材料物理总结
- 格式:ppt
- 大小:54.50 KB
- 文档页数:9
材料物理性能检验工年终总结范文材料物理性能检验工年终总结一、工作概述作为一名材料物理性能检验工,我负责本单位材料的物理性能检验工作。
我从事这个工作已有一年时间了,通过这一年的努力,我逐渐熟悉并掌握了材料物理性能检验的各项操作技能和方法。
在这一年的工作中,我按照规范和标准,准确地进行了一系列的物理性能测试和测量,如硬度测试、拉伸测试、冲击试验、抗压测试等。
同时,我还负责编写检验报告,并将测试结果及时反馈给相关负责人。
二、工作亮点1. 注重标准化操作在进行材料物理性能检验时,我始终坚持按照标准化操作,保证每一项测试都能够得到准确、可靠的结果。
我仔细研读了相关标准并根据实际情况进行了合理的调整和改进,以确保测试结果的准确性和可重复性。
2. 提高测试效率为了提高工作效率,我学习并熟练掌握了各项测试方法和操作技巧。
我通过不断学习和实践,积累了丰富的实验经验,并灵活运用这些技能来完成工作任务。
在一些重复性较高的测试中,我还制定了规范的操作流程和优化方案,进一步提高了工作效率。
3. 主动学习新知识为了跟上行业的发展和进步,我每周都会花时间学习相关新知识。
我关注材料物理性能检验领域的最新研究和技术,通过阅读论文、参加学术讲座等方式,不断提升自己的专业水平和知识储备。
4. 优化仪器设备管理我在工作中注重仪器设备的合理使用和管理,积极参与设备的维护和保养工作。
我及时处理和报修设备故障,并且在测试结束后对设备进行彻底的清洁和整理,确保设备的正常运行。
三、存在问题及改进措施在这一年的工作中,我也发现了一些存在的问题,主要包括:1. 测试数据记录不规范:在测试过程中,我有时会因为疏忽或时间紧迫而未能及时记录测试数据,这给日后的数据分析和报告编写带来了一定的困扰。
为了改进这个问题,我计划在接下来的工作中加强对测试数据的记录,及时整理和归档。
2. 对新测试方法的掌握不足:随着材料科学的发展,新的测试方法和技术层出不穷。
然而,我在这方面的学习和掌握还不够充分,没有跟上时代的步伐。
关于初中物理材料世界知识点的总结第1篇:关于初中物理材料世界知识点的总结一、我们周围的材料1、金属材料:由金属元素或以金属元素为主制成的材料。
2、无机非金属材料:陶瓷、玻璃、金刚石、半导体是常见的无机非金属材料。
3、有机高分子材料:指以有机高分子为基础构成的材料。
4、复合材料:将优缺点能互补的材料复合在一起,制造出的*能优良的新材料。
5、合金不是复合材料。
6、材料的物理*质:(1)**:材料受力发生形变,除去外力后,材料又自动回复到原状。
(2)硬度:描述材料的坚硬程度。
(3)延展度:材料具有的可以锻打成片、拉成丝的*质。
7、材料与社会发展:如何合理地利用资源,有效保护环境,已成为人类关注的一个重大课题。
二、半导体1、材料的导电*分类:(1)导体:容易导电(2)半导体:导电能力介于导体与绝缘体之间。
(3)绝缘体:不容易导电。
2、半导体二极管:单向导电*。
3、半导体三极管:放大电信号。
4、半导体的应用:(1)太阳能电池(2)条形码扫描器(3)微处理器(4)机器人三、探索新材料1、超导材料:电阻为零的材料。
2、超导材料的应用:远距离输电、超导磁悬浮、增加磁*。
3、纳米材料特点:空间尺度小,硬度高、强度大。
4、纳米材料的应用:使计算机运行速度加快,芯片体积减小。
制造纳米机器人未完,继续阅读 >第2篇:关于磁*材料应用的初中物理知识点磁*材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。
可用于记录语言、音乐、图像信息的磁带、计算机的磁*存储设备、乘客乘车的凭*和票价结算的磁*卡等。
下面着重谈磁带上所用的磁*材料和作用原理。
我们知道,硬磁*材料被磁化以后,还留有剩磁,剩磁的强弱和方向随磁化时磁*的强弱和方向而定。
录音磁带是由带基、粘合剂和磁粉层组成。
带基一般采用聚碳*脂或*乙烯等制成。
磁粉是用剩磁强的r-fe2o3或cro2细粉。
录音时,是把与声音变化相对应的电流,经过放大后,送到录音磁头的线圈内,使磁头铁芯的缝隙中产生集中的磁场。
第一章电学性能1。
1 材料的导电性,ρ称为电阻率或比电阻,只与材料特性有关,而与导体的几何尺寸无关,是评定材料导电性的基本参数。
ρ的倒数σ称为电导率。
一、金属导电理论1、经典自由电子理论在金属晶体中,正离子构成了晶体点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此又称为“电子气”。
它们的运动遵循理想气体的运动规律,自由电子之间及它们与正离子之间的相互作用类似于机械碰撞。
当对金属施加外电场时,自由电子沿电场方向作定向加速运动,从而形成了电流。
在自由电子定向运动过程中,要不断与正离子发生碰撞,使电子受阻,这就是产生电阻的原因。
2、量子自由电子理论金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,可以在整个金属中自由运动。
但金属中每个原子的内层电子基本保持着单个原子时的能量状态,而所有价电子却按量子化规律具有不同的能量状态,即具有不同的能级。
0K时电子所具有最高能态称为费密能E F.不是所有的自由电子都参与导电,只有处于高能态的自由电子才参与导电。
另外,电子波在传播的过程中被离子点阵散射,然后相互干涉而形成电阻.马基申定则:,总的电阻包括金属的基本电阻和溶质(杂质)浓度引起的电阻(与温度无关);从马基申定则可以看出,在高温时金属的电阻基本取决于,而在低温时则决定于残余电阻。
3、能带理论能带:由于电子能级间隙很小,所以能级的分布可看成是准连续的,称为能带。
图1—1(a)、(b)、(c),如果允带内的能级未被填满,允带之间没有禁带或允带相互重叠,在外电场的作用下电子很容易从一个能级转到另一个能级上去而产生电流,具有这种能带结构的材料就是导体。
图1—1(d),若一个满带上面相邻的是一个较宽的禁带,由于满带中的电子没有活动的余地,即便是禁带上面的能带完全是空的,在外电场作用下电子也很难跳过禁带,具有这种能带结构的材料是绝缘体.图1—1(e),半导体的能带结构与绝缘体相同,所不同的是它的禁带比较窄,电子跳过禁带不像绝缘体那么困难,满带中的电子受热振动等因素的影响,能被激发跳过禁带而进入上面的空带,在外电场作用下空带中的自由电子产生电流。
材料物理性能定义总结第一章材料的电性能A按压力对金属导电性的影响:金属分为正常金属和反常金属。
B本征电导:源于晶体点阵中基本离子的运动。
玻璃的导电机理:玻璃在通常情况下是绝缘体,但在高温下,玻璃的电阻率却可能大大降低,因此在高温下有些玻璃将成为导体。
玻璃的导电是由于某些离子的可动性导致的,故玻璃是一种电解质的导体。
在钠玻璃中,钠离子在二氧化硅网络中从一个间隙跳到另一个间隙,形成电流。
这与离子晶体中的间隙离子导电类似。
本征半导体:纯净的无结构缺陷的半导体单晶。
本征电导在高温下为导电的主要表现。
半导体导电机理:在绝对零度和无外界影响的条件下,半导体的空带中无运动的电子。
但当温度升高或受光照射时,也就是半导体受到热激发时,共价键中的价电子由于从外界获得了能量,其中部分获得了足够大能量的价电子就可以挣脱束缚,离开原子而成为自由电子。
本征半导体的电学特性:1)本征激发成对产生自由电子和空穴,自由电子浓度与空穴浓度相等;2)禁带宽度Eg 越大,载流子浓度n i 越小;3)温度升高时载流子浓度n i 增大。
4)载流子浓度n i与原子密度相比是极小的,所以本征半导体的导电能力很微弱。
不均匀固溶体(k状态):在合金元素中含有过渡族金属的,这些固溶体中有特殊相变及特殊结构存在,这种组织状态称为k状态。
这些固溶体中原子间距的大小显著地波动,其波动正式组元原子在晶体中不均匀分布的结果,所以也把k状态称之为“不均匀固溶体)。
C畴壁:两铁电畴之间的界壁称为畴壁。
超导电性:在一定低温条件下,金属突然失去电阻的现象叫超导电性。
超导态:金属失去电阻的状态称为超导态,金属具有电阻的状态称为正常态。
超导体三个基本特性:完全导电性,完全抗磁性,通量(flux)量子化。
完全导电性:在室温下把超导体放入磁场中,冷却到低温进入超导态,把原磁场移开,则在超导体中的感生电流,由于没有电阻而将长久存在,成为不衰减电流。
超导现象产生的原因:由于超导材料中的电子双双结成库柏电子对,电子对和晶格间相互作用,而无能量损失,使超导体不产生电阻超导体存在T c 的原因:当温度或外磁场强度增加时,电子对获得能量,当温度或外磁场强度增加到临界值时,电子对全部被拆开成正常态电子,于是材料即由超导态转变为正常态。
《浙江大学优秀实习总结汇编》材料物理岗位工作实习期总结转眼之间,两个月的实习期即将结束,回顾这两个月的实习工作,感触很深,收获颇丰。
这两个月,在领导和同事们的悉心关怀和指导下,通过我自身的不懈努力,我学到了人生难得的工作经验和社会见识。
我将从以下几个方面总结材料物理岗位工作实习这段时间自己体会和心得:一、努力学习,理论结合实践,不断提高自身工作能力。
在材料物理岗位工作的实习过程中,我始终把学习作为获得新知识、掌握方法、提高能力、解决问题的一条重要途径和方法,切实做到用理论武装头脑、指导实践、推动工作。
思想上积极进取,积极的把自己现有的知识用于社会实践中,在实践中也才能检验知识的有用性。
在这两个月的实习工作中给我最大的感触就是:我们在学校学到了很多的理论知识,但很少用于社会实践中,这样理论和实践就大大的脱节了,以至于在以后的学习和生活中找不到方向,无法学以致用。
同时,在工作中不断的学习也是弥补自己的不足的有效方式。
信息时代,瞬息万变,社会在变化,人也在变化,所以你一天不学习,你就会落伍。
通过这两个月的实习,并结合材料物理岗位工作的实际情况,认真学习的材料物理岗位工作各项政策制度、管理制度和工作条例,使工作中的困难有了最有力地解决武器。
通过这些工作条例的学习使我进一步加深了对各项工作的理解,可以求真务实的开展各项工作。
二、围绕工作,突出重点,尽心尽力履行职责。
在材料物理岗位工作中我都本着认真负责的态度去对待每项工作。
虽然开始由于经验不足和认识不够,觉得在材料物理岗位工作中找不到事情做,不能得到锻炼的目的,但我迅速从自身出发寻找原因,和同事交流,认识到自己的不足,以至于迅速的转变自己的角色和工作定位。
为使自己尽快熟悉工作,进入角色,我一方面抓紧时间查看相关资料,熟悉自己的工作职责,另一方面我虚心向领导、同事请教使自己对材料物理岗位工作的情况有了一个比较系统、全面的认知和了解。
根据材料物理岗位工作的实际情况,结合自身的优势,把握工作的重点和难点,尽心尽力完成材料物理岗位工作的任务。
第一章:材料的力学形变:材料在外力作用下发生形状和尺寸的变化,称为形变力学性能机械性能:材料承受外力作用,抵抗形变的能力及其破坏规律,称为材料的力学性能或机械性能应力:材料单位面积上所受的附加内力称应力.法向应力应该大小相等,正负号相同,同一平面上的两个剪切应力互相垂直.法向应力导致材料的伸长或缩短,剪切应力引起材料的切向畸变.应变:用来表征材料受力时内部各质点之间的相对位移.对于各向同性材料,有三种基本的应变类型.拉伸应变,剪切应变,压缩应变.拉伸应变:材料受到垂直于截面积的大小相等,方向相反并作用在同一直线上的两个拉伸应力时材料发生的形变.剪切应变:材料受到平行于截面积的大小相等,方向相反的两剪切应力时发生的形变.压缩应变:材料周围受到均匀应力P时,体积从起始时的V0变化为V1的形变.弹性模量:是材料发生单位应变时的应力,表征材料抵抗形变能力的大小,E越大,越不易变形,表征材料的刚度越大.是原子间结合强度的标志之一.黏性形变:是指黏性物体在剪切应力作用下发生不可逆的流动形变,该形变随时间的增大而增大.剪切应力小时,黏度与应力无关,随温度的上升而下降.牛顿流体:服从牛顿黏性定律的物体称为牛顿流体.在足够大的剪切应力下或温度足够高时,无机材料中的陶瓷晶界,玻璃和高分子材料的非晶部分均会产声黏性形变,因此高温下的氧化物流体,低分子溶液或高分子稀溶液大多属于牛顿流体,而高分子浓溶液或高分子熔体不符合牛顿黏性定律,为非牛顿流体.塑性:材料在外应力去除后仍能保持部分应变的特性称为塑性.晶体塑性形变两种类型:滑移和孪晶.延展性:材料发生塑性形变而不断裂的能力称为延展性.μ泊松比,定义为在拉伸试验中,材料横向单位面积的减少与纵向单位长度的增加率之比.滑移是指在剪切应力作用下晶体的一部分相对于另一部分发生平移滑动,在显微镜下可观察到晶体表面出现宏观条纹,并构成滑移带.滑移一般发生在原子密度大和晶向指数小的晶面和晶向上.材料的滑移系统往往不止一个,滑移系统越多,则发生滑移的可能性越大.实际晶体材料的滑移是位错缺陷在滑移面上沿滑移方向运动的结果:位错运动所需的剪切应力比使晶体两部分整体相互滑移所需的应力小的多.蠕变:蠕变是在恒定的应力作用下材料的应变随时间增加而逐渐增大的现象.影响因素:温度、应力、组分、晶体键型、气孔、晶粒大小、玻璃相等.无机材料的蠕变理论:位错蠕变理论,扩散蠕变理论,晶界蠕变理论.黏弹性:材料形变介于理想弹性固体和理想黏性液体之间,既具有固体的弹性又有液体的黏性,称为黏弹性.时温等效原理力学松弛现象有蠕变,应力松弛静态力学松弛,滞后和力损耗动态力学松弛晶界:是结构相同而取向不同晶体之间的界面.高分子材料的力损耗与温度和频率的关系:1.高分子材料在玻璃化温度Tg以下受到应力时,相应的应变很小,主要由键长和键角的改变引起,速度快到几乎能跟得上应力的变化,因此&很小,tan&也小;温度升高到Tg附近时,以玻璃态向高弹态过渡,链段开始运动,此时材料的粘度很大,链断运动收到的摩擦阻力很大,高弹应变明显落后于应力的变化,因此tan&出现极大值;温度更高时应变大,而且链断运动比较自由,&变小,tan&也小;温度很高时,材料从高弹态向粘流态过渡,分子链段间发生互相滑移,导致力损耗急剧增加,tan&急剧增大.2.高分子材料在应力变化的频率较低时,分子链断运动基本能跟上应力的变化,tan&很小;频率很高时,分子链断完全跟不上应力的变化,tan&也很小;而当频率中等时,分子链断运动跟不上应力的变化,使tan&出现极大值,此时材料表现出明显的粘弹性.应力松弛:是指在恒定的应变时,材料内部的应力随时间增长而减小的现象.机械强度:材料在外力作用下抵抗形变及断裂破坏的能力称为机械强度.根据外力作用形式,可分为抗拉强度,抗冲强度,抗压强度,抗弯强度,抗剪强度.材料在低温下大多脆性断裂;高温下大多韧性断裂.麦克斯韦模型:应变恒定时,应力随时间指数衰减;形变一定,力减小.应力松弛沃伊特模型:应力恒定时,形变随时间增大而增大;力一定,形变增大.蠕变延展性材料拉伸时有可塑性功,可阻碍断裂.第二章:材料的热学热力学与统计力学的关系:热力学是用宏观的方法,研究热运动在宏观现象上表现出来的一些规律,是从能量转化的观点来研究物质的热性质;而统计力学则从物质的微观结构出发,应用微观粒子运动的力学规律和统计方法来研究物质的热性质.热力学第二定律:克劳修斯说法不可能把热从低温物体传到高温物体而不引起其他的变化.开尔文说法不可能从单一热源取热使之完全变为有用的功而不引起其他的变化.低温时:Cp≈Cv高温时:Cp>Cv,定压加热时,物体除升温外,还会对外做功,升高单位温度需吸更多热量.经典理论:①定压下单一元素的摩尔热容Cv=25J/Kmol②化合物材料摩尔热容等于构成该化合物分子各元素摩尔热容之和.③1摩尔固体的总能量:E=3NkT=3RT;摩尔热容Cv=3Nk=3R ≈25J/Kmol晶格热振动:晶体中的原子以平衡位置为中心不停地振动,称其为“晶格热振动”声子:晶格振动的能量是量子化的,以hv为单元来增加或减少能量,称这种能量单元为“声子”.金属材料的总热容为声子和电子两部分的共同贡献.固体材料热膨胀的本质:在于晶格点阵实际上在做非简谐运动,晶格振动中相邻质点间的作用力实际上是非线性的,点阵能曲线也是非对称的.体胀系数近似等于三个线胀系数之和.热传导:是指材料中的热量自动的从热端传向冷端的现象.固体材料热传导:主要由晶格振动的格波来实现;高温时还可能由光子热传导.材料热传导的微观机理:1.声热子传导2.光热子传导3.电子热传导金属主要含孔率大的陶瓷热导率小,保温.热稳定性:是指材料承受温度的急剧变化而不致碎裂破坏的能力.裂纹的产生和扩展与材料中积存的弹性应变能和裂纹扩展所需的断裂表面能有关.材料的抗热应力损伤性正比于断裂表面能,反比与弹性应变能释放率.第三章:材料的电学金属自由电子气模型费米电子气模型:该模型认为金属材料的原子失去价电子成为带正电的离子实,而价电子在离子实的正电背景下能自由移动,既满足电中性条件,也不会因价电子间的库伦斥力而散开,这种自由电子还服从泡利不相容原理,其能量分布满足费米-狄拉克分布函数能带理论:采用“单电子近似法”来处理晶体中的电子能谱.单电子近似法:来处理晶体中电子能谱①固体原子核按一定周期性固定排列在晶体中②每个电子是固定原子核势场及其它电子的平均势场中运动电子型电导:①导电载流子是电子或空穴即电子空位②具有“霍尔效应”③例:硅、锗和砷化镓等晶态半导体材料以及许多导体材料杂质和缺陷的影响:使严格周期性排列原子产生的周期性势场受到破坏,在禁带中引入允许电子所具有的能量状态即能级;这种禁带中的能级对半导体材料性质有重要的影响.杂质能级与允带能级的区别:允带能级可容纳自旋方向相反的两个电子.施主杂志能级只可能有:1.中性施主被一个电子占据2.电离施主没有被电子占据.本征是指半导体本身的特征.半导体的载流子浓度:实际的半导体总含有或多或少的杂质,但当杂质浓度很小或者温度足够高时,由价带到导带的本征激发所产生的载流子可超过杂质电离产生的载流子,这时载流子浓度主要由半导体本征性质所决定,而杂质影响可忽略不计,也称这种半导体为本征半导体.本征载流子浓度ni随温度T升高呈指数增大,ni随禁带宽度Eg成指数减小.导带中电子浓度n.和价带中空穴浓度P.受温度T和费米能级Ef的影响.电子型电导:Rh霍尔系数只与材料的载流子种类浓度有关;“磁阻效应”可分为物理磁阻和几何磁阻.施主和受主杂质同时存在时,半导体的导电类型决定于浓度大的杂质.本征载流子浓度ni随温度升高呈指数增大,随禁带宽度Eg的增大呈指数减小.任何非简并半导体中两种载流子浓度的乘积等于本征载流子的浓度的平方与杂质无关.杂质半导体的杂质能级被电子或空穴占据的情况与允带中的能级有区别:在允带中的能级可以容纳自旋方向相反的两个电子,而施主或受主杂质能级上,只可能有如下两种情况:1.中性施主或受主被一个电子或空穴占据;2.电离施主或受主没有被电子或空穴占据.离子型电导:具有“电解效应”电极附近发生电子得失,伴随着产生新物质.两种离子载流子:①晶格离子本身因为热振动而离开晶格形成热缺陷的本征离子载流子,它在高温下起主要作用②由于杂质离子等弱联系离子运动而形成的杂质离子载流子,它在低温下起主要作用.其中的载流子浓度与迁移率都与温度呈指数正比关系.介电体分子三种极化类型:电子极化、离子极化、偶极子转向极化电损耗来源:①普通无机晶体介质只有位移极化,损耗来源主要为离子电导,tanδ与电导率σ成正比②无定形玻璃:电导损耗、松弛损耗、结构损耗由Si-O网络的变形引起③多晶陶瓷:离子电导损耗、松弛损耗、夹层损耗④铁电陶瓷:自发极化超电导性的特征:完全导电性、完全抗磁性、磁通的量子化、约瑟夫逊效应叙述BaTiO3典型电解质中在居里点以下存在的四种极化机制:电子极化:指在外电场作用下,构成原子外围的电子云相对原子核发生位移形成的极化.建立或消除电子极化时间极短2.离子极化:指在外电场的作用下,构成分子的离子发生相对位移而形成的极化,离子极化建立核消除时间很短,与离子在晶格振动的周期有相同数量级3.偶极子转向极化:指极性介电体的分子偶极矩在外电场作用下,沿外施电场方向而产生宏观偶极矩的极化.4.位移型自发极化:是由于晶体内离子的位移而产生了极化偶极矩,形成了自发极化.试比较,聚合物介电松弛与力学松弛的异同点:材料的力学松弛包括了静态力学松弛与动态力学松弛:蠕变与应力松弛属于静态力学松弛;滞后和力损耗属于动态力学松弛.介电松弛指在固定频率下测试聚合物试样的介电系数和介电损耗随温度的变化,或在一定温度下测试试样的介电性质随频率的变化.两者都反映了聚合物的结构、构型及链段的运动状态.引起散射的根本原因:半导体内周期势场受到破坏.电离杂质浓度越高,载流子散射机会越多;温度越高,越不易散射.温度越高,晶格热振动越激烈,散射概率增大.散射与迁移呈反比.导体,半导体和绝缘体的区别:电子全部填满到某个允带,而其上面的允带则完全空着,填满电子的允带称为满带,完全没有电子的允带称为空带,具有这种能带结构的固体称为绝缘体.能带结构与绝缘体相似,不同点在于禁带宽度Eg较窄,因而,不在很高的温度下,满带中的部分电子受热运动的影响,能够被热激发而越过禁带,进入到上面的空带中去而形成自由电子,从而产生导电能力,具有这种能带结构的固体称为半导体.满带上面的允带不是全部空着,而是有一部分能级被电子填充,另一部分能级空着,这种允带称为导带.有外加电场时导带中的电子便能挑到能量较高的能级上形成电流,称这种材料为导体.介电体的击穿:介电体在高电场下电流急剧增大,并在某一电场强度下完全丧失绝缘性能的现象.第四章:材料的磁学磁偶极子:通常把线度小至原子的小磁体称为磁偶极子.产生磁矩的原因:1.电子绕原子核的轨道运动,产生一个非常小的磁场,形成一个沿旋转轴方向的轨道磁矩2.每个电子本身做自旋运动,产生一个沿自旋轴方向的自旋磁矩,它比轨道磁矩大的多.材料的宏观磁性是组成材料的原子中电子的磁矩引起的未填满的电子壳层,电子的自旋磁矩未被完全抵消,则原子具有永久磁矩.反之.波尔磁子UB:把原子中每个电子都看作一个小磁体,具有永久的轨道磁矩和自旋磁矩.最小的磁矩称为波尔磁子.×10-24A·m2材料的磁性取决于材料中原子和电子磁矩对外加磁场的响应,具体可分为抗磁性,顺磁性,反铁磁性,铁磁性和亚铁磁性,前三种属于弱磁性,后两种为强磁性.材料的抗磁性和顺磁性的来源:1.组成原子的电子的固有自旋2.电子绕核旋转的轨道角动量3.外加磁场所产生的轨道矩改变.前两个是对顺磁性有贡献,后一个是对抗磁性有贡献.自由磁矩的顺磁性理论:原子磁偶极距之间无相互作用,为自由磁偶极距,热平衡下为无规则分布,外加磁场后,原子磁偶极距的角度分布发生变化,沿着接近外磁场方向作择优分布,而引起顺磁磁化强度.磁滞回线的面积与磁滞损耗成正比.分子场两个假说:分子场假说:铁磁材料在一定温度范围内存在与外加磁场无关的自发磁化,导致自发磁化的相互作用力假定为材料内部存在分子场,其数量级大小为109A/M,原子磁矩在分子场作用下,克服热运动的无序效应,自发地平行一致取向.磁畴假说:自发磁化是按区域分布的,各个自发磁化区域称为磁畴,在无外磁场时都是自发磁化到饱和,但各磁畴自发磁化的方向有一定分布,使宏光磁体的总磁矩为零.居里温度的本质:是铁磁材料内静电交换作用强弱在宏观上的表现,交换作用越强,就需要越大热能才能破坏这种作用,宏观上就表现出居里温度越高.铁磁材料的五种相互作用能:交换能,磁晶各向异性能,磁弹性能,退磁场能,外磁场能.磁损耗:在动态磁化过程中,材料样品内的磁损耗除了具有静态磁化时磁滞损耗外,还有涡轮损耗和剩余损耗.品质因子:能量的储存与能量的消耗之比为品质因子Q.对于永磁恒磁、硬磁材料,希望其在外加磁场去除后仍能长久的保留较强的磁性,其主要性能指标是:矫顽力Hc、剩余磁感应强度Br或剩余磁化强度Mr和最大磁能积BHmax,希望这三个性能指标越大越好.并要求材料对温度、震动、时间、辐射及其它干扰因素的稳定性也好.何谓轨道角动量猝灭现象:由于晶体场导致简并能级分裂,可能出现最低轨道能级单态.当单态是最低能级轨道时,总轨道角动量的绝对值L2虽然保持不变,但轨道角动量的分量L z不再是常量. 当L z的平均值为0时,称其为轨道角动量猝灭.自发磁化的物理本质是什么材料具有铁磁性的充要条件是什么:铁磁体自发磁化的本质是电子间的静电交换相互作用;材料具有铁磁性的充要条件为:必要条件:材料原子中具有未充满的电子壳层,即原子磁矩,充分条件:交换积分A > 0超交换作用有哪些类型为什么A-B型的作用最强具有三种超交换类型: A-A, B-B和A-B.因为金属分布在A位和B位,且A位和B位上的离子磁矩取向是反平行排列的.超交换作用的强弱取决于两个主要的因素: 1两离子之间的距离以及金属离子之间通过氧离子所组成的键角ψi2 金属离子3d电子数目及轨道组态.因为ψi越大,超交换作用就越强,所以A-B型的交换作用最强讨论动态磁化过程中,磁损耗与频率的关系.低频区域f < 104Hz引起损耗的机理主要是由于不可逆磁化过程产生的磁滞和磁化状态滞后于磁场变化的磁后效;中频区域 f = 104---106Hz,损耗会出现峰值;高频区域f = 106—108Hz,急剧下降,损耗迅速增加.交变磁场的频率与畴壁振动的本征频率或弛豫频率相同时,发生畴壁共振或畴壁弛豫而吸收大量引起损耗增大超高频区域f = 108—1010Hz继续下降,可能出现负值,而出现自然共振引起的峰值,这是由于外加磁场频率与磁矩进动固有频率相等时产生共振现象引起的;极高频区域f > 1010Hz对应为自然交换共振区域.铁氧体材料按磁滞回线特征分类:分为软磁材料、硬磁永磁材料和矩磁材料铁氧体是含有铁酸盐的陶瓷磁性材料.与铁磁性相同点:具有自发磁化强度和磁畴不同点:①一般由多种金属的氧化物复合②其磁性来自两种磁矩,一种在一个方向排列整齐,一种磁矩在相反方向排列静态磁化:静态磁场;磁滞线面积大;静态磁滞损耗.动态磁化:动态磁场;小;磁滞损耗,涡流损耗,剩余损耗.第五章:材料的光学对人眼睛敏感的可见光谱的波长r=,光属于横波材料的折射率:光在真空中的速度v真空与材料的速度v材料之比,称为材料的折射率n.相对折射率:当光从材料1通过界面传入到材料2时,与界面法向形成的入射角i1和折射角i2与两种材料的折射率n1与n2的关系为:n21=sinn1/sinn2=n2/n1.N21为材料2相对于材料1的相对折射率.折射率随材料的电容率ε增大而增大.原因:由于ε与材料的极化现象有关,当材料的的原子受到外加电场的作用而极化时,正电荷沿电场方向移动,负电荷沿反电场方向移动,使得正负电荷的中心发生相对位移,外加电场越强正负电荷中心间距越大.当材料的离子半径增大时,其ε增大,折射率也增大.可用大离子获得高折射率材料:PBS,n=.小离子获得低折射率材料:SiCl4 n=均质材料:如通过非晶态或立方晶体的各向同性材料时,光速不因传播方向的改变而变化,材料只有一个折射率.非均质材料:材料存在内应力时,垂直于拉应力方向的n大,平行于拉应力的n小,而在同质异构材料中,高温晶型n小,低温晶型n大.散射现象:光在材料中传播时,遇到不均匀结构产生的次极波,与主波方向不一致,会与主波合成出现干涉现象,使光偏离原方向.光的吸收:由于光是一种能量流,在光通过材料传播时,会引起材料的价电子跃迁或使原子振动,从而使光能的一部分变为热能,导致光能的衰减,这种现象称为光的吸收.金属对光的吸收很强烈,因为金属的价电子处于未满带吸收光子后呈激发态不必跃迁到导带就能发生碰撞而发热.朗波特定律:光的强度随厚度的增加而呈指数性衰减.α光的吸收系数,取决于材料的性质与光的波长.光的折射率的色散:材料的折射率N随入射光的频率减小而减小的现象,称为光的折射率的色散.影响材料透光性的因素:吸收系数,反射系数,散射系数,材料的厚度.透光率随这四个因素的增大而减小提高材料透光率的措施:采用高纯材料以避免材料形成异相,添加微量成分以降低材料的气孔率,以及采用热压法,热锻法或热等静压法.散射系数的影响因素:乳浊剂的颗粒尺寸,相对折射率及体积百分比.当颗粒尺寸与入射光波长相近,颗粒体积百分比高,颗粒与基体材料的折射率相差较大时,能得到最大散射效果.显色原理:着色剂对光的选择性吸收而引起选择性反射或透射.发光:光是原子或分子发射出的具有一定波长和频率的能量.当材料的原子或分子从外部接受能量成为激发态,然后从激发态回到正常态时,会以电磁辐射形式放出所接受的能量,这种辐射现象称为发光.发光的机理:能发出荧光的材料主要是具有共轭键的苯环为基的芳香族和杂环化合物;而能发出磷光的材料主要是具有缺陷的某些复杂无机晶体,大多是第二族金属的硫化物,晒化物和氧化物作为基质,重金属作为激活剂.激光:激发态的粒子受到一个具有能量等于两能级间差值的光子作用,使粒子转变到正常态同时产生第二个光子,称其为受激发射,这样产生的光称为激光.激光的特点:激光的特点是具有时间和空间的相干性,是一种单色和定向的相干光束.激光可应用在许多方面,如激光通信,测距,定向,雷达等.光的入射角大于临界角时就会发生光的全反射光学纤维:光学纤维是由两种不同折射率的材料制成,以折射率大的材料作为光纤的芯子,折射率小的材料作为光纤的包层.光信号在玻璃纤维光纤中传输时的传输损耗,主要来源有:1.光纤材料的本征损耗,包括Si-O键在波长为9um,和21um处的红外振动吸收延伸到2um附近的影响.2.光纤材料的杂志吸收,包括微量OH-根在波长为,和处的基波,二次谐波和三次谐波的振动吸收,以及过渡金属离子引起的吸收 3.光纤的结构缺陷,包括光纤芯子半径沿轴向有着微小变化,折射率分布也有微小不均匀性,从而引起散射损耗.光纤按折射率剖面分布和传输模式可分为三种:单模光纤直径几个um,只传输单模光束,阶跃型多模光纤由低折射率玻璃外层包覆高折射率玻璃芯子,渐变型多模光纤折射率沿光纤径向由中央向四周连续减小非线性光学效应:在强光场或其他外加场的扰动下,材料原子或分子内电子的运动除了围绕其平衡位置产生微小的线性振动外,还会受到偏离线性的附加扰动,此时材料的电容率往往变为时间或空间的函数,材料的极化响应与光波电厂不再保持简单的线性关系,这种非线性极化将引起材料光学性质的变化,导致不同频率光波之间的能量耦合,从而使入射光波的频率,振幅,偏振及传播方向发生改变,即产生非线性光学效应.主要是原子外层束缚电子在光波电场作用下的受迫振动产生的.其光学材料的特点:当高能量的光波射入时,会在材料中引起非线性光学效应,产生谐波,电光效应,光混频,参量振荡等. 第六章:材料的声学声波是由物体振动而产生的,当以空气作介质传播时,人能听到频率在25Hz-20kHz范围的声音.声波是一种机械波.回声:一定形状的房间中,反射声可形成回声,声焦点或死点现象当不同壁面反射而到达听者的声音所经过的路程大于直达声17m时,则到达的反射将形成回声.声波三个基本物理定律以及意义:声振动作为一个宏观的物理现象,满足三个基本物理定律:牛顿第二定律、质量守恒定律和绝热压缩定律,由此分别可以推导出介质运动方程p-V关系、连续性方程V-p’和物态方程p-p’关系,并由此导出声波方程――p,V和p’等对空间、时间坐标的微分方程.声波过程是绝热过程.平面波:若声波沿x方向传播而在yz平面上各质点的振幅和相位均相同,则为平面波.声强:在声场中任一点上一定方向的声强,是指单位时间内在该点给定方向通过垂直此方向单位面积上的能量.声阻:声阻是流体阻力或辐射阻力粘滞性引起,它导致能量耗散,使声能转为热能.室内声学:声音在一定封闭空间内辐射,传播或接收,此时室内物体和房间壁面会引起发射声,房间还会使声音在空间的分布发生变化而使音质改变.吸声材料吸声原理:吸声材料的作用就是把声能转化为热能.对于柔顺性吸声材料,其吸声机理在于柔顺骨架内部摩擦,空气摩擦和热交换;对于非柔性吸声材料,其吸声特性依靠空气的粘滞性,进入材料的声波迫使材料孔内的空气振动,而空气与骨架间进行热交换,更促进了声能的损耗.影响水声声速的因素:声波在水中的阻力损失比在大气中小,则声波在水中可比大气中传播更远温度,含盐率及压力,其作用依次减弱.水声材料主要用于制作各种声源发射器和水听器,曾用过水溶性单晶、磁致伸缩材料和压电陶瓷材料,随着水声换能器技术的发展,要求具有功率大、频率常数低、时间和温度稳定性好、强电场下性能好以及能承受动态张应力大的材料.声波在传播时有扩展损失,和衰减损失.超声波:频率在20khz以上.产生超声波的材料主要有两大类:.压电晶体和陶瓷是产生超声波的一类重要的材料;磁致伸缩材料为另一类超声波发生材料微声:频率在几十兆赫兹以上的超高频超声波.。
一章1、原子间的键合类型有几种?(P1)金属键、离子键、共价键、分子键和氢键2、什么是微观粒子的波粒二象性?(P1)光子这种微观粒子表现出双重性质——波动性和粒子性,这种现象叫做波粒二象性。
3、什么是色散关系?什么是声子?声子的性质?(P20、P25)将频率和波矢的关系叫做色散关系。
声子就是晶格振动中的独立简谐振子的能量量子。
性质:(1)声子的粒子性:声子和光子相似,光子是电磁波的能量量子,电磁波可以认为是光子流,光子携带电磁波的能量和动量。
(2)声子的准粒子性:准粒子性的具体表现:声子的动量不确定,波矢改变一个周期或倍数,代表同一振动状态,所以不是真正的动量。
4、声子概念的意义?(P25)(1)可以将格波雨物质的相互作用过程理解为,声子和物质的碰撞过程,使问题大大简化,得出的结论也正确。
(2)利用声子的性质可以确定晶格振动谱。
5、简述高聚物分子运动的特点。
(P29)(1)运动单元的多重性(2)分子运动时间的依赖性(3)分子运动的温度依赖性6、影响高聚物玻璃化温度的因素(P33)(1)分子链结构的影响(2)分子量的影响(3)增塑剂的影响(4)外界条件的影响7、影响高聚物流动温度的因素(P39)(1) 分子量(2)分子间作用力(3)外力8、线性非晶高聚物的力学状态?(P29)二章1、材料的热学性能的内容。
(P41)材料的热学性能包括热容、热膨胀、热传导、热稳定性、熔化和升华等。
2、什么是热容?(P42)什么是杜隆-柏替定律和奈曼-柯普定律(P43)热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。
杜隆-珀替定律:恒压下元素的原子热容为25J/(k·mol);奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。
3、试述线膨胀系数与体膨胀系数的关系。
(P50)4、请分析热膨胀与其他性能的关系。
(P49)5、影响材料热膨胀系数的因素。
(P50)(1)化学组成、相和结构的影响(2)化学键的影响(3)相变的影响6、简述影响热导率的因素。
材料物理知识点范文材料物理是研究材料的结构、性质和行为的科学学科。
它涵盖了材料的各种物理性质和现象,如力学性质、电学性质、磁学性质、热学性质、光学性质等。
以下是材料物理的一些重要知识点。
1.结晶结构:结晶结构是材料的内部排列方式。
结晶体由大量原子、离子或分子有序排列组成,具有长程有序性。
常见的结晶结构包括立方晶系、正交晶系、单斜晶系和六角晶系等。
不同的结晶结构对材料的性质和行为具有重要影响。
2.缺陷:材料中存在各种类型的缺陷,如点缺陷、线缺陷和面缺陷。
点缺陷包括空位、间隙原子和杂质原子等。
线缺陷包括晶格错位和线状杂质等。
面缺陷包括晶界、孪晶和格斑等。
这些缺陷会对材料的性能和行为产生重要影响。
3.力学性质:材料的力学性质包括弹性、塑性、黏弹性等。
弹性是指材料在外力作用下产生的可逆变形,材料在去除外力后能恢复到原来的形状。
塑性是指材料在外力作用下产生的不可逆变形,材料无法恢复到原来的形状。
黏弹性是介于弹性和塑性之间的性质,材料在外力作用下产生部分可逆变形。
4.电学性质:材料的电学性质包括导电性、绝缘性和半导体性。
导电性是指材料能够传导电流,绝缘性是指材料不能传导电流,而半导体性是介于导电性和绝缘性之间的性质。
不同材料的电学性质取决于其内部结构和电荷分布情况。
5.磁学性质:材料的磁学性质包括铁磁性、顺磁性、抗磁性和超导性等。
铁磁性是指材料在外磁场下能产生强烈磁化,顺磁性是指材料在外磁场下能产生弱磁化,抗磁性是指材料在外磁场下不发生磁化。
超导性是指材料在低温下能够无阻碍地传导电流。
6.热学性质:材料的热学性质包括热传导性、热膨胀性和热导电性等。
热传导性是指材料传导热量的能力,热膨胀性是指材料在温度变化下的体积变化,热导电性是指材料传导热量的能力。
不同材料的热学性质影响着其导热性和热稳定性等方面的性能。
7.光学性质:材料的光学性质包括折射率、透明度、反射率和吸收率等。
折射率是指材料对光的折射程度,透明度是指材料对光的透过程度,反射率是指材料对光的反射程度,吸收率是指材料对光的吸收程度。
第一章(小括号内为页码)1.原子间的键合类型有几种?(1)原子间的键合类型有:金属键、离子键、共价键、分子键和氢键。
2.什么是微观粒子的波粒二象性?(2)光子这种微观粒子表现出双重性质——波动性和粒子性,这种现象叫做波粒二象性。
“二象性”并不只限于光而具有普遍意义。
3.什么是色散关系?什么是声子?声子的性质?(20、25)(1)频率和波矢的关系叫色散关系。
色散关系形成晶格的振动谱。
【定义波数|K |=λπ2,K即为波矢量,简称波矢。
(4)】(2)声子就是晶格振动中的独立简谐振子的能量量子。
(3)声子具有粒子性和准粒子性。
粒子性:弹性声波可以认为是声子流,声子携带声波的能量和动量。
准粒子性:○1声子的动量不确定,波矢改变一个周期(倒格矢量)或倍数,代表同一振动状态,所以不是真正的动量;○2系统中声子的数目不守恒,一般用统计方法进行计算。
4.声子概念的意义(25)可以将格波与物质的相互作用过程理解为,声子和物质(如,电子、光子、声子等)的碰撞过程,使问题大大简化,得出的结论也正确。
5.高聚物分子运动的特点(28)高聚物的结构是多层次的,这导致其分子运动的多重性和复杂性。
与小分子相比,高分子的运动具有一些不同的特点。
(1)运动单元的多重性 按照运动单元的大小,可以把高分子的运动单元大致分为大尺寸和小尺寸两类运动单元,前者指整链,后者指链段、链节和侧基等。
(2)分子运动的时间依赖性 在一定的温度和外场(力场、电场、磁场)作用下,聚合物从一种平衡状态通过分子运动转变为与外场相适应的另一种平衡状态的过程,称为松弛过程。
分子运动完成这个过程总是需要时间的,不可能瞬间完成,所需要的时间即称为松弛时间。
运动单元越大,运动中所受到的阻力越大,松弛时间越长。
(3)分子运动的温度依赖性 高分子的运动强烈依赖于温度,升高温度能加速高分子的运动。
这一方面是由于增加了分子热运动的能量,另一方面是使高聚物体积膨胀,增加了分子间的自由体积。
材料物理要点总结归纳材料物理是研究材料的性质、结构和行为的分支学科,涉及多种材料,如金属、陶瓷、塑料等。
本文将对材料物理的要点进行总结归纳,以帮助读者更好地理解和应用这一学科。
一、晶体结构晶体是具有有序排列的原子、离子或分子的固体。
其晶体结构对于材料的性能具有重要影响。
晶体结构可分为简单晶格和复式晶格。
简单晶格包括立方晶系、正交晶系、单斜晶系、斜方晶系、蜂窝晶系等。
而复式晶格则由多个原子、离子或分子组成。
二、晶体缺陷晶体中存在各种缺陷,如点缺陷、线缺陷和面缺陷。
点缺陷包括空位、插入性杂质和替位杂质。
线缺陷包括位错和螺旋位错。
面缺陷包括晶界和孪晶。
三、材料的力学性能力学性能是材料物理研究的重要内容。
其中包括材料的弹性、塑性、韧性、脆性等性能。
弹性是指材料在外力作用下产生的形变能够消除,其应力-应变关系遵循胡克定律。
塑性是指材料在外力作用下形变能够保留,其应力-应变关系不遵循胡克定律。
四、导电材料导电材料是指能够传导电流的材料,包括金属和半导体。
金属是导电性能最好的材料,其导电机制主要由自由电子贡献。
而半导体的导电性能则可以通过施加杂质或外加电场进行调控。
五、磁性材料磁性材料是指在外磁场作用下产生磁化强度的材料。
根据磁化机制的不同,可将磁性材料分为顺磁性、抗磁性、铁磁性和自旋玻璃等。
六、光学材料光学材料是指能够对光进行传播、转换和控制的材料。
常见的光学材料包括玻璃、晶体、半导体等。
光学材料的性能包括透射率、折射率、吸收系数等,对于光学器件的设计和应用至关重要。
七、材料表面与界面材料的表面和界面结构对于材料的性质和表现具有重要影响。
材料表面的化学和物理性质不同于内部材料,对于材料的附着、润湿性等起着重要作用。
而材料的界面结构和性质则关系到多相材料的稳定性和性能。
八、材料的热学性能材料的热学性能包括热传导性、热膨胀性、热导率等。
热传导性是指材料对热的传导能力,热膨胀性是指材料在温度变化时的尺寸变化。
九、材料的化学性能材料的化学性能包括材料的化学稳定性、化学反应性以及与其他物质的相互作用等。
材料物理基础知识点总结材料物理是研究物质的性质和行为的一个学科,它涉及材料的结构、力学行为、电学行为、热学行为以及光学行为等方面。
在材料科学与工程领域中,材料物理的基础知识是非常重要的。
下面是材料物理基础知识点的总结:1.原子结构:原子是材料的基本单位,它由原子核和围绕核运动的电子组成。
原子核由质子和中子组成,质子带正电荷,中子不带电。
电子带负电荷,质子和电子的数量相等,因此原子是电中性的。
2.原子排列:原子可以通过共价键、离子键或金属键等方式相互结合,从而形成晶体结构。
晶体结构可以分为立方晶系、正交晶系、单斜晶系、斜方晶系、菱方晶系和三斜晶系等不同类型。
3.晶体缺陷:晶体中常常存在一些缺陷,如点缺陷、线缺陷和面缺陷,这些缺陷可以对材料的力学行为、电学行为和热学行为等性质产生重要影响。
4.材料力学行为:材料力学行为主要包括弹性行为、塑性行为和断裂行为。
弹性行为是指材料在受力后能够恢复原来形状和大小的能力;塑性行为是指材料在受力后能够产生变形而不会恢复到原来的形状和大小;断裂行为是指材料在受到过大的力作用时发生破裂。
5.材料电学行为:材料电学行为是指材料在电场或磁场中的行为。
材料可以分为导电材料、绝缘材料和半导体材料等不同类型。
6.材料热学行为:材料热学行为是指材料在温度变化时的行为。
材料的热学性质包括热导率、热膨胀系数和比热容等。
7.材料光学行为:材料光学行为是指材料在光照射下的行为。
材料可以表现出吸光、透光、反射等不同行为。
8.材料的选择和设计:根据材料的物理性质和需求,可以选择合适的材料。
材料的选择和设计要考虑到材料的力学性能、电学性能以及热学性能等方面。
9.材料的制备和加工:材料的制备和加工方法有很多种,如溶液法、凝聚法、熔融法和沉积法等。
选择合适的制备和加工方法可以改变材料的结构和性能。
10.材料的应用:材料学的最终目的是将材料应用于实际生产中。
材料可以应用于机械制造、电子工程、能源技术、医疗器械以及航空航天等领域。
材料物理心得(通用2篇)材料物理心得篇4材料物理是一门引人入胜的学科,它涵盖了从微观到宏观的所有领域,包括材料的性质、制备、应用以及性能优化等。
作为一名材料物理专业的学生,我在学习过程中收获颇丰。
在学习材料物理时,我首先遇到的问题是如何理解并掌握这个领域的概念和原理。
我发现在课程中,材料物理需要大量的数学和计算技能,如量子力学、固体物理学、热力学等。
因此,我花了很多时间在数学和计算技能的学习上,以便更好地理解材料物理的相关概念。
掌握材料物理的实验技能也是一项重要的任务。
我通过实验来探索材料的性质和应用,通过实验数据来验证或反驳理论上的假设。
这些实验不仅锻炼了我的动手能力,还让我更深入地理解了材料物理的性质和应用。
在学习材料物理的过程中,我还发现了一些有趣的事实。
例如,材料物理中的材料性质不仅取决于材料的成分,还取决于材料的结构和制备方法。
此外,材料物理的发展非常迅速,新的材料和制备方法不断涌现,这为材料物理的研究和应用带来了更多的可能性。
总的来说,学习材料物理需要不断地学习和探索。
在这个过程中,我不仅掌握了材料物理的相关知识和技能,还提高了自己的思考和解决问题的能力。
我相信,这些收获将对我未来的工作和生活产生积极的影响。
材料物理心得篇5材料物理是一门引人入胜的学科,它涵盖了从微观到宏观的所有领域,包括材料的性质、制备、应用以及性能优化等。
作为一名材料物理专业的学生,我在学习过程中深刻地体会到了这门学科的魅力和挑战。
在学习材料物理时,我首先遇到了量子力学和统计力学等基础理论。
这些理论虽然抽象,但它们为我们理解材料的微观结构和性质提供了有力的工具。
通过对这些理论的学习和应用,我逐渐掌握了如何预测和解释材料的宏观性质。
实验室里的学习和实践让我对材料物理有了更深刻的理解。
在导师的指导下,我参与了多个材料的制备和表征项目。
在这个过程中,我学会了如何运用各种设备和技术,如材料分析仪、光学显微镜和电子显微镜等,来研究材料的结构和性质。
电阻的影响因素由于晶体点阵的不完整性是引起电子散射的根本原因,因此温度、形变与合金化均能影响金属的导电性能。
一、外界条件:温度、应力(环境因素)1、温度(1)一般规律:金属电阻率随温度的升高而增大,温度对有效电子数(nef)和电子平均速度几乎没有影响,因为在熔点以下其费米能和费米分布受温度的影响很小,但温度升高,会使离子振动加剧,热振动幅度加大,原子无序度增加,周期性势场的涨落加大,从而使电子运动的自由程减小,散射几率增大而导致电阻率增大(2)过渡族金属与多晶型转变S层电子排满、d层电子未满,传导电子可能由S层电子向d层电子过渡,其电阻可以认为是由一系列具有不同温度关系的成分叠加而成(ρ∝Tn, n为2~5.3(3)铁磁金属与磁性转变在居里点附近时,铁磁金属的电阻率随温度的变化偏离线性关系:反常降低量Δρ=αMs2原因:铁磁性金属内d层与外层s壳层电子云交互作用引起(4)熔化大多数金属熔化成液态时,电阻会突然增大约1~2倍,这是由于原子长程有序排列遭到破坏,从而加强了对电子的散射所引起,但Bi、Sb、Ga等在熔化时电阻率反而下降,这是由于该类元素在固态时为层状结构,具有小的配位数,主要为共价键型晶体结构,在熔化时共价键被破坏,转以金属键为主,故电阻率下降(可见书p39:图2.4)2、应力在弹性范围内的单向拉应力,使原子间距离增大,点阵动畸变增大,由此导致金属电阻率增大αT—应力系数,αT >0,ζ为拉应力在压应力作用下,使原子间距变小,点阵动畸变减小,传导电子和声子之间相互作用的变化,电子结构以及电子间相互作用发生改变,金属的费米面和能带结构发生变化,由此导致金属电阻率下降二、组织结构的影响:组织结构与塑性变形、热处理工艺有关1、塑性形变形变使金属电阻率增大,这是由于晶体点阵畸变和晶体缺陷的增加,造成点阵电场的不均匀性增强而加剧对电子波散射的结果;此外冷塑性变形使原子间距有所改变,也对电阻率有一定影响。
点缺陷1范围分类1点缺陷.在三维空间各方向上尺寸都很小,在原子尺寸大小的晶体缺陷.2线缺陷在三维空间的一个方向上的尺寸很大(晶粒数量级),另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷.其具体形式就是晶体中的位错3面缺陷在三维空间的两个方向上的尺寸很大,另外一个方向上的尺寸很小的晶体缺陷2点缺陷的类型1空位.在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”2.间隙原子.在晶格非结点位置,往往是晶格的间隙,出现了多余的原子.它们可能是同类原子,也可能是异类原子3.异类原子.在一种类型的原子组成的晶格中,不同种类的原子替换原有的原子占有其应有的位置3点缺陷的形成弗仑克耳缺陷:原子离开平衡位置进入间隙,形成等量的空位和间隙原子.肖特基缺陷:只形成空位不形成间隙原子.(构成新的晶面)金属:离子晶体:1 负离子不能到间隙2 局部电中性要求4点缺陷的方程缺陷方程三原则: 质量守恒, 电荷平衡, 正负离子格点成比例增减.肖特基缺陷生成:0=V M,,+ V O··弗仑克尔缺陷生成: M M=V M,,+ M i ··非计量氧化物:1/2O2 (g)=V M,,+ 2h· + O O不等价参杂:Li2O=2Li M, + O O + V O··Li2O+ 1/2O2 (g) =2Li M, + 2O O + 2h· .Nb2O5=2Nb Ti ·+ 2 e, + 4O O + 1/2O2 (g)5过饱和空位.晶体中含点缺陷的数目明显超过平衡值.如高温下停留平衡时晶体中存在一平衡空位,快速冷却到一较低的温度,晶体中的空位来不及移出晶体,就会造成晶体中的空位浓度超过这时的平衡值.过饱和空位的存在是一非平衡状态,有恢复到平衡态的热力学趋势,在动力学上要到达平衡态还要一时间过程.6点缺陷对材料的影响.原因无论那种点缺陷的存在,都会使其附近的原子稍微偏离原结点位置才能平衡即造成小区域的晶格畸变.效果1提高材料的电阻定向流动的电子在点缺陷处受到非平衡力(陷阱),增加了阻力,加速运动提高局部温度(发热)2加快原子的扩散迁移空位可作为原子运动的周转站3形成其他晶体缺陷过饱和的空位可集中形成内部的空洞,集中一片的塌陷形成位错4改变材料的力学性能.空位移动到位错处可造成刃位错的攀移,间隙原子和异类原子的存在会增加位错的运动阻力.会使强度提高,塑性下降.位错7刃型位错若将上半部分向上移动一个原子间距,之间插入半个原子面,再按原子的结合方式连接起来,得到和(b)类似排列方式(转90度),这也是刃型位错.8螺型位错若将晶体的上半部分向后移动一个原子间距,再按原子的结合方式连接起来(c),同样除分界线附近的一管形区域例外,其他部分基本也都是完好的晶体.而在分界线的区域形成一螺旋面,这就是螺型位错9柏氏矢量.确定方法,首先在原子排列基本正常区域作一个包含位错的回路,也称为柏氏回路,这个回路包含了位错发生的畸变.然后将同样大小的回路置于理想晶体中,回路当然不可能封闭,需要一个额外的矢量连接才能封闭,这个矢量就称为该位错的柏氏矢10柏氏矢量与位错类型的关系刃型位错,柏氏矢量与位错线相互垂直.(依方向关系可分正刃和负刃型位错).螺型位错,柏氏矢量与位错线相互平行.(依方向关系可分左螺和右螺型位错).混合位错,柏氏矢量与位错线的夹角非0或90度. 柏氏矢量守恒1同一位错的柏氏矢量与柏氏回路的大小和走向无关.2位错不可能终止于晶体的内部,只能到表面,晶界和其他位错,在位错网的交汇点, 11滑移运动--刃型位错的滑移运动在晶体上施加一切应力,当应力足够大时,有使晶体上部向有发生移动的趋势.假如晶体中有一刃型位错,显然位错在晶体中发生移动比整个晶体移动要容易.因此,①位错的运动在外加切应力的作用下发生;②位错移动的方向和位错线垂直;③运动位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动(滑移);④位错移出晶体表面将在晶体的表面上产生柏氏矢量大小的台阶.螺型位错的滑移在晶体上施加一切应力,当应力足够大时,有使晶体的左右部分发生上下移动的趋势.假如晶体中有一螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边晶体向下移动一柏氏矢量.因此,①螺位错也是在外加切应力的作用下发生运动;②位错移动的方向总是和位错线垂直;③运动位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动(滑移);④位错移过部分在表面留下部分台阶,全部移出晶体的表面上产生柏氏矢量大小的完整台阶.这四点同刃型位错.刃,螺型位错滑移的比较.1因为位错线和柏氏矢量平行,所以螺型位错可以有多个滑移面,螺型位错无论在那个方向移动都是滑移2晶体两部分的相对移动量决定于柏氏矢量的大小和方向,与位错线的移动方向无关. 12刃位错的攀移运动:刃型位错在垂直于滑移面方向上的运动.刃位错发生攀移运动时相当于半原子面的伸长或缩短,通常把半原子面缩短称为正攀移,反之为负攀移.滑移时不涉及单个原子迁移,即扩散.刃型位错发生正攀移将有原子多余,大部分是由于晶体中空位运动到位错线上的结果,从而会造成空位的消失;而负攀移则需要外来原子,无外来原子将在晶体中产生新的空位.空位的迁移速度随温度的升高而加快,因此刃型位错的攀移一般发生在温度较高时;另外,温度的变化将引起晶体的平衡空位浓度的变化,这种空位的变化往往和刃位错的攀移相关.切应力对刃位错的攀移是无效的,正应力的存在有助于攀移(压应力有助正攀移,拉应力有助负攀移),但对攀移的总体作用甚小.13位错点缺陷交互.晶体内同时含由位错和点缺陷时(特别时溶入的异类原子),它们会发生交互作用异类原子在刃位错处会聚集,如小原子到多出半原子面处,大原子到少半原子面处,而异类原子则溶在位错的间隙处. 空位会使刃位错发生攀移运动.界面14表面能的来源.材料表面的原子和内部原子所处的环境不同,内部在均匀的力场中,能量较低,而表面的原子有一个方向没有原子结合,处在与内部相比较高的能量水平.另一种设想为一完整的晶体,按某晶面为界切开成两半,形成两个表面,切开时为破坏原有的结合键单位面积所吸收的能量.由于不同的晶面原子的排列方式不同,切开破坏的化学键的量也不同,故用不同的晶面作表面对应的表面能也不相同,一般以原子的排列面密度愈高,对应的表面能较小15表面能与晶体形状之间的关系.在晶体形成的过程中,为了使系统的自由能最低,尽量降低表面的总能量,即ΣσA最小.一方面尽量让σ最小的晶面为表面,当然也可能是表面能略高但能明显减小表面积的晶面为表面.如fcc结构的晶体自由生长就为14面体粗糙表面与平滑表面晶体的表面在宏观为一能量较低的平面,但表面原子的缺陷,局部表面原子缺少或有多余原子,以表面存在的阵点数与实有原子数的比x来表示,这些缺陷的存在可提高表面的熵,是必然存在的.每种材料有特定的x值下表面能最低,其中x=0.5的表面稳定的称为粗糙表面,大多数的金属材料是属于粗糙表面;x值仅在0或1附近稳定的称为平滑表面,大多是非金属材料. 17晶界与杂质原子的相互作用.少量杂质或合金元素在晶体内部的分布也是不均匀的,它们常偏聚于晶界,称这种现象为晶界内吸附.产生的原因可参见位错与点缺陷的作用,一般杂质原子与晶体的尺寸或性质差别愈大,这种偏聚愈严重.杂质原子在晶界的偏聚对晶体的某些性能产生重要的影响,18相界面.两种不同相的分界面.液体的表面是液相和气相的分界面;晶体的表面是晶体和气相(或液相)的分界面;两个不同的固相之间的分界面也是相界面,在我们的课程中主要是指后者.相界面的特性:相界面的结构和晶界有一定的共性,也有一些明显的差别.非共格界面类似大角度晶界,而完全的共格是困难的,共格面两边微少的差别可以用晶格的畸变来调整,界面两边差别不十分大时,将可以补充一定的位错来协调,组成半共格界面.无论那种情况,界面都存在自己的界面能,都将对材料的结构形貌带来明显的影响.第三章相固溶体分类位置分置换固溶体.溶质原子取代了部分溶剂晶格中某些节点上的溶剂原子而形成的固溶体.间隙固溶体.溶质原子嵌入溶剂晶格的空隙中,不占据晶格结点位置固溶体分类溶解度无限溶解固溶体.溶质可以任意比例溶入溶剂晶格中.这是把含量较高的组元称为溶剂,含量较少的组元称为溶质.有限溶解固溶体.溶质原子在固溶体中的浓度有一定限度,超过这个限度就会有其它相(另一种固溶体或化合物)的形成.间隙固溶体都是有限溶解固溶体.通常是过渡族金属为溶剂,小尺寸的C,N,H,O,B等元素为溶质. 4影响固溶体溶解度的因素在一定条件下,溶质元素在固溶体中的极限浓度叫该元素在固溶体中的溶解度.影响溶解度的因素很多,目前还在研究中,现在公认的有1尺寸因素.在置换固溶体中,溶质原子的尺寸和溶剂相近,溶解度也愈大,Δr小于15%时才有利于形成置换固溶体,要能达到无限互溶,Δr 的值还要小一些.间隙固溶体的形成的基本条件D质/D剂<0.59.在间隙固溶体中,显然D质/D剂愈小,即溶质原子的尺寸愈小,溶解度也大.间隙固溶体只能有限溶解2.晶体结构因素.组元间晶体结构相同时,固溶度一般都较大,而且才有可能形成无限固溶体.若组元间的晶体结构不同,便只能生成有限固溶体3电负性差.电负性为这些元素的原子自其它原子夺取电子而变为负离子的能力.反映两元素的化学性能差别.两元素间电负性差越小,则越容易形成固溶体,且所形成的固溶体的溶解度也就越大;随两元素间电负性差增大,溶解度减小,当其差别很大时,往往形成较稳定的化合物4电子浓度.在金属材料(合金)中,价电子数目(e)与原子数目(a)之比称为电子浓度.由于溶质和溶剂的价电子数可能不同,电子浓度e/a = V A(1-x) + V B x.其中x为溶质的原子百分比浓度(摩尔分数),V A,V B分别为溶剂和溶质的价电子数.一方面,溶质和溶剂的价电子数目相差大,它们的电负性的差别也大,溶解度会下降.另一方面,当e/a 为某些特定值时形成一新的晶体结构,因此它们的溶解度也就受到相应的限制.5固溶体的性能特点.1由于固溶体的晶体结构与溶剂相同,固溶体的性能基本上与原溶剂的性能相近,即固溶体的性能主要决定于溶剂的性能,或在溶剂性能基础上发生一些改变2固溶体的性能与原溶剂性能的差别,或称性能变化的大小,随着溶质的浓度的增加而加大3以金属元素为溶剂的固溶体,随着溶质的溶入,强度将提高,称为固溶强化,溶质的溶入可造成晶格畸变,材料的塑性变形的阻力加大,塑性略有下降,但不明显.是有效提高金属材料力学性能的途径之一6金属化合物类型.1.正常价化合物两组元服从原子价规律而生成的正常化学中所称的化合物.通常是金属元素与非金属元素组成,组元间电负性差起主要作用,两组元间电负性差较大,它们符合一般化合物的原子价规律.例如MnS,Al2O3,TiN,ZrO2等,其结合键为离子键;也有的是共价键,如SiC;少数也有以金属键结合,如Mg2Pb2电子化合物这类化合物大多是以第Ⅰ族或过渡族金属元素与第Ⅱ至第Ⅴ族金属元素结合而成.它们也可以用分子式表示,但大多不符合正常化学价规律.当e/a 为某些特定值时形成一新的晶体结构,并且电子浓度不同,其对应的晶体结构的类型也就不同.常见的电子浓度值有21/14,21/13,21/12.由于这类中间相与电子浓度有关,所以就称为电子化合物,主要出现在金属材料中,它们的结合键为金属键.一些常见的电子化合物可参看教材.例如Cu31Sn8,电子浓度21/13,具有复杂立方晶格3.间隙化合物.主要受组元的原子尺寸因素控制,通常是由过渡族金属原子与原子半径小于0.1nm 的非金属元素碳,氮,氢,氧,硼所组成.由于非金属元素(X)与金属元素(M)原子半径比不同,结构也有所不同.当r X/r M<0.59时,形成具有简单晶体结构的化合物,如fcc,bcc,cph或简单立方,通常称它们为间隙相,相应的分子式也较简单,如M4X,M2X,MX,MX2 .当r X/r M>0.59时,形成的化合物的晶体结构也较复杂,通常称它们为间隙化合物,相应的分子式也较复杂,如钢中常见的Fe3C,Cr7C3,Cr23C6等.7金属化合物的性能特点.大多数化合物,特别是正常价化合物,熔点都较高(结合键强的表现之一),力学性能表现为硬而脆.单一由化合物在金属材料中比较少见,而陶瓷材料则是以化合物为主体.少量硬度高的质点加入到塑性材料中,将明显提高材料的强度,即第二相强化机制.另一方面,化合物往往由特殊的物理,化学(电,磁,光,声等)性能,从而在功能材料中的应用得到迅速发展.相图热力学8克劳修斯-克莱普隆方程.设在一定温度和压力下,某物质处于两相平衡状态,若温度改变为dT,压力相应的改变dp之后,两相仍呈平衡状态.根据等温定压下的平衡条件△G=0,考虑1mol物质吉布斯自由能变化,由于平衡状态△G=G2-G1=0即 d G2=d G1按 d G=-SdT+Vdp因为过程是在恒温恒压的条件下进行的即为克劳修斯-克莱普隆方程,适应于任何物质的两相平衡体系.9公切线法则-两相平衡.在二元的情况,温度一定时,若AB组元可能形成αβ两种相,其自由能与成分的关系曲线.合金成分为X时: 以单一的α相存在,自由能在1点;以单一的β相存在,自由能在2点;作GαGβ的公切线,切点分别为P,Q,延长交坐标轴为a,b.a点为组元A在α和β的化学位b点为组元B在α和β的化学位,显然二者相等,所以P点的α相成分为x1;Q点的β相成分为x2;它们是平衡相.两相的数量满足杠杆定律,以这两相混合的自由能在M点.这时的自由能最低,它们才是这个温度下的平衡相.注意平衡相是以共切点的成分来分配,如果连接两曲线的最低点,以这样的成分的两相混合,尽管每一相的自由能比切点低,但数量按杠杆定律分配后的混合自由能在3点,依然高于M点结论:二元合金两相平衡的条件是能够作出这两相自由能曲线的工切线.公切线在两条曲线上的切点的成分坐标值便是这两个相在给定温度下的平衡成分.推论三个溶体平衡共存的条件是在给定的温度下,公切线能同时切过三条自由能曲线.或曰这三个溶体的自由能曲线有公切线.这三个切点的成分坐标值便是这三个相在给定温度下的平衡成分. 10相律—相律是描述系统的组元数,相数和自由度间关系的法则.相律有多种,其中最基本的是吉布斯相律,其通式f=C-P+2式中,C为系统的组元数,P为平衡共存的相的数目.自由度f不能为负值.对于恒压条件:f = c – p + 1.系统中有p相,c个组元,则成分引起的变数p(c-1)个.系统总的变数为p(c-1)+1.在多相平衡时,任一组元在各相间的化学位相等, 每个组元可写出个p-1等式,平衡条件总数为c(p-1)11几种二元相图.匀晶相图.两组元在液态和固态都能无限互溶.如Cu—Ni,Ag—Au形成二元合金对应的相图就是二元匀晶相图.相图的构成:由两条曲线将相图分为三个区.左右两端点分别为组元的熔点.上面的一条曲线称为液相线,液相线之上为液相的单相区,常用L表示;下面的一条曲线称为固相线,固相线之下为固溶体的单相区,常用α表示;两条曲线之间是双相区,标记L+α表示.二元共晶相图.两组元在液态下无限互溶,固态下有限溶解,一组元溶入另一组元中时都使凝固温度下降,并发生共晶转变.如Pb—Sn,Ag—Cu 等形成二元合金对应的相图就是二元匀晶相图.相图的构成:t A E和t B E为两液相线,与其对应的t A C和t B D为两固相线;CG和DH固溶体α,β的溶解度随温度变化线;CED为水平共晶线.将相图分成三个单相区L,α,β;三个双相区L+α,L+β,α+β和一个三相区L+α+β,即CED为共晶线.二元包晶相图.两组元在液态下无限互溶,固态下有限溶解,并且发生包晶转变.相图的构成:ac和bc 为两液相线,与其对应的ad和bp为两固相线;df和pg固溶体α,β的溶解度随温度变化线;dpc为包晶转变线.它们分隔相图为三个单相区L,α,β;三个双相区L+α,L+β,α+β; 一个三相区L+α+β,即水平线dpc 为包晶线.第四章单组元材料的结晶1凝固状态的影响因素1物质的本质.原子以那种方式结合使系统吉布斯自由能更低.温度高时原子活动能力强排列紊乱能量低,而低温下按特定方式排列结合能高可降低其总能量.这是热力学的基本原则2熔融液体的粘度:粘度表征流体中发生相对运动的阻力,随温度降低,粘度不断增加,在到达结晶转变温度前,粘度增加到能阻止在重力作用物质发生流动时,即可以保持固定的形状,这时物质已经凝固,不能发生结晶.例如玻璃,高分子材料3熔融液体的冷却速度:冷却速度快,到达结晶温度原子来不及重新排列就降到更低温度,最终到室温时难以重组合成晶体,可以将无规则排列固定下来.金属材料需要达到106℃/s才能获得非晶态.2结晶的热力学条件.结晶过程不是在任何情况下都能自动发生.自然界的一切自发转变过程总是向着自由能降低的方向进行.因为液体的熵值恒大于固体的熵,所以液体的曲线下降的趋势更陡,两曲线相交处的温度T m,当温度T= T m时,液相和固相的自由能相等,处于平衡共存,所以称T m为临界点,也就是理论凝固温度.当T< T m时,从液体向固体的转变使吉布斯自由能下降,是自发过程,发生结晶过程;反之,当T> T m时,从固体向液体的转变使吉布斯自由能下降,是自发过程,发生熔化过程.所以结晶过程的热力学条件就是温度在理论熔点以下.3结晶过程.温度变化规律:材料的熔体在熔点以上不断散热,温度不断下降,到理论结晶温度并不是马上变成固态的晶体,继续降温而出现过冷.过冷到某一程度开始结晶,放出结晶潜热,可能会使其温度回升.到略低于熔点的温度时,放出的热量和散热可达到平衡,这时处于固定温度,在冷却曲线上出现平台.结晶过程完成,没有潜热的补充,温度将重新不断下降,直到室温.组织的变化在一定的过冷度下,液态的熔体内首先有细小的晶体生成,称为形核.随后已形成的晶核不断的长大,同时在未转变的液体中伴随新的核心的形成.生长过程到相邻的晶体互相接触,直到液体全部转变完毕.每个成长的晶体就是一个晶粒,它们的接触分界面就形成晶界. 4自发形核1能量变化.在一定的过冷度下,液体中若出现一固态的晶体,该区域的能量将发生变化,一方面一定体积的液体转变为固体,体积自由能会下降,另一方面增加了液-固相界面,增加了表面自由能2临界大小.在一定过冷度下,ΔG V为负值,而σ恒为正值.可见晶体总是希望有最大的体积和最小的界面积.设ΔG V和σ为常数,最有利的形状为球.当细小晶体的半径大于临界尺寸,晶体长大时吉布斯自由能下降,这种可以长大的小晶体称为晶核.如果它的半径小于临界尺寸,晶体长大时吉布斯自由能将上升,自发过程为不断减小到消失3晶核的来源.熔体在熔点附近时,处在液态总体的排列是无序的,但局部的小区域并非静止不动的,原子的运动可造成局部能量在不断变化,其瞬间能量在平均值的上下波动,对应的原子排列在变化,小范围可瞬间为接近晶体的排列,其范围大小对应的能量于平均能量之差ΔG小于临界尺寸的(晶胚)下一步减小到消失,大于临界尺寸的可能不断长大,晶核.等于临界尺寸大小的晶核高出平均能量的那部分称为“形核功”.过冷度愈小,固—液自由能差也小,临界尺寸大,形核功也高,出现的几率也小.太小的过冷度在有限的时空范围内不能形核5非自发形核.如果形核不是在液体内部,如附着在某些已存在的固体(液体中存在的未熔高熔点杂质),例如在固体上形成球冠形,这时可以利用附着区原液体和杂质的界面能,特别是核心和杂质间可能有小的界面能.这种依附在某些已有的固体上形核称之为6晶核的长大一长大条件.从热力学分析可知,要使系统的自由能下降,在液—固界面附近的部分液体转变为固体,依然要求在界面附近要存在过冷度,前面冷却曲线上平台和理论结晶温度之差就是长大所要求的过冷度,也称为“动态过冷度”.金属材料的动态过冷度很小,仅0.01—0.05℃,而非金属材料的动态过冷度就大得多.若液—固界面处于平衡,则界面的温度应该为理论结晶温度.二长大速度.凝固过程中,晶体在不断长大,界面在单位时间向前推移的垂直距离称为长大线速度三正温度梯度下晶体的长大.正温度梯度是指液—固界面前沿的液体温度随到界面的距离的增加而升高,这时结晶过程的潜热只能通过已凝固的固体向外散失.平衡时界面的温度为理论结晶温度,液体的温度高于理论结晶温度.当通过已凝固的固体散失热量时,达到动态过冷的部分液体转变为固体,界面向前推移,到达理论结晶温度处,生长过程将停止.所以这时界面的形状决定于散热,实际上为理论结晶温度的等温面.在小的区域内界面为平面,局部的不平衡带来的小凸起因前沿的温度较高而放慢生长速度,因此可理解为齐步走,称为平面推进方式生长.四负温度梯度下晶体的长大.负温度梯度是指液—固界面前沿的液体温度随到界面的距离的增加而降低,这时结晶过程的潜热不仅可通过已凝固的固体向外散失,而且还可向低温的液体中传递.在小的区域内若为平面,局部的不平衡可带来某些小凸起,因前沿的温度较低而有利生长,因而凸起的生长速度将大于平均速度,凸起迅速向前发展,可理解赛跑的竞争机制,在凸起上可能再有凸起,如此发展而表现为数枝晶的方式长大.枝晶间的空隙最后填充,依然得到完整的晶体. 7树枝晶的生长按树枝方式生长的晶体称为树枝晶,先凝固的称为主干,随后是分支,再分支.①纯净的材料结晶完毕见不到树枝晶,但凝固过程中一般体积收缩,树枝之间若得不到充分的液体补充,树枝晶可保留下来②生长中晶体分支受液体流动,温差,重力等影响,同方向的分支可能出现小的角度差,互相结合时会留下位错③材料中含有杂质,在结晶时固体中的杂质比液体少,最后不同层次的分枝杂质含量不相同,其组织中可见树枝晶8非金属晶体的长大正温度梯度下,等温面和有利的晶体表面不相同时,界面会分解为台阶形.在表面的台阶处有利晶体的生长,这时原子从液体转移到固体中增加的表面积较小,台阶填充完后在表面生长也需要一定的临界尺寸,表现为非金属生长的动态过冷度比金属大,其中特别是螺位错造成的表面台阶对生长有利,并且是永远填不满的台阶. 9界面结构对晶体生长影响-受界面能和表明熵的影响,液-固界面的微观结构有两中类型:平滑型(晶面型)界面上原子排列平整,通常为晶体的某一特定晶面,界面上缺位或单贴原子较少.粗糙型(非晶面型) 界面上缺位或单贴原子较多,粗糙不平,不显示任何晶面特征.大多金属材料时如此.粗糙界面生长时向各个方向无区别.对于平滑界面能低的晶面与等温面不重和,原子将在台阶面处生长.(无台阶时,少量的原子很难吸附在光滑平面上,需要一批原子<二维晶核>,所需的动态过冷度较大.最终的形状与晶体的各向异性相关,对应独特的外形10铸件晶粒大小的控制从液体凝固后,每个晶核生长成一个晶粒,晶核多晶粒的尺寸自然就小.凝固理论分析表明晶粒尺寸决定于N/G,即形核率高晶粒细小,而长大速度快,晶粒尺寸增大.控制原理与方法:生产过程通常希望材料得到细小的尺寸,为此控制晶粒尺寸的方法有:第一,降低浇注温度和加快冷却速度,如金属模,或加快散热,尽管形核率和长大速度都提高,但形核率的提高快得多,所得到的晶粒将细化,可是快冷却速度会增加零件的内应力有时甚至可能造成开裂,有时因生产环境和零件尺寸达不到快速冷却.第二,加变质剂即人为加入帮助形核的其它高熔点细粉末,如在铜中加少量铁粉或铝中加Al2O3粉等,以非均匀方式形核并阻碍长大.第三,铸件凝固中用机械或超声波震动等也可细化晶粒尺寸.若希望晶粒粗大,如用于高温的材料,对这些因素进行相反的操作.。
材料物理高中实验总结汇报材料物理高中实验总结汇报材料物理实验是通过实际操作来观察、测量和分析材料的物理性质和特性的一种重要手段。
在本学期的材料物理实验中,我们进行了多个实验,主要涵盖了材料的导电性、热传导性和磁性等方面。
通过实验,我们不仅加深了对材料物理性质的理解,还掌握了实验操作技巧和实验数据处理方法。
下面是我对本学期材料物理实验的总结汇报。
首先,我想总结一下关于材料的导电性实验。
在这个实验中,我们用导线将电池与所测导体连接,通过测量电流和电压来确定导体的电阻。
我们选取了不同材料的导体,如铜、铝、铁等,并测量了它们在不同温度下的电阻变化。
通过这个实验,我发现了不同材料的导体具有不同的电阻特性。
在固定电流的情况下,铜导体的电阻最小,而铁导体的电阻最大。
这是因为铜具有较好的导电性能,而铁具有较差的导电性能。
另外,我们还发现导体的电阻随温度的变化而变化。
随着温度的升高,导体的电阻会增加。
这是因为导体的电阻与其温度呈正比,即温度升高导致材料的电阻增加。
其次,我想总结一下关于材料的热传导性实验。
在这个实验中,我们用导热材料制作了热传导实验装置,通过测量不同材料在相同温度梯度下的传热速率来比较它们的热传导性能。
通过这个实验,我了解到了不同材料具有不同的热传导特性。
我们发现金属材料的热传导性能较好,而非金属材料(如塑料)的热传导性能较差。
这是因为金属材料具有自由电子,能够有效地传递热能,而非金属材料则由于分子之间的固有结构而导致热能传递的困难。
最后,我想总结一下关于材料的磁性实验。
在这个实验中,我们用强磁场和磁感应仪对不同材料进行了磁性测量。
通过测量材料在磁场中的磁感应强度,我们可以判断材料的磁性性质。
通过这个实验,我了解到了不同材料具有不同的磁性特性。
我们发现铁和镍等材料具有明显的磁性,而铜和铝等材料则不具备磁性。
这是因为铁和镍等材料具有未配对的电子自旋,能够在磁场中形成磁化,而铜和铝等材料的电子自旋完全配对,所以不具备磁性。
一章1、原子间的键合类型有几种?(P1)金属键、离子键、共价键、分子键和氢键2、什么是微观粒子的波粒二象性?(P1)光子这种微观粒子表现出双重性质——波动性和粒子性,这种现象叫做波粒二象性。
3、什么是色散关系?什么是声子?声子的性质?(P20、P25)将频率和波矢的关系叫做色散关系。
声子就是晶格振动中的独立简谐振子的能量量子。
性质:(1)声子的粒子性:声子和光子相似,光子是电磁波的能量量子,电磁波可以认为是光子流,光子携带电磁波的能量和动量。
(2)声子的准粒子性:准粒子性的具体表现:声子的动量不确定,波矢改变一个周期或倍数,代表同一振动状态,所以不是真正的动量。
4、声子概念的意义?(P25)(1)可以将格波雨物质的相互作用过程理解为,声子和物质的碰撞过程,使问题大大简化,得出的结论也正确。
(2)利用声子的性质可以确定晶格振动谱。
5、简述高聚物分子运动的特点。
(P29)(1)运动单元的多重性(2)分子运动时间的依赖性(3)分子运动的温度依赖性6、影响高聚物玻璃化温度的因素(P33)(1)分子链结构的影响(2)分子量的影响(3)增塑剂的影响(4)外界条件的影响7、影响高聚物流动温度的因素(P39)(1) 分子量(2)分子间作用力(3)外力8、线性非晶高聚物的力学状态?(P29)二章1、材料的热学性能的内容。
(P41)材料的热学性能包括热容、热膨胀、热传导、热稳定性、熔化和升华等。
2、什么是热容?(P42)什么是杜隆-柏替定律和奈曼-柯普定律(P43)热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。
杜隆-珀替定律:恒压下元素的原子热容为25J/(k·mol);奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。
3、试述线膨胀系数与体膨胀系数的关系。
(P50)4、请分析热膨胀与其他性能的关系。
(P49)5、影响材料热膨胀系数的因素。
(P50)(1)化学组成、相和结构的影响(2)化学键的影响(3)相变的影响6、简述影响热导率的因素。
学材料物理性能心得本学期我们学了材料物理性能,对材料的微观结构有了更充分的了解,全书一共有六章.第一章为材料的热学性能,包括热容、热膨胀、热传导、热稳定性等;第二章为材料的电学性能,包括材料的导电性、超导电性、介电性、磁电性、热电性、接触电性、热释电性和压电性、光学性等;第三章为材料的磁学性能,介绍有关的磁学理论、磁性的测量和磁性分析法在材料研究中的主要应用;第四章为材料的光学性质,介绍光传播电磁理论、光的折射与反射、光的吸收与色散、晶体的双折射和二向色性、介质的光散射、发光材料等;第五章为材料的弹性及内耗、内耗产生的物理本质、影响弹性模量的因素、弹性模量的测量及应用、滞弹性与内耗、内耗产生的机制、内耗的测量方法和度量、内耗分析的应用等;第六章为核物理检测方法及应用,主要介绍穆斯堡尔、核磁共振、正电子湮没和中子散射等现代物理方法。
在学习过程中对材料的磁学性能印象最深刻,物质的磁学性能在研究中非常重要,这是因为磁性是一切物质的基本属性之一,它存在的范围很广,小至微观粒子大到宇宙天体几乎丢存在着磁现象。
磁性不只是一个宏观的物理量,而且与物质的微观结构密切相关;它不仅取决于物质的原子结构,还取决于原子间的相互作用,即键合情况和晶体结构等。
因此,研究磁性是研究物质内部微观结构的重要方法之一。
随着现代科学技术和工业的发展,磁性材料的应用越来越广泛,特别是电子技术的发展,对磁性材料又提出了心得要求。
因此,研究有关磁性的理论、发现新型的磁性材料是材料科学的一个重要方向。
下面主要介绍磁性材料的内容。
磁性材料是一种新兴的基础功能材料。
虽然我们人类早在几千年前就发现了磁石相吸和磁石吸铁的现象,但我们对于磁性材料的开发研究还不足100年。
经过不断的发现研究,磁性材料已经成为一个庞大的家族。
早在公元前四世纪、人们就发现了天然的磁石,我国古代人民最早用磁石和钢针制成了指南针、并将它用于军事和航海。
对物质磁性的研究具有悠久的历史、是在十七世纪末期和十九世纪开始发展起来的。