复变函数论第2章第3节
- 格式:ppt
- 大小:3.96 MB
- 文档页数:87
第三节复变函数的极限与连续一、复变函数的概念二、复变函数的极限三、复变函数的连续性一、复变函数的概念1. 复变函数的定义定义1.1 设E 是复平面上的点集, 若对任何z ∈E , 都存在惟一确定的复数w 和z 对应, 称在E 上确定了一个单值复变函数,用w =f (z )表示.E 称为该函数的定义域.在上述对应中, 当z ∈E 所对应的w 不止一个时, 称在E 上确定了一个多值复变函数.(){()|}() A f E f z z E w f z ==∈=称为复函的值域数.2. 复变函数与自变量之间的关系:() :w z w f z =复变函数与自变量之间的关系相当于两个实函数),,(),,(y x v v y x u u ==例3 , 2z w =函数,, iv u w iy x z +=+=令2)( iy x iv u +=+则,222xyi y x +−= : 2数对应于两个二元实变函于是函数z w =,22y x u −=.2xy v =,,z x iy w u iv =+=+因为,若记则()Re ()Im ()(,)(,).w f z f z i f z u x y iv x y ==+=+例4解,, iv u w iy x z +=+=令2)( iy x iv u +=+则,222xyi y x +−=,22y x u −=.2xy v =所以222424 4.w z z x y xy w u v =−====于是将平面上的双曲线与分别映为平面上直线和222,42w z z x y xy w =−== 设复函数试问它将平面上的双曲线 与 分别映为平面上的何种曲线?7函数w =z 2对应于两个二元实变函数: u =x 2−y 2, v =2xy 把z 平面上的两族双曲线x 2−y 2 = c 1 , 2xy = c 2 分别映射成w 平面上的两族平行直线u =c 1 , v =c 2 .101−1−1−10−8−6−4−2x 2468v =101y −10−8−6−4−2u =02468uv 1010−10−10⎯⎯→⎯=2z w θr ϕρ二、复变函数的极限1.复变函数极限的定义定义1.200000,()0,0,,0|||()|,()lim(),lim ().z z z E z z w f z E C z E C z E z z f z z z f z f z f z αεδδαεααα→∈→=⊂∈∀>∃>∈<−<−<== 设复函数在点集上有定义,为的一个聚点, 。
第二章 复变函数第一节 解析函数的概念及C.-R.方程1、导数、解析函数定义2.1:设()w f z =是在区域D 内确定的单值函数,并且0z D ∈。
如果极限00,0()()limz z z Df z f z z z →∈--存在,为复数a ,则称)(z f 在0z 处可导或可微,极限a 称为)(z f 在0z 处的导数,记作0'()fz ,或z z dw dz=。
定义2.2:如果()f z 在0z 及0z 的某个邻域内处处可导,则称()f z 在0z 处解析;如果()f z 在区域D 内处处解析,则我们称()f z 在D 内解析,也称()f z 是D 的解析函数。
解析函数的导(函)数一般记为'()f z 或d ()d f z z。
注解1、εδ-语言,如果任给0ε>,可以找到一个与ε有关的正数()0δδε=>,使得当z E ∈,并且0||z z δ-<时,00()()||f z f z a z z ε--<-,则称)(z f 在0z 处可导。
注解2、解析性与连续性:在一个点的可导的函数必然是这个点的连续函数;反之不一定成立;注解3、解析性与可导性:在一个点的可导性是一个局部概念,而解析性是一个整体概念;注解4、函数在一个点解析,是指在这个点的某个邻域内解析,因此在此点可导;反之,在一个点的可导性不能得到在这个点解析。
解析函数的四则运算:()f z 和()g z 在区域D 内解析,那么()()f z g z ±,()()f z g z ,()/()f z g z (分母不为零)也在区域D内解析,并且有下面的导数的四则运算法则:(()())''()'()[()()]''()()()'()f zg z f z g z f z g z f z g z f z g z ±=±=+2()'()()()'()()[()]'f z f z g z f z g z g z g z -⎡⎤=⎣⎦。
复变函数论课程教学大纲一、课程说明1、课程性质《复变函数》是数学与应用数学专业的一门专业主干课程,是数学分析的后续课程。
本课程的主要内容是讨论单复变量的复值可微函数的性质,其主要研究对象是全纯函数,即复解析函数。
复变函数论又称复分析,是数学分析的推广和发展。
因此它不仅在内容上与数学分析有许多类似之处,而且在逻辑结构方面也非常类似。
复变函数论是一门古老而富有生命力的学科。
早在19世纪,Cauchy、Weierstrass 及Riemann等数学巨匠就已经给这门学科奠定了坚实的基础。
复变函数论作为一种强有力的工具,已经被广泛应用于自然科学的众多领域,如理论物理、空气动力学、流体力学、弹性力学以及自动控制学等,目前也被广泛应用于信号处理、电子工程等领域。
复变函数论作为一门学科,有其自身的特点,有其特有的研究方法。
在学习过程中,应注意将所学的知识融汇贯通,并通过与微积分理论的比较加深理解,掌握它自身所固有的理论和方法。
2、课程教学目标与要求(1)通过本课程的教学,使学生掌握复变函数论的基本理论和方法,获得独立地分析和解决某些相关理论和实际问题的能力。
为进一步学习其他课程,并为将来从事教学,科研及其他实际工作打好基础。
(2)通过基本概念的正确讲解,基本理论的系统阐述,基本运算能力的严格训练,逐步提高学生的数学修养。
同时注意扩展学生的学习思路,使他们了解更多的和现代生活息息相关的数学应用知识。
(3)作为师范专业,在有关内容方面注重高等数学对初等数学的提高和指导意义,使学生在今后工作中有较高的起点。
3、先修课程与后续课程先修课程:数学分析,解析几何,高等代数后续课程:数学建模,概率论与数理统计,拓扑学,解析数论等4、教学时数分配表5、使用教材:《复变函数论》(第三版),钟玉泉编;高等教育出版社。
6、教学方法与手段(1)学与思的结合:既要了解相关内容,又要对此进行深入的思考与分析;(2)听与说的结合:要求学生既要认真听老师的讲解,又要勇于单独发表自己的见解;(3)知与做的结合:通过对数学方法的掌握,解决与之相关的其他数学问题;(4)理论与实践的结合:通过本课程理论学习形成的数学思想方法,应用于实际之中,同时加深对其他数学专业课的理解。
《复变函数》课程教学大纲适用专业:数学与应用数学执笔人:王小灵审定人:王宏勇系负责人:张从军南京财经大学应用数学系《复变函数》课程教学大纲课程代码:200072英文名:Complex Variable Function课程类别:专业选修课适用专业:数学与应用数学前置课:数学分析后置课:概率论、数学物理方程、偏微分方程学分:2学分课时:54课时主讲教师:王小灵等选定教材:钟玉泉,复变函数论(第三版)[M].北京:高等教育出版社,2003.课程概述:复变函数的主要内容是讨论复数之间的相互依赖关系,其主要研究对象是解析函数。
复变函数是在数学分析的基础上,复变函数又称复分析,也称为解析函数论.是实变函数微积分的推广和发展。
因此它不仅在内容上与实变函数微积分有许多类似之处,而且在研究问题的方面与逻辑结构方面也非常类似。
复变函数是一门古老而富有生命力的学科。
早在19世纪,Cauchy、Weierstrass及Riemann 等人就已经给这门学科奠定了坚实的基础。
复变函数不但是我们所学数学分析的理论推广,而且作为一种强有力的工具,已经被广泛的应用于自然科学的众多领域,如理论物理、空气动力学、流体力学、弹性力学以及自动控制学等,目前也被广泛应用于信号处理、电子工程等领域。
复变函数作为一门学科,有其自身的特点和研究方法与研究工具,在学习过程中,应注意与微积分理论的比较,从而加深理解,同时也须注意复变函数本身的特点,并掌握它自身所固有的理论和方法,抓住要点,融会贯通。
教学目的:复变函数是微积分学在复数域上的推广和发展,通过复变函数的学习能使学生对微积分学的某些内容加深理解,提高认识。
教学方法:教学过程宜采用以章为主的单元组织教学法,以课堂讲授为主,结合多媒体教学软件辅助教学,教学中应强调理论与实际并重,各章应安排一定课时的习题课,课后教师需安排时间集中对学生辅导答疑,学生必须完成一定量的作业。
本课程可根据需要安排课堂讨论。