垃圾桶的平均费用为56元1套(1)该超市定制了这款垃圾桶多少套?(2)超市经过市场调研发现:当此款垃圾桶售价定为80/套时,平均每天可售出20套;售价每降低1元.平均每天可多售出2套,售价下降多少元时.可使该超市平均每天销售此款垃圾桶的利润最大?24.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为y平方米.(1)求y与x的函数关系式及自变量x的取值范围;(2)若墙的最大可用长度为9米,求此时当AB为多少米时长方形花圃的面积最大,最大面积是多少?25.某药店销售口罩,进价15元,售价20元,为防控新冠肺炎疫情,药店决定凡是一次性购买10个以上的客户,每多买一个,售价就降低0.1元(顾客所购买的全部口罩),但最低价是17元/个.(1)顾客一次性至少购买多少个口罩时,才能以最低价17元/个购买?(2)写出一次性购买x个口罩时(x>10),药店的利润y(元)与购买量x(个)之间的函数关系式;(3)在销售过程中,药店发现一次性卖出36个口罩时比卖出26个口罩的钱少,为了使每次销售均能达到多卖就能多获利,在其他促销条件不变的情况下,最低价应确定为每个多少元?26.弹球游戏规则:弹球抛出后与地面接触一次,弹起降落,若落入筐中,则游戏成功.弹球着地前后的运动轨迹可近似看成形状相同的两条抛物线.如图,甲站在原点处,从离地面高度为1m的点A处抛出弹球,当弹球运动到最高处,即距离地面2m时,弹球与甲的水平距离为2m.弹球在B处着地后弹起,此次弹起的最大高度为原来最大高度的一半,再落至点C处.(1)求弹球第一次着地前抛物线的解析式(不要求写出x的取值范围)(2)若不考虑筐的因素,求弹球第二次着地点到点O的距离.(3)如果摆放一个底面半径为0.5m,高0.5m的圆柱形筐,且筐的最左端距离原点9m,那么甲能投球成功吗?若能,请说说理由;若不能,请移动筐使甲投球成功,求筐的移动方向及移动距离m的取值范围.参考答案1.A2.C3.D4.B5.D6.B7.D8.D9.B10.D11.A12.A13.y=−13(x−2)2+514.615.有两个不等的实数根16.6+6√517.y=−154x218.273219.①②③20.y=4t2-24t+144(0<t<6)21.(1)B(1,1),C(3,9)(2)P(0,3)(3)k=222.(1)a=−1,它的顶点坐标为(12,94);(2)0<a<18;(3)a1<a2.23.(1)该超市定制这款垃圾桶300套(2)售价下降7元时,平均每天销售此款垃圾桶的利润最大24.(1)y=−3x2+24x(0<x<8);(2)当x=5时,y max=45平方米.25.(1)顾客一次性至少购买40个口罩时,才能以最低价17元/个购买;(2)y={2x(x>40)−110x2+6x(10<x⩽40);(3)最低价应确定为每个18元.26.(1)y=-14(x-2)2+2;(2)弹球第二次着地点到点O的距离为(6+2√2)m;(3)m的取值范围为5-3√2<m<6-3√2。
第二十二章二次函数(单元测试)2023-2024学年九年级上册数学人教版一、单选题(本大题共12小题,每小题3分,共36分)1.将抛物线22y x =向左移2个单位长度,再向下平移2个单位长度,得到如图所示的图象,则图中点A 的坐标为( )A .(2,)1﹣B .()2,1﹣C .(2,1)--D .()2,12.对于任意实数m ,下列函数一定是二次函数的是( )A .22(1)y m x =-B .22(1)y m x =+C .22(1)y m x =+D .22(1)y m x =-小关系为( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 1<y 34.如图,函数y =﹣x 2+bx +c 的部分图象与x 轴、y 轴的交点分别为A (1,0),B (0,3),对称轴是x =﹣1,在下列结论中,正确的是( )A .顶点坐标为(﹣1,3)B .抛物线与x 轴的另一个交点是(﹣4,0)C .当x <0时,y 随x 的增大而增大D .b +c =15.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出,若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出,…,为了投资少而获利大,每个每天应提高( ) A .4元或6元 B .4元 C .6元 D .8元6.二次函数21(0)y ax bx a =+-≠的图象经过点()1,1,则代数式a b +的值为 ( )A.-1B.0C.1D.2根为13x=-,21x=.其中正确的是()A.①①B.①①C.①①D.①①8.如图,将抛物线2y-x+x6=+图象中x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,则新图象与直线y=-6的交点个数是()A.1B.2C.3D.49.某校的围墙上端由--段段相同的凹曲拱形栅栏组成,如图所示,栅栏的跨径AB间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米,以O为原点,OC所在的直线为y轴建立平面直角坐标系,根据以上的数据,则这段栅栏所需立柱的总长度(精确到0.1米)为()A.1.5米B.1.9米C.2.3米D.2.5米10.如图,抛物线y=ax2+bx+c的对称轴是x=1,甲、乙、丙得出如下结论:甲:abc>0;乙:方程ax2+bx+c=-2有两个不等实数根;丙:3a+c>0.则下列判断正确的是()A .甲和丙都错B .乙和丙都对C .乙对,丙错D .甲对,丙错11.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x =1,将此抛物线向右平移1个单位,再向下平移2个单位,得到的抛物线过点( )A .(3,6)B .(3,﹣2)C .(3,1)D .(3,2)12.已知二次函数y =ax 2+bx +c (a >0)的图象与x 轴交于点(x 1,0)与(x 2,0),其中x 1<x 2,方程ax 2+bx +c =2的两根为m ,n (m <n ),下列结论:①b 2﹣4ac ≥0;①x 1+x 2=m +n ;①x 1<m <n <x 2;①m <x 1<x 2<n ,其中正确的是( )A .①①B .①①C .①①D .①①二、填空题(本大题共8小题,每小题3分,共24分)13.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列4个结论:① 0abc >;① b a c <+;① 420a b c ++>;17.已知二次函数y=ax 2+bx+c (a≠0)的图象经过A (0,3),B (2,3)两点.请你写出一组满足条件的a ,b 的对应值.a= b=18.在平面直角坐标系中,将抛物线23y x =-先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为 .19.二次函数y=ax 2+bx+c 的图象如图所示,下列关系式中:①a <0;①abc >0;①a+b+c >0;①b 2﹣4ac >0.其中不正确的序号是 .20.已知抛物线()220y x bx n b =-++>的顶点为A ,交y 轴于点B ;抛物线22y x bx m =++的顶点为C ,交y 轴于点D .若6m n -=,且以A ,B ,C ,D 四点为顶点的四边形为矩形,则b = .三、解答题(本大题共5小题,每小题8分,共40分)21.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现②求出y 与x 之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x 取何值时,商场获利润不少于2160元.根据上述信息,解决以下问题:(1)求出y与x之间的函数关系;(2)求水柱落地点与雕塑AB的水平距离;(3)为实现动态喷水效果,广场管理处决定对喷水设施做如下设计改进:在喷出水柱轨迹的形状2y ax bx c=++不变的前提下,把水柱喷水的半径(动态喷水时,点C到AB的距离)控制在7m到14m之间,请探究改建后喷水池水柱的最大高度和b的取值范围.∠为边向右作等腰直角ABC,BAC2恰好将ABC的面积分为将ABC以AC所在直线为对称轴翻折,得到AB C',那么在二次函数图象上是否存在点,使PB C'是以为直角边的直角三角形?若存在,请求出点坐标;若不存在,请说明理由.参考答案:。
2023-2024学年九年级数学上册《第二十二章二次函数》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数表达式中,一定为二次函数的是()A.y=2x−5B.ℎ=12t2C.y=ax2+bx+c D.y=x2+1x2.抛物线y=2x2−4x+1的对称轴是直线()A.x=−3B.x=−32C.x=1D.x=−13.同一坐标系中作y=3x2,y=−3x2,y=13x2的图像,它们的共同特点是()A.关于y轴对称,抛物线开口向上B.关于y轴对称,抛物线开口向下C.关于y轴对称,抛物线的顶点在原点D.关于x轴对称,抛物线的顶点在原点4.已知二次函数y=3(x+2)2的图象上有三点A(1,y1),B(2,y2),C(−3,y3)则y1,y2,y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1 5.将y=x2+6x+7进行配方,正确的结果是()A.y=(x−3)2−2B.y=(x−3)2+2C.y=(x+3)2−16D.y=(x+3)2−26.对于二次函数y=x2−4x−1的图象,下列说法错误的是()A.开口向上B.与x轴有两个交点C.抛物线的顶点坐标是(2,-5)D.当x≥2时,y随x的增大而减小7.如图所示二次函数y=ax2+bx+c的图象的一部分,图象过点(﹣3,0),对称轴为直线x=﹣1,以下结论:①2a﹣b=0;②abc<0;③当﹣3<x<1时,y>0;④对于a的每一个确定值,若一元二次方程ax2+bx+c=t(t为常数,t≥0)的根为整数,则t的值只有3个.其中正确的有()A.4个B.3个C.2个D.1个8.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数解析式是y=−112x2+23x+53,则该运动员此次掷铅球的成绩是()A.6m B.12m C.8m D.10m二、填空题9.如果函数y=(k-2)x k2−2k+2+kx+1是关于x的二次函数,那么k的值是。
第二十二章二次函数(单元测试)2024-2025学年九年级上册数学人教版一、单选题1.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h =﹣5t 2+20t ﹣14,则小球距离地面的最大高度是( )A .2米B .5米C .6米D .14米2.已知等边三角形的边长为x ,则它面积y 与边长x 之间的关系用图象大致可表示为( )A .B .C .D .3.二次函数y=2(x+1)2-3的图象的对称轴是( )A .直线x=-1B .直线x=1C .直线x=-3D .直线x=3 4.抛物线()21322y x =---的顶点坐标是( ) A .()3,2- B .()3,2- C .()3,2 D .()3,2--5.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴为直线1x =-,下列结论错误的是( )A .24b ac >B .0a b c ++>C .<0a b c -+D .0abc >6.某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率x ,第3年的销售量为y 台,则y 关于x 的函数解析式为( )A .()500012y x =+B .()250001y x =+ C .50002y x =+ D .25000y x = 7.根据下列表格,判断出方程28910x x +-=的一个近似解(结果精确到0.01)是( ) x 1.5- 1.4- 1.3- 1.2-1.1- 2891x x +- 3.52.08 0.82 0.28- 1.22-8.已知二次函数y =ax 2+bx +c (a 、b 、c 为常数且a ≠0)的图象经过点(1,0)、(-2,y 1)、(-1,y 2),且y 1<0<y 2.以下结论:①abc >0;①a +3b +2c >0;①在-2<x <-1中存在一个实数x 0,使得x 0=-a b a +;①对于自变量x 的任意-个取值,都有24b x x a a b +≥-.其中正确结论的个数是( ) A .1 B .2 C .3 D .49.下列函数中,属于二次函数的是( )A .221y x =-B .1y x =-C .y=8xD .251y x =+ 10.如图,抛物线()20y ax bx c a =++≠,与x 轴交于点()3,0-,其对称轴为直线=1x -,结合图象给出下列结论:①20b a +=; ①42a c b +<;①0a b c ++=; ①对于任意实数2,n a b an bn -≤+.其中正确的结论有( )A .1B .2C .3D .411.当a≤x≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为( )A .-1B .2C .0或2D .-1或212.如图,在平面直角坐标系中,有五个点,()()()()()2002244270A B C D E -,,,-,,,,-,,.将二次函数()()220y a x m m =-+≠的图象记为G ,下列结论中正确的有( )①点A 一定在G 上;①点B C D ,,可以同时在G 上;①点C E ,可以同时在G 上;①点C D E ,,不可能同时在G 上.A .1个B .2个C .3个D .4个二、填空题13.如果抛物线2(1)y m x =+的最低点是原点,那么实数m 的取值范围是 .14.点()11,A m y -,()2,B m y 都在二次函数()22y x =-的图象上.若12y y <,则m 的取值范围为 .15.已知二次函数y =3(x ﹣1)2+k 的图象上有三点A (2,y 1),B (3,y 2),C (﹣3,y 3),则y 1,y 2,y 3的大小关系为 . 16.如图,在矩形 ABCD 中,AD =3,点E 是AD 边上的动点,连接CE ,以CE 为边向右上方作正方形CEFG ,过点F 作 FH ①AD ,垂足为H ,连接AF . 在整个变化过程中,①AEF 面积的最大值是 .17.如图,抛物线265y x x =---交x 轴于A 、B 两点,交y 轴于点C ,点()1D m m +,是抛物线上的点,则点D 关于直线AC 的对称点的坐标为 .18.若关于x 的一元二次方程240x x t -+-=(t 为实数)在15x <<的范围内有解,则t 的取值范围是 . 19.如图,一段抛物线:y =-x(x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……如此进行下去,直至得C 2019.若P (m ,2)在第2019段抛物线C 2019上,则m = .20.如图是二次函数2y ax bx c =++图象的一部分,图象过点()30A -,,对称轴为直线1x =-,给出以下结论: ①40b c +<①若15,2B y ⎛⎫- ⎪⎝⎭,21,2C y ⎛⎫- ⎪⎝⎭为函数图象上的两点,则12y y > ①不等式20ax bx c ++≥的解集是31x -≤≤①若221122ax bx ax bx +=+,且12x x ≠,则122x x +=-①关于x 的一元二次方程()21a x bx b c -+=-的解是12x =-,22x =其中正确的结论是 (填写代表正确结论的序号).三、解答题21.如果一个点的横、纵坐标均为常数,那么我们把这样的点称为确定的点,简称定点.比如点()1,2就是一个定点.对于一次函数3y kx k =-+(k 是常数,0k ≠),由于()313y kx k k x =-+=-+,当10x -=即1x =时,无论k 为何值,y 一定等于3,我们就说直线3y kx k =-+一定经过定点()1,3.设抛物线()2222y mx m x m =+-+-(m 是常数,0m ≠)经过的定点为点D ,顶点为点P .(1)抛物线经过的定点D 的坐标是______;(2)是否存在实数m ,使顶点P 在x 轴上?若存在,求出m 的值;若不存在,请说明理由;(3)当12m =-时,在3y kx =+的图像上存在点Q ,使得这个点到点P 、点D 的距离的和最短.求k 的取值范围.22.定义:在平面直角坐标系中,一条抛物线经过平移后,得到一条抛物线,如果这两条抛物线的顶点和坐标原点能构成一个等腰直角三角形,那么我们称这两条抛物线互为等勾股抛物线,也可以说其中一条抛物线是另一条抛物线的等勾股抛物线.(1)求证:抛物线21288y x x =-+与抛物线2222y x =+是等勾股抛物线;(2)若抛物线()233667y x -=+与抛物线24(6)y a x b =-+是等勾股抛物线,求a b +的值. (3)如图,在平面直角坐标系中,抛物线2(3)5y x =--+的顶点为A ,请你直接写出该抛物线的等勾股抛物线的解析式.23.已知二次函数y =x 2+bx +c (b ,c 为常数)的图象经过点A (1,0)与点C (0,-3),其顶点为P .(1)求二次函数的解析式及P 点坐标;(2)当m ≤x ≤m +1时,y 的取值范围是-4≤y ≤2m ,求m 的值.24.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A 、B 两点,A 点在原点的左则,B 点的坐标为()3,0,与y 轴交于()0,3C -点,点P 是直线BC 下方的抛物线上一动点.()1求这个二次函数的表达式;()2求出四边形ABPC的面积最大时的P点坐标和四边形ABPC的最大面积;(3)连结PO、PC,在同一平面内把POC沿y轴翻折,得到四边形'POP C为POP C,是否存在点P,使四边形'菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;()4在直线BC找一点Q,使得QOC为等腰三角形,请直接写出Q点坐标.25.如图,抛物线:y=ax2+bx+c与x轴交于A(1,0)、B(-3,0)两点,与y轴交于点C(0,-2).(1)求抛物线的解析式;(2)动点P在抛物线:y=ax2+bx+c上移动,点Q在直线l:x=﹣4上移动,在运动过程中,是否存在△P AQ是以点P 为直角顶点的等腰直角三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.参考答案:1.C2.A3.A4.B5.D6.B7.C8.C9.A10.C11.D12.C13.m >-114.52m > 15.y 1<y 2<y 316.9817.()54--,或()01,18.54t -<≤19.6055或605620.①①①①21.(1)(1,0)(2)不存在, (3)133k -≤≤- 22.(1)略;(2)397-或37; (3)25(8)2y x =--+,26(2)8y x =-++27(5)3y x =---,28(5)3y x =-++29(4)1y x =--+,210(1)4y x =-++23.(1)223y x x =+-,顶点P 的坐标为()1,4--(2)24.(1)223y x x =--;(2)当32a =时,四边形ABPC 的面积取最大值,最大值为758;(3)存在点32P ⎫-⎪⎪⎝⎭,使四边形'POP C 为菱形;(4)Q 点坐标为3⎫⎪⎪⎝⎭、3⎛⎫- ⎪ ⎪⎝⎭、()3,0或33,22⎛⎫- ⎪⎝⎭. 25.(1)224233y x x =+-(2)符合条件的点P 的坐标是),,(-2,-2),(32-,52-)。
第二十二章 二次函数 单元测试
班级___________姓名_________学号___________
一、选择题:
1、二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y
随着x 的增大而减小,则k 的值应取( )
A.12
B.11
C.10
D.9
2、下列四个函数中,y 的值随着x 值的增大而减小的是( )
A.x y 2=
B.()01>=x x
y C.1+=x y D.()02>=x x y 3、已知二次函数y=ax 2+bx 的图象经过点A (-1,1),则ab 有 ( )
A.最小值0
B.最大值 1
C.最大值2
D.有最小值4
1- 4、抛物线y=ax 2+bx+c 的图象如图,OA=OC ,则( )
A. ac+1=b
B. ab+1=c
C.bc+1=a
D.以上都不是
5、若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点(0,1),(-1,0), 则S=a+b+c 的变化范围是 ( )
A.0<S<2
B. S>1
C.1<S<2
D.-1<S<1 6、如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( )
A.8
B.14
C.8或14
D.-8或-14
7、把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( )
A.()1232+-=x y
B.()1232
-+=x y C.()1232--=x y D.()1232
++=x y 8、已知抛物线y=ax 2+bx,当a>0,b<0时,它的图象经过(
)
A.一、二、三象限
B.一、二、四象限
C .一、三、四象限 D.一、二、三、四象限
9、若0<b ,则二次函数12-+=bx x y 的图象的顶点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
10、已知二次函数222)(22b a x b a x y +++-= ,b a , 为常数,当y 达到最小值
时,x 的值为( )
A.b a +
B.2b a +
C.ab 2-
D.2
b a - 11、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+
c 的是( )
A B C D
12、不论x 为何值,函数y=ax 2+bx +c(a≠0)的值恒大于0的条件是( )
A.a>0,△>0
B.a>0, △<0
C.a<0, △<0
D.a<0, △<0
二、填空题:
13、如图,已知点M (p ,q )在抛物线y =x 2-1上,以M 为圆心的圆与x 轴交于A 、B 两点,且A 、B 两点的横坐标是关于x 的方程x 2-2px +q =0的两根,则弦AB 的长等于 。
14、设x 、y 、z 满足关系式x -1=21+y =32-z ,则x 2+y 2+z 2的最小值为 。
15、已知二次函数y =ax 2(a ≥1)的图像上两点A 、B 的横坐标分别是-1、2,
点O 是坐标原点,如果△AOB 是直角三角形,则△OAB 的周长为 。
16、已知二次函数y =-4x 2-2m x +m 2与反比例函数y =x
m 42+的图像在第二象限内的一个交点的横坐标是-2,则m 的值是 。
17、已知二次函数22)3()1(-+-=x x y ,当x =_________时,函数达到最小值。
18、有一个抛物线形拱桥,其最大高度为16m ,跨度为40m ,现把它的示意图放在平面直角坐标系中如 图(4),求抛物线的解析式是_______________。
19、如图(5),A 、B 、C 是二次函数y=ax 2+bx +c (a≠0)的图像上三点,根据图中给出的三点的位置,可得a _______0,c ________0, ⊿________0.
20、老师给出一个函数,甲,乙,丙,丁四位同学各指出这个函数的一个性质: 甲:函数的图像不经过第三象限。
乙:函数的图像经过第一象限。
丙:当x <2时,y 随x 的增大而减小。
丁:当x <2时,y >0,
已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数__________。
21、已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是_________________.(只要写出一个可能的解析式)
22、炮弹从炮口射出后,飞行的高度h (m )与飞行的时间t (s )之间的函数关系是h=v 0tsinα—5t 2,其中v 0是炮弹发射的初速度, α是炮弹的发射角,当v 0=300(s m ), sinα=2
1时,炮弹飞行的最大高度是___________。
23、抛物线y=-(x-L )(x-3-k)+L 与抛物线y=(x-3)2+4关于原点对称,则L+k=_____。
三、解答题:
23、已知二次函数y =x 2+bx +c 的图像与x 轴的两个交点的横坐标分别为x 1、x 2,一元二次方程x 2+b 2x +20=0的两实根为x 3、x 4,且x 2-x 3=x 1-x 4=3,求二次函数的解析式,并写出顶点坐标。
24、2000年度东风公司神鹰汽车改装厂开发出A型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2001年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A型农用车的科技含量,每辆农用车的成本价增长率为x,出厂价增长率为0.75x,预测年销售增长率为0.6x.(年利润=(出厂价-成本价)×年销售量)
(1)求2001年度该厂销售A型农用车的年利润y(万元)与x之间的函数关系。
(2)该厂要是2001年度销售A型农用车的年利润达到4028万元,该年度A型农用车的年销售量应该是多少辆?
25、如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20m,水位上升3m 就达到警戒线CD,这是水面宽度为10m。
(1)在如图的坐标系中求抛物线的解析式。
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
26、汽车在行驶中,由于惯力作用,刹车后还要向前滑行一段距离才能停住,我
们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素,在一个限速40时km 乙内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了,事后现场测量甲车的刹车距离为12m ,乙车的刹车距离超过10m ,但小于20m ,查有关资料知,甲种车的刹车距离S 甲(m )与车速x (时km )
之间有下列关系,S 甲=0.1x +0.01x 2,乙种车的刹车距离S 乙(m )
与车速x (时km )的关系如下图表示,请你就两车的速度方面分析相碰的原因。
27、改革开放以来,某镇通过多种途径发展地方经济,1995年该镇年国民生产总值为2亿元,根据测算,该镇国民生产总产值为5亿元时,可达到小康水平。
(1)若从1996年开始,该镇国民生产总值每年比上一年增加0.6亿元,该镇通过几年可达到小康水平?
(2)设以2001年为第一年,该镇第x 年的国民生产总值为y 亿元,y 与x 之间的
关系是y=53
2912++x x (x≥0)该镇那一年的国民生产总值可在1995年的基础上翻两番(即达到1995年的年国民生产总值的4倍)?
28、已知:二次函数c x b x y ++
-=32与X 轴交于点M (x 1,0)N (x 2,0)两点,与Y 轴交于点H.
(1)若∠HMO=450,∠MHN=1050时,求:函数解析式;
(2)若122
21=+x x ,当点Q (b ,c )在直线3191+=x y 上时,求二次函数c x b x y ++-=3
2的解析式。
29、已知函数y=-ax 2+bx+c(a≠0)图象过点P (-1,2)和Q (2,4).
(1)证明:无论a 为任何实数时,抛物线的图象与X 轴的交点在原点两侧;若它的图象与X 轴有两个交点A 、B (A 在B 左)与y 轴交于点C ,且
1=-AO
CO BO CO ,求抛物线解析式;
(2)点M 在(1)中所求的函数图象上移动,是否存在点M ,使AM ⊥BM ?若存在,求出点M 的坐标,若不存在,试说明理由。
参考答案
一、选择题:
CBDAA,CDBDB,AB
二、填空题:
13.2; 14. 5914
15. 5224+;
16.-7;
17.2;
18. Y=0.04x 2+1.6x;
19. <、<、>;
20.略;
21. 只要写出一个可能的解析式;
22. 1125m
23.-9.
三、解答题:
24. y=x 2+3x+2 (-3/2,- 1/4)
25. y=-1200x 2+400x+4000;11400,10600; 26. 2125
y x =-; 5小时 27.(1)5;(2) 2003; 28.(1) 3
3)33-1(-x y 2++=x ; (2) y=-x 2+1/3x+4/9 ,y=-x 2-x;
29.略.。