七年级(上)数学期中模拟卷(二)
- 格式:pdf
- 大小:270.53 KB
- 文档页数:13
七年级数学上册期中检测试卷2(含答案解析)一、选择题(每小题2分,共16分,请把正确答案填入下面对应表格中)1.下列各数中,绝对值最大的数是( )A.﹣3 B.﹣2 C.0 D.12.下列各式中不是整式的是( )A.3x B.C.D.x﹣3y3.下列各组数中,互为相反数的是( )A.﹣(﹣2)与2 B.(﹣2)2与4 C.|﹣2|与2 D.﹣22与44.若﹣3x2m y3与2x4y n是同类项,则|m﹣n|的值是( )A.0 B.1 C.7 D.﹣15.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边6.下列根据等式基本性质变形正确的是( )A.由﹣x=y,得x=2y B.由3x﹣2=2x+2,得x=4C.由2x﹣3=3x,得x=3 D.由3x﹣5=7,得3x=7﹣57.如图,是李明同学在求阴影部分的面积时,列出的4个式子,其中错误的是( )A.ab+(c﹣a)a B.ac+(b﹣a)a C.ab+ac﹣a2D.bc+ac﹣a28.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程( )A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2二、填空题(每小题2分,共16分)9.在一条东西走向的跑道上,设向东的方向为正方形,如果小芳向东走了8m,记作“+8m”,那么她向西走了10m,应该记作__________.10.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a 元,请你对“0.8a”再赋予一个含义:__________.11.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞越,将300000用科学记数法表示为__________.12.已知x2+3x+5的值是7,则式子x2+3x﹣2的值为__________.13.若关于x的方程(2a+1)x2+5x b﹣2﹣7=0是一元一次方程,则方程ax+b=0的解是__________.14.若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含二次项,则m的值为__________.15.李明与王伟在玩游戏,游戏的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,其结果是__________.16.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得:=__________.三、解答题(17题10分,18、19题各6分,共22分)17.(1)计算:(﹣4)2×[(﹣)+(﹣)](2)计算:﹣22﹣(1﹣0.5)××[2﹣(﹣4)2].18.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.19.解方程:=3x﹣.四、解答题(每小题8分,共24分)20.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重__________千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?21.已知多项式+2xy2﹣4x3+1是六次四项式,单项式26x2n y5+m的次数与该多项式的次数相同,求(﹣m)3+2n的值.22.关于x的方程x﹣2m=﹣3x+4与2﹣m=x的解互为相反数.求m的值.五、23.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.六、列方程解应用题24.假期里,某学校组织部分学生参加社会实践活动,分乘大、小两辆车去农业科技园区体验生活,早晨6点钟出发,计划2小时到达;(1)若大车速度为80km/h,正好可以在规定时间到达,而小车速度为100km/h,如果两车同时到达,那么小车可以晚出发多少分钟?(2)若小车每小时能比大车多行30千米,且大车在规定时间到达,小车要提前30分钟到达,求大、小车速度.(3)若小车与大车同时以相同速度出发,但走了20分钟以后,发现有物品遗忘,小车准备返回取物品,若小车仍想与大车同时在规定时间到达,应提速到原来的多少倍?2015-2016学年辽宁省鞍山市台安县七年级(上)期中数学试卷一、选择题(每小题2分,共16分,请把正确答案填入下面对应表格中)1.下列各数中,绝对值最大的数是( )A.﹣3 B.﹣2 C.0 D.1【考点】绝对值;有理数大小比较.【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.【解答】解:|﹣3|>|﹣2|>|1|>|0|,故选:A.【点评】本题考查了绝对值,绝对值是实数轴上的点到原点的距离.2.下列各式中不是整式的是( )A.3x B.C.D.x﹣3y【考点】整式.【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3x是单项式,是整式,故A不符合题意;B、既不是单项式,又不是多项式,不是整式,故B符合题意;C、是单项式,是整式,故C不符合题意;D、x﹣3y是多项式,是整式,故D不符合题意.故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义.3.下列各组数中,互为相反数的是( )A.﹣(﹣2)与2 B.(﹣2)2与4 C.|﹣2|与2 D.﹣22与4【考点】相反数;有理数的乘方.【分析】利用化简符号法则,绝对值的性质,有理数的乘方,以及只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、﹣(﹣2)=2,不是互为相反数,故本选项错误;B、(﹣2)2=4,不是互为相反数,故本选项错误;C、|﹣2|=2,不是互为相反数,故本选项错误;D、﹣22=﹣4,﹣4与4互为相反数,故本选项正确.故选D.【点评】本题考查了相反数的定义,绝对值的性质,有理数的乘方,是基础题,熟记概念是解题的关键.4.若﹣3x2m y3与2x4y n是同类项,则|m﹣n|的值是( )A.0 B.1 C.7 D.﹣1【考点】同类项.【分析】根据同类项的定义得出2m=4,n=3,求出后代入,即可得出答案.【解答】解:∵﹣3x2m y3与2x4y n是同类项,∴2m=4,n=3,∴m=2,∴|m﹣n|=|2﹣3|=1,故选B.【点评】本题考查了同类项的定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,是同类项.5.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【考点】实数与数轴.【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选C.【点评】本题考查了实数与数轴,理解绝对值的定义是解题的关键.6.下列根据等式基本性质变形正确的是( )A.由﹣x=y,得x=2y B.由3x﹣2=2x+2,得x=4C.由2x﹣3=3x,得x=3 D.由3x﹣5=7,得3x=7﹣5【考点】等式的性质.【分析】根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质2,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.【解答】解:A、等是左边乘以﹣﹣3,右边乘以3,故A错误;B、等式的两边都加(2﹣2x),得x=4,故B正确;C、等式的两边都减2x,得x=﹣﹣3,故C错误;D、等式的两边都加5,得3x=7+5,故D错误;故选:B.【点评】本题考查了等式的性质,利用了等式的性质1,等式的性质2.7.如图,是李明同学在求阴影部分的面积时,列出的4个式子,其中错误的是( )A.ab+(c﹣a)a B.ac+(b﹣a)a C.ab+ac﹣a2D.bc+ac﹣a2【考点】列代数式.【专题】计算题;整式.【分析】根据图形表示出阴影部分面积,化简得到结果,即可作出判断.【解答】解:根据题意得:阴影部分面积S=ab+a(c﹣a)=ac+a(b﹣a)=ab+ac﹣a2.故选D.【点评】此题考查了列代数式,正确表示出阴影部分面积是解本题的关键.8.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程( )A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2【考点】由实际问题抽象出一元一次方程.【专题】几何图形问题.【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.二、填空题(每小题2分,共16分)9.在一条东西走向的跑道上,设向东的方向为正方形,如果小芳向东走了8m,记作“+8m”,那么她向西走了10m,应该记作﹣10m.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:正”和“负”相对,所以向东是正,则向西就是负,因而向西运动10m应记作﹣10m.故答案为:﹣10m.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.10.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a 元,请你对“0.8a”再赋予一个含义:练习本每本0.8元,小明买了a本,共付款0.8a元(答案不唯一).【考点】代数式.【专题】开放型.【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.【点评】本题考查了代数式的意义,此类问题应结合实际,根据代数式的特点解答.11.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞越,将300000用科学记数法表示为3×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300000用科学记数法表示为:3×105.故答案为:3×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.已知x2+3x+5的值是7,则式子x2+3x﹣2的值为0.【考点】代数式求值.【分析】首先根据已知列出方程x2+3x+5=7,通过移项推出x2+3x=2,通过代入式子即可推出结果为0.【解答】解:∵x2+3x+5=7,∴x2+3x=2,∴x2+3x﹣2=2﹣2=0.故答案为0.【点评】本题主要考查代数式的求值,关键在于根据已知推出x2+3x=2.13.若关于x的方程(2a+1)x2+5x b﹣2﹣7=0是一元一次方程,则方程ax+b=0的解是x=6.【考点】一元一次方程的定义.【分析】根据一元一次方程的定义可知2a+1=0,b﹣2=1,从而得到a、b的值,然后将a、b的值代入方程ax+b=0求解即可.【解答】解:∵关于x的方程(2a+1)x2+5x b﹣2﹣7=0是一元一次方程,∴2a+1=0,b﹣2=1.解得:a=﹣,b=3.将a=﹣,b=3代入ax+b=0得:﹣x+3=0.解得x=6.故答案为:x=6.【点评】本题主要考查的是一元一次方程的定义,由一元一次方程的定义得到2a+1=0,b﹣2=1是解题的关键.14.若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含二次项,则m的值为4.【考点】整式的加减.【分析】先把两式相加,合并同类项得5x3﹣8x2+2mx2﹣4x+2,不含二次项,即2m﹣8=0,即可得m的值.【解答】解:据题意两多项式相加得:5x3﹣8x2+2mx2﹣4x+2,∵相加后结果不含二次项,∴当2m﹣8=0时不含二次项,即m=4.【点评】本题主要考查整式的加法运算,涉及到二次项的定义知识点.15.李明与王伟在玩游戏,游戏的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,其结果是8.【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题意得:原式=2×(﹣5)﹣3×(﹣6)=﹣10+18=8.故答案为:8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得:=1﹣.【考点】规律型:图形的变化类.【专题】规律型.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、解答题(17题10分,18、19题各6分,共22分)17.(1)计算:(﹣4)2×[(﹣)+(﹣)](2)计算:﹣22﹣(1﹣0.5)××[2﹣(﹣4)2].【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式先计算乘方运算,再利用乘法分配律计算即可;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可.【解答】解:(1)原式=16×(﹣﹣)=﹣12﹣10=﹣22;(2)原式=﹣4﹣××(﹣14)=﹣4+=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:原式=ab2﹣1+7a2b﹣2+2ab2+2﹣2a2b=ab2+5a2b﹣1,∵(a+2)2+|b﹣3|=0,∴a+2=0,b﹣3=0,即a=﹣2,b=3,则原式=﹣42+60﹣1=17.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.解方程:=3x﹣.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得2(2x﹣1)﹣2×6=18x﹣3(x+4),去括号得4x﹣2﹣12=18x﹣3x﹣12,移项得4x﹣18x+3x=2+12﹣12,合并同类项得﹣11x=2,系数化成1得x=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四、解答题(每小题8分,共24分)20.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重﹣0.5千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【考点】正数和负数.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案;(2)根据有理数的加法运算,可得答案;(3)根据单价乘以数量等于总价,可得答案.【解答】解:(1)∵|﹣3|>|﹣2.5|>|﹣2|=|2|>|1.5|>|1|>|﹣0.5|,∴﹣0.5的最接近标准.故答案为:﹣0.5千克;(2)由题意,得1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克).答:与标准重量比较,8筐白菜总计不足5.5千克;(3)由题意,得(25×8﹣5.5)×2.6=194.5×2.6=505.7(元).答:出售这8筐白菜可卖505.7元.【点评】本题考查了正数和负数,利用了绝对值的意义,有理数的加法运算.21.已知多项式+2xy2﹣4x3+1是六次四项式,单项式26x2n y5+m的次数与该多项式的次数相同,求(﹣m)3+2n的值.【考点】多项式;单项式.【分析】利用多项式与单项式的次数与系数的确定方法得出关于m与n的等式进而得出答案.【解答】解:由于多项式是六次四项式,所以m+1+2=6,解得:m=3,单项式26x2n y5﹣m应为26x2n y2,由题意可知:2n+2=6,解得:n=2,所以(﹣m)3+2n=(﹣3)3+2×2=﹣23.【点评】此题主要考查了多项式与单项式的次数,正确得出m,n的值是解题关键.22.关于x的方程x﹣2m=﹣3x+4与2﹣m=x的解互为相反数.求m的值.【考点】一元一次方程的解.【专题】计算题.【分析】将m看做已知数分别表示出两方程的解,根据互为相反数两数之和为0列出关于m的方程,求出方程的解即可得到m的值.【解答】解:x﹣2m=﹣3x+4,移项合并得:4x=2m+4,解得:x=m+1,根据题意得:m+1+2﹣m=0,解得:m=6.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.五、23.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.【考点】有理数的除法.【分析】(1)根据倒数的定义可知:()与()互为倒数;(2)利用乘法的分配律可求得()的值;(3)根据倒数的定义求解即可;(4)最后利用加法法则求解即可.【解答】解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.【点评】本题主要考查的是有理数的乘除运算,发现()与()互为倒数是解题的关键.六、列方程解应用题24.假期里,某学校组织部分学生参加社会实践活动,分乘大、小两辆车去农业科技园区体验生活,早晨6点钟出发,计划2小时到达;(1)若大车速度为80km/h,正好可以在规定时间到达,而小车速度为100km/h,如果两车同时到达,那么小车可以晚出发多少分钟?(2)若小车每小时能比大车多行30千米,且大车在规定时间到达,小车要提前30分钟到达,求大、小车速度.(3)若小车与大车同时以相同速度出发,但走了20分钟以后,发现有物品遗忘,小车准备返回取物品,若小车仍想与大车同时在规定时间到达,应提速到原来的多少倍?【考点】一元一次方程的应用.【专题】应用题.【分析】(1)计算出小车需要的时间,然后可得出可以晚出发的时间;(2)设大车速度为每小时x千米,则小车速度为每小时(x+30)千米,根据小车要提前30分钟到达,可得出方程,解出即可.(3)设原速度为a,小车提速到原来的m倍,根据仍按时到达可得出方程,解出即可.【解答】解:(1)总路程=80×2=160km,小车需要的时间为:=1.6(小时),故小车可以晚出发0.4小时,即24分钟,(2)设大车速度为每小时x千米,则2x=1.5(x+30),解得x=90,即大车速度为每小时90千米,小车速度为每小时120千米.(3)设原速度为a,小车提速到原来的m倍,根据题意得:a+2a=(2﹣)ma,解得:m=1.4,答:应提速到原来的1.4倍.【点评】本题考查了一元一次方程的应用,属于行程问题,解答本题的关键是仔细审题,找到等量关系,利用方程思想解答.。
七年级上册数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.将“1410000000”用科学记数法表示正确的是()A.14.1×108B.1.41×109C.0.141×1010D.1.41×10102.下列各对数中,数值相等的是()A.﹣(﹣3)2与﹣(2)3B.﹣32与(﹣3)2C.﹣3×23与﹣32×2D.﹣27与(﹣2)73.下列表示数轴的方法正确的是()A.B.C.D.4.质检员抽查某种零件的质量,超过规定长度记为正数,短于规定长度记为负数,检查结果如下:第一个为0.13毫米,第二个为﹣0.12毫米,第三个为﹣0.15毫米,第四个为0.16毫米,则质量最差的零件是()A.第一个B.第二个C.第三个D.第四个5.下列有理数大小关系判断正确的是()A.﹣(﹣)>﹣|﹣|B.0>|﹣10|C.|﹣3|<|+3|D.﹣1>﹣0.016.下列说法正确的有()A.是整式B.是单项式C.不是整式D.是多项式7.如果a表示一个任意有理数,那么下面说法正确的是()A.﹣a是负数B.|a|一定是正数C.|a|一定不是负数D.|a|一定是负数8.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是()A.7B.﹣3C.7或﹣3D.不能确定9.如图所示,点在数轴上,则将m、n、0、﹣m、﹣n从小到大排列正确的是()A.﹣m<﹣n<0<m<n B.m<n<0<﹣m<﹣nC.﹣n<﹣m<0<m<n D.m<n<0<﹣n<﹣m 10.如图,长为y(cm),宽为x(cm)的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm,下列说法中正确的有()①小长方形的较长边为(y﹣12)cm;②阴影A的较短边和阴影B的较短边之和为(x﹣y+4)cm;③若x为定值,则阴影A和阴影B的周长和为定值;④当x=20时,阴影A和阴影B的面积和为定值.A.1个B.2个C.3个D.4个二、填空题(6小题,每题3分,共18分)11.笔记本的单价是x元,圆珠笔的单价是y元,买4本笔记本和2支圆珠笔共需元.12.2024的倒数是.13.单项式的系数是14.若关于a,b的代数式﹣3a3b x与9a y b是同类项,则x y的值是15.已知x与y互为相反数,m与n互为倒数,且|a|=3,则=.16.已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,那么a1+a2+…+a100的值是第II卷七年级上册数学期中模拟考试试卷人教版2024—2025学年七年级上册姓名:____________ 学号:____________准考证号:___________ 12345678910题号答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算(1);(2).18.先化简,再求值:a+2(5a﹣3b)﹣3(a﹣3b),其中a=,b=﹣2.19.有理数a、b、c在数轴上的位置如图所示:(1)比较﹣a、b、c的大小(用“<”连接);(2)化简|c﹣b|﹣|b﹣a|+|a+c|.20.足球比赛中,根据场上攻守形势,守门员会在球门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m)+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14(假定开始计时时,守门员正好在球门线上).(1)守门员最后是否回到了球门线上?(2)守门员在这段时间内共跑了多少米?(3)如果守门员离开球门线的距离超过10m(不包括10m),那么对方球员挑射极有可能破门.请问在这段时间内,对方球员有几次挑射破门的机会?21.为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,如表是该市自来水收费价格的价目表(注:水费按月结算)每月用水量单价不超过6立方米的部分2元/立方米超过6立方米但不超过10立方米的部分4元/立方米超过10立方米的部分8元/立方米(1)若某户居民2月份用水4立方米,则应缴纳水费元.(2)若某户居民3月份用水a(6<a<10)立方米,则该用户3月份应缴纳水费多少元(用含a的代数式表示,并化成最简形式)?(3)若某户居民4,5月份共用水15立方米(5月份用水量多于4月份),设4月份用水x立方米,求该户居民4,5月份共缴纳水费多少元.(用含x的代数式表示,并化成最简形式)22.有四个数,第一个数是a2+b,第二个数比第一个数的2倍少a2,第三个数是第一个数与第二个数的差的3倍,第四个数比第一个数少﹣2b,若第二个数用x表示,第三个数用y表示,第四个数用z表示.(1)用a,b分别表示x,y,z三个数;(2)若第一个数的值是3时,求这四个数的和;(3)已知m,n为常数,且mx+2ny﹣3z﹣4的结果与a,b无关,求m,n的值.23.数学中,运用整体思想方法在求代数式的值中非常重要,例如:已知,a2+2a=3,则代数式2a2+4a+1=2(a2+2a)+1=2×3+1=7.请你根据以上材料解答以下问题:(1)若a2﹣2a=2,则2a2﹣4a=;(2)已知a﹣b=5,b﹣c=3,求代数式(a﹣c)2+3a﹣3c的值;(3)当x=﹣1,y=2时,代数式ax2y﹣bxy2﹣1的值为5,则当x=1,y=﹣2时,求代数式ax2y﹣bxy2﹣1的值.24.两个边长分别为a和b的正方形按如图1放置,记未叠合部分(阴影)的面积为S1.在图1大正方形的右下角再摆放一个边长为b的小正方形(如图2),记两个小正方形叠合部分(阴影)的面积S2.(1)用含a,b的代数式分别表示S1,S2.(2)若a=5,b=3,求S1+S2的值.(3)若S1+S2=64,求图3中阴影部分的面积S3.25.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.。
2024学年秋季学期初中数学七年级上册期中考试模拟试卷1.中国是世界上最早使用负数概念的国家.数学家刘徽在《九章算术》注文中指出“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若水位升高3m时记作+3m,则﹣5m表示水位()A.下降5m B.升高3m C.升高5m D.下降3m2.12024的相反数是()A.−12024B.2024C.±2024D.−20243.下列化简不正确的是()A.−(−4.9)=+4.9B.−(+4.9)=−4.9C.−[+(−4.9)]=+4.9D.+[−(+4.9)]=+4.94.春节期间冰雪旅游大热,杭州的小明同学准备去旅游,考虑温差准备着装时,他查询气温,杭州的气温是19℃,哈尔滨的气温是−4°C,则此刻两地的温差是()A.23℃B.19℃C.4℃D.15℃5.2024年春运期间,泸州市道路客运共投放客运班车2336辆,营业性运输累计发送旅客374万人次.将数据374万用科学记数法表示的是()A.3.74×105B.3.74×106C.0.374×107D.3.74×1076.代数式x2,st,1x+y,20%•x,√ab,√2ab,2a+b3中,多项式有()个A.0B.1C.2D.37.下列关于多项式5ab2−2a2bc−1的说法中,正确的是()A.它是三次三项式B.它是二次四项式C.它的最高次项是−2a2bc D.它的常数项是18.下列去括号正确的是()A.−3(x+y)=−3x+3y B.−(−a−b)=a+bC.a−2(b−c)=a−2b+c D.x−(3y+m)=x−3y+m9.下列运算正确的是()A.a3−a2=a B.−a+5a=4a C.a+a2=a3D.ab2+a2b=ab2 10.多项式1+2xy-3xy2的次数为()A.1B.2C.3D.511.一辆汽车以60 千米/时的速度行驶,从A城到B城需t小时,如果该车的速度每小时增加v千米,那么从A城到B城需要()A.60t v小时B.60tv+60小时C.vtv+60小时D.vt60小时12.比较大小:(1)−(−2)−|−2.5|,(2)−78−67.13.计算:−6÷(−5)×(−15)=.14.我国某次人口普查结果公布,全国总人口为1443497378人.把横线上的数改写成用“万”作单位,省略“万”后面的尾数是万.15.如图,线段AB=8cm,点C为线段AB上一点,BC=2cm,点D,E分别为AC和AB的中点,则线段DE的长为cm.16.写出一个与﹣2x2y是同类项的单项式为.17.有理数a、b、c在数轴上的位置如图所示,则|a|−3|a+b|+2|c−a|+4|b+c|可化简为.18.计算(134−78−712)÷(﹣78)+ 87÷(134−78−712)的结果为.19.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形⋯按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).20.计算:−14+30÷22×(−13)+12.21.先化简,再求值:x 2y ﹣2( 14 xy 2﹣3x 2y )+(﹣ 12 xy 2﹣x 2y ),其中|x ﹣ 32 |+(y+2)2=0.22. 先化简,再求值:已知a 2−1=0,求(5a 2+2a −1)−2(a +a 2)的值.23.74÷78−23×(−6) .24.先化简,再求值:3x 2y -[2x 2y -3(2xy -x 2y)-xy],其中x =- 12 ,y =2.25.(1)计算2(3ab 2−a 2b )−3(2a 2b −ab 2);(2)先化简,再求值:8a2−2[3a−(4a−1)+4a2],其中a=−2.26.如图所示,学校有一块宽20m,长40m的空闲长方形场地,中间有两条横纵相交且宽度相等的小道,为了美化校园环境,生物部的同学准备在场地上种植一些植被,若小道的宽为xm.(1)用含有x的代数式表示种植植被的面积;(2)当x=2时,计算种植植被的面积.。
2024-2025学年期中试卷(二)-浙江省台州市人教版数学七年级上册1.在下列选项中,具有相反意义的量是()A .向东走3千米与向北走3千米B .收入100元与支出200元C.气温上升与上升D .5个老人与5个小孩2.在多项式(其中)中,任意添加绝对值符号且绝对值符号内至少包含两项(不可绝对值符号中含有绝对值符号),添加绝对值符号后仍只有加减法运算,然后进行去绝对值符号运算,称此运算为“对绝操作”.例如:,下列说法正确的个数是()①存在“对绝操作”,使其运算结果与原多项式之和为0;②共有8种“对绝操作”,使其运算结果与原多项式相等;③所有的“对绝操作”共有7种不同运算结果.A .0B .1C .2D .33.使成立的条件是().A .为任意数B .C .D .4.在正整数中,前50个偶数的和减去前50个奇数的和所得的结果是()A .50B .C .100D .5.下图是根据某地4月6日至12日的天气情况绘制的气温与日期的表格,根据表格中的信息,下列说法不正确的是()日期4月6日4月7日4月8日4月9日4月10日4月11日4月12日气温℃A .4月8日的最低气温是,最高气温是B .日期是自变量,气温是因变量C .气温随着日期的增加而逐渐升高D .4月12日温差最大6.实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是()A.B.C.D.7.若,则的值可能是()A.1和3B.和3C.1和D.和8.生物学指出,在生物链中大约只有的能量能够流动到下一个营养级,在这条生物链中(表示第个营养级,),要使获得785千焦的能量,那么需要提供的能量约为(用科学记数法表示)().A.千焦B.千焦C.千焦D.千焦9.下列说法正确的是()A.的系数是B.是五次单项式C.的常数项是6D.是三次多项式10.已知,化简所得结果()A.B.C.D.11.如图所示的是2024年2月份的月历,其中“型”、“十字型”两个阴影图形分别覆盖其中五个数字(“型”、“十字型”两个阴影图形可以重叠覆盖,也可以上下左右移动),设“型”覆盖的五个数字之和为,“十字型”覆盖的五个数字之和为.若,则的最大值为()A.39B.44C.65D.7112.若与是同类项,则的值是()A.B.C.D.13.若a、b、c是整数,且,则________.14.观察下列等式:,,,,,,…根据其中的规律可得的结果的个位数字是______.15.有一组数据:记,,,…,.,则______.16.对于任意一个四位自然数,若M满足各个数位上的数字均不为0,且十位数字与个位数字的和等于千位数字与百位数字的差的5倍,则称四位数M为“千寻数”.例如:5346,因为,,,所以5346是“千寻数”.将“千寻数”的千位数字移到个位数字的右边得到一个新数,令,,若能被15整除,且能被7整除,则满足条件的“千寻数”M的最大值与最小值之差为________.17.某天一个巡警骑摩托车在条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):,,,,,,,(1)在岗亭哪个方向?距岗亭多远?(列式并计算)(2)离开出发点最远时是多少千米?(直接写出)(3)若摩托车行驶1千米耗油0.5升,从岗亭到处共耗油多少升?18.同学们都知道,表示与之差的绝对值,实际上也可理解为与两数在数轴上所对应的两点之间的距离.试探索:(1)求______.(2)找出所有符合条件的整数,使得这样的整数是______.(3)由以上探索猜想对于任何有理数,是否有最小值?如果有写出最小值(请写清楚过程),如果没有说明理由.19.有一口深90厘米的枯井,井底有一只青蛙沿着井壁向上往井口跳跃,由于井壁较滑,每次跳跃之后青蛙会下滑一段距离才能稳住.下面是青蛙的几次跳跃和下滑情况(上跳为正,下滑为负,单位为厘米).第1次第2次第3次第4次第5次第6次第7次(1)除起跳点外,青蛙距离井底的最近距离是______厘米;青蛙距离井口的最近距离是______厘米;(2)在这7次跳跃并下滑稳定后,此时青蛙距离井口还有多远?(3)把每7次跳跃下滑记为一周,若青蛙之后的每周跳跃下滑情况都和第一周相同,那么青蛙在第几次跳出了井口?20.计算.(1)(2)21.如图已知数轴上点A、B分别表示a、b,且与互为相反数,O为原点.(1)______,______;(2)将数轴沿某个点折叠,使得点A与表示的点重合,则此时与点B重合的点所表示的数为______;(3)m、n两数在数轴上所对的两点之间的距离可以表示为,如5与两数在数轴上所对的两点之间的距离可以表示为,从而很容易就得出在数轴上表示5与两点之间的距离是7.①若x表示一个有理数,则的最小值______.②若x表示一个有理数,且,则满足条件的所有整数x的和是______.③当______时,取最小值.④当x取何值时,取最小值?最小值为多少?直接写出结果.22.观察下列各式:;;;;;(1)探索式子的规律,试写出第个等式;(2)运用上面的规律,计算;(3)计算:.23.如图:在数轴上点表示数,点表示数,点表示数,已知是,数是最大的负整数,是单项式的次数.(1)_____,_______.(2)点,,开始在数轴上运动,若点B和点C分别以每秒1个单位长度和每秒3个单位长度的速度向右运动,点A以每秒2个单位长度的速度向左运动,秒过后,若点A与点B之间的距离表示为,点B与点C之间的距离表示为.①_____,________.(用含的代数式表示)②探究:的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出这个值.③若点,,与三点同时开始在数轴上运动,点从原点出发以每秒4个单位长度的速度向左运动,请含的式子表示.。
七年级(上)期中数学模拟试卷(二)一、选择题(每小题3分,共30分)1.某个地区,一天早晨的温度是﹣7℃,中午上升了12℃,则中午的温度是() A.﹣5℃ B.﹣18℃ C. 5℃ D. 18℃2.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A. 1 B. 4 C. 7 D. 93.如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为() A. 0 B.﹣2 C.﹣1 D.无法确定4.如果|a|=a,则()A. a是正数 B. a是负数 C. a是零 D. a是正数或零5.用四舍五入法,把数4.803精确到百分位,得到的近似数是() A. 4.8 B. 4.80 C. 4.803 D. 5.06.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23 A.④ B.①② C.①②③ D.①②④7.下列计算正确的是()A.﹣32=9 B. C.(﹣8)2=﹣16 D.﹣5﹣(﹣2)=﹣3 8.2012年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为()A. 1.28×103 B. 12.8×103 C. 1.28×104 D. 0.128×105 9.在下列各组中,是同类项的是()A. 9a2x和9a2 B. a2和2a C. 2a2b和3ab2 D. 4x2y和﹣yx210.观察下列表格:31 32 33 34 35 36…3 9 27 81 243 729 …根据表格中个位数的规律可知,327的个位数是()A. 1 B. 3 C. 7 D. 9二、填空题(每小题10分,共30分)11.的相反数是,绝对值是,倒数是.12.单项式的系数是,次数是.13.是次项式.14.若﹣3a m b3与4a2b n是同类项,则m﹣n= .15.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有个,分别是.16.按下面程序计算:输入x=﹣3,则输出的答案是.17.观察下列单项式:x,﹣3x2,5x3,﹣7x4,9x5,…按此规律,可以得到第2005个单项式是.第n个单项式怎样表示.18.若|a|=8,|b|=5,且a+b>0,那么a﹣b= .19.若(a﹣2)2+|b﹣3|=0,则(a﹣b)2013= .20.如图,正方形的边长为x,用整式表示图中阴影部分的面积为(保留π).三、解答题(共8小题,共60分)21.(每小题4分)①﹣40﹣28﹣(﹣19)+(﹣24)②(﹣81)÷2××(﹣16)③﹣14+(1﹣0.5)××|2﹣(﹣3)2|④(﹣﹣+)×(﹣36)22.(6分)已知A=2xy﹣2y2+8x2,B=9x2+3xy﹣5y2.求:(1)A﹣B;(2)﹣3A+2B.23.(每小题5分)①化简求值:(x3﹣2y3﹣3x2y)﹣[3(x3﹣y3)﹣4x2y],其中x=﹣2,y=﹣1.②先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=.23.(4分)把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来.﹣5,2,0.24.(4分)一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是﹣2℃,小红此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低1℃.问这座山峰的高度大约是多少米?26.(5分)根据如图所示的程序计算,若输入的数为1,求输出的数.27.(6分)下面是用形状和大小都相同的黑色棋子摆成的图形,观察规律完成下列问题:(1)填写下表:图形序号(个) 1 2 3 4 …棋子的颗数 4 7 10 …(2)照这样方式下去,写出摆第n个图形的棋子数为.(3)你知道第153个图形需要几颗棋子吗?28.(9分)每家乐超市出售一种商品,其原价a元,现有三种调价方案:(1)先提价20%,再降价20%;(2)先降价20%,再提价20%;(3)先提价15%,再降价15%.问用这三种方案调价结果是否一样?最后是不是都恢复了原价?参考答案与试题解析一、选择题(每小题3分,共30分)1.某个地区,一天早晨的温度是﹣7℃,中午上升了12℃,则中午的温度是()A.﹣5℃ B.﹣18℃ C. 5℃ D. 18℃考点:有理数的加法.分析:一天早晨的温度是﹣7℃,中午上升了12℃,则中午的温度是:﹣7+12,即可求解.解答:解:﹣7+12=5℃.故选C.点评:本题考查了有理数的加法计算,关键是理解正负数的意义,正确列出代数式.2.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A. 1 B. 4 C. 7 D. 9考点:代数式求值.专题:整体思想.分析:观察题中的代数式2x+4y+1,可以发现2x+4y+1=2(x+2y)+1,因此可整体代入,即可求得结果.解答:解:由题意得:x+2y=3,∴2x+4y+1=2(x+2y)+1=2×3+1=7.故选:C.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x+2y的值,然后利用“整体代入法”求代数式的值.3.如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为() A. 0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选:B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.4.如果|a|=a,则()A. a是正数 B. a是负数 C. a是零 D. a是正数或零考点:绝对值.分析:根据绝对值的性质进行分析:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解答:解:根据绝对值的意义,若一个数的绝对值等于它本身,则这个数是非负数,即a是正数或零.故选D.点评:考查了绝对值的性质.5.用四舍五入法,把数4.803精确到百分位,得到的近似数是()A. 4.8 B. 4.80 C. 4.803 D. 5.0考点:近似数和有效数字.分析:用四舍五入法,把数4.803精确到百分位,得到的近似数是()解答:解:4.803可看到0在百分位上,后面的3小于5,舍去.所以有理数4.803精确到百分位的近似数为4.80.故选B.点评:本题考查精确度,精确到哪一位,即对下一位的数字进行四舍五入.6.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23A.④ B.①② C.①②③ D.①②④考点:有理数的乘方;相反数;绝对值.分析:根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n 是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.解答:解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.点评:本题主要考查了有理数的乘方的意义和性质,(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1,注意﹣12和(﹣1)2的区别.7.下列计算正确的是()A.﹣32=9 B. C.(﹣8)2=﹣16 D.﹣5﹣(﹣2)=﹣3考点:有理数的混合运算.专题:计算题.分析:本题可按照有理数的混合运算法则进行运算,从而选出正确的答案.解答:解:A、﹣32=﹣9,故本选项错误;B、(﹣)÷(﹣4)=,故本选项错误;C、(﹣8)2=64,故本选项错误;D、正确.故选D.点评:本题主要考查了有理数的混合运算,应多加练习.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.8.2012年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为() A. 1.28×103 B. 12.8×103 C. 1.28×104 D. 0.128×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于12800有5位,所以可以确定n=5﹣1=4.解答:解:12 800=1.28×104.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.9.在下列各组中,是同类项的是()A. 9a2x和9a2 B. a2和2a C. 2a2b和3ab2 D. 4x2y和﹣yx2考点:同类项.分析:根据同类项的概念求解.解答:解:A、9a2x和9a2字母不同,不是同类项,故本选项错误;B、a2和2a字母相同,指数不同,故本选项错误;C、2a2b和3ab2字母相同,指数不同,故本选项错误;D、4x2y和﹣yx2字母相同,指数相同,故本选项正确.故选D.点评:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.10.观察下列表格:31 32 33 34 35 36…3 9 27 81 243 729 …根据表格中个位数的规律可知,327的个位数是()A. 1 B. 3 C. 7 D. 9考点:有理数的乘方.专题:规律型.分析:先由图找出规律,个位数按照3、9、7、1的顺序循环,然后再计算27除以4,得到结果为6余3,从而判断出327的个位数.解答:解:由图表可知:个位数按照3、9、7、1的顺序循环,∴27÷4=6…3,∴327的个位数是7.故选C.点评:本题考查了有理数的乘方,解题的关键是结合图表找出规律,此题难度不大,只要找出规律就迎刃而解了.二、填空题(每小题4分,共32分)11.的相反数是,绝对值是,倒数是﹣.考点:相反数;绝对值;倒数.专题:常规题型.分析:根据相反数的定义,只有符号不同的两个数是互为相反数,的相反数是;根据绝对值的定义,一个数的绝对值等于表示这个数的点到原点的距离,的绝对值是根据倒数的定义,互为倒数的两数乘积为1,﹣×(﹣)=1.解答:解:根据相反数、绝对值和倒数的定义得:的相反数是;的绝对值是;的倒数是﹣.点评:本题考查了相反数的定义,绝对值的定义,倒数的定义.12.单项式的系数是,次数是 3 .考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.13.是五次四项式.考点:多项式.分析:多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.解答:解:多项式中,有4项,最高项次数为5,所以是五次四项式(几次几项式),故答案为五次四次式.点评:此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.14.若﹣3a m b3与4a2b n是同类项,则m﹣n= ﹣1 .考点:同类项.分析:根据同类项的概念求解.解答:解:∵﹣3a m b3与4a2b n是同类项,∴m=2,n=3,则m﹣n=2﹣3=﹣1.故答案为:﹣1.点评:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有 3 个,分别是0,1,2 .考点:数轴.分析:根据题意可以确定被污染部分的取值范围,继而求出答案.解答:解:设被污染的部分为a,由题意得:﹣1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数.故答案为:3;0,1,2.点评:考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.16.按下面程序计算:输入x=﹣3,则输出的答案是﹣12 .考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.17.观察下列单项式:x,﹣3x2,5x3,﹣7x4,9x5,…按此规律,可以得到第2005个单项式是4009x2005.第n个单项式怎样表示(﹣1)n+1×(2n﹣1)x n.考点:规律型:数字的变化类;单项式.专题:规律型.分析:第奇数个单项式的符号为正,偶数个单项式的符号为负,可用(﹣1)n+1表示;系数的绝对值均为奇数,可用2n﹣1表示;字母和字母的指数可用x n表示.解答:解:第2005个单项式是4009x2005.第n个单项式怎样表示(﹣1)n+1×(2n﹣1)x n.故答案为4009x2005;(﹣1)n+1×(2n﹣1)x n.点评:考查数字的变化规律;分别得到系数,系数的绝对值,字母及字母指数的变化规律是解决本题的关键.18.若|a|=8,|b|=5,且a+b>0,那么a﹣b= 3或13 .考点:有理数的减法;绝对值.分析:先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.解答:解:∵|a|=8,|b|=5,∴a=±8,b=±5;∵a+b>0,∴a=8,b=±5.当a=8,b=5时,a﹣b=3;当a=8,b=﹣5时,a﹣b=13;故a﹣b的值为3或13.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出a、b的值是解答此题的关键.19.若(a﹣2)2+|b﹣3|=0,则(a﹣b)2013= ﹣1 .考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出a、b的值,再将它们代入(a﹣b)2013中求解即可.解答:解:∵(a﹣2)2+|b﹣3|=0,∴a﹣2=0,a=2;b﹣3=0,b=3;则(a﹣b)2013=(2﹣3)2013=﹣1.故答案为﹣1.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.20.如图,正方形的边长为x,用整式表示图中阴影部分的面积为x2﹣(保留π).考点:列代数式.分析:阴影部分的面积=正方形的面积﹣两个半圆的面积.解答:解:根据题意可知正方形的面积是x2.正方形里的两个半圆的半径是x,所以两个半圆的面积是2×=.∴阴影部分面积为:.点评:解题关键是把图形分解成正方形,半圆和阴影部分.再求出正方形,半圆的面积,从而得出阴影部分的面积.三、解答题(共22小题,共88分)21.考点:有理数的混合运算.专题:计算题.分析:①原式利用减法法则变形,计算即可得到结果;②原式从左到右依次计算即可得到结果;④原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;⑥原式利用乘法分配律计算即可得到结果.解答:解:①﹣40﹣28﹣(﹣19)+(﹣24)=﹣40﹣28+19﹣24=﹣92+19=﹣73;②(﹣81)÷2××(﹣16)=﹣81×××(﹣16)=256;③﹣14+(1﹣0.5)××|2﹣(﹣3)2|=﹣1+××7=﹣1+=;④(﹣﹣+)×(﹣36)=24+20﹣21=23.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.已知A=2xy﹣2y2+8x2,B=9x2+3xy﹣5y2.求:(1)A﹣B;(2)﹣3A+2B.考点:整式的加减.专题:计算题.分析:根据题意可得:A﹣B=(2xy﹣2y2+8x2)﹣(9x2+3xy﹣5y2),﹣3A+2B=﹣3(2xy﹣2y2+8x2)+2(9x2+3xy﹣5y2),先去括号,然后合并即可.解答:解:由题意得:(1)A﹣B=(2xy﹣2y2+8x2)﹣(9x2+3xy﹣5y2)=2xy﹣2y2+8x2﹣9x2﹣3xy+5y2=﹣x2﹣xy+3y2.(2)﹣3A+2B=﹣3(2xy﹣2y2+8x2)+2(9x2+3xy﹣5y2)=﹣6xy+6y2﹣24x2+18x2+6xy﹣10y2=﹣4y2﹣6x2.点评:本题考查了整式的加减,难度不大,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.23.化简求值:(x3﹣2y3﹣3x2y)﹣[3(x3﹣y3)﹣4x2y],其中x=﹣2,y=﹣1.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=x3﹣2y3﹣3x2y﹣3x3+3y3+4x2y=﹣2x3+y3+x2y,当x=﹣2,y=﹣1时,原式=16﹣1﹣4=11.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.②先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=.考点:整式的加减—化简求值.专题:计算题.分析:先去括号,再合并同类项得到原式═﹣4x2y,然后把x、y的值代入计算即可.解答:解:原式=3x2y﹣6xy﹣2x2y+6xy﹣5x2y=﹣4x2y,当x=﹣1,y=时,原式=﹣4×(﹣1)2×=﹣.点评:本题考查了整式的加减﹣化简求值:先把整式去括号,合并,再把给定字母的值代入计算,得出整式的值.24.把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来.﹣5,2,0.考点:有理数大小比较;数轴.分析:先在数轴上表示各个数,再根据数轴上表示的数,右边的数总比左边的数大比较即可.解答:解:﹣5<0<2.点评:本题考查了数轴和有理数的大小比较的应用,注意:在数轴上表示的数,右边的数总比左边的数大.25.一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是﹣2℃,小红此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低1℃.问这座山峰的高度大约是多少米?考点:有理数的混合运算.分析:根据题意,找到等量关系式:山顶温度=山脚温度﹣山高÷100×1.解答:设这个山峰的高度大约是x米,根据题意得:5﹣x÷100×1=﹣2,解得:x=700.故这座山峰的高度大约是700米.点评:本题主要考查了有理数的混合运算,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.根据如图所示的程序计算,若输入的数为1,求输出的数.考点:代数式求值.专题:图表型.分析:根据运算程序进行计算.解答:解:12×2﹣4=2﹣4=﹣2<0,(﹣2)2×2﹣4=8﹣4=4>0.故输出的数为4.点评:本题考查了代数式的求值.解答本题的关键就是弄清楚题图给出的计算程序.27.下面是用形状和大小都相同的黑色棋子摆成的图形,观察规律完成下列问题:(1)填写下表:图形序号(个) 1 2 3 4 …棋子的颗数 4 7 10 …(2)照这样方式下去,写出摆第n个图形的棋子数为3n+1 .(3)你知道第153个图形需要几颗棋子吗?考点:规律型:图形的变化类.分析:解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.解答:解:第一个图需棋子3+1=4;第二个图需棋子3×2+1=7;第三个图需棋子3×3+1=10;…第n个图需棋子3n+1枚.(1)填表如下:图形序号(个) 1 2 3 4 …棋子的颗数 4 7 10 13 …(2)照这样方式下去,写出摆第n个图形的棋子数为 3n+1.(3)当n=153时,3×153+1=460;点评:此题考查了规律型中的图形变化问题,主要培养学生的观察能力和空间想象能力.28.每家乐超市出售一种商品,其原价a元,现有三种调价方案:(1)先提价20%,再降价20%;(2)先降价20%,再提价20%;(3)先提价15%,再降价15%.问用这三种方案调价结果是否一样?最后是不是都恢复了原价?考点:列代数式;代数式求值.专题:方案型.分析:(1)最后的价格为:原价×(1+20%)×(1﹣20%);(2)最后的价格为原价×(1﹣20%)(1+20%);(3)最后的价格为:原价×(1+15%)(1﹣15%),把相关数值代入求解后比较即可.解答:解:(1)(1+20%)(1﹣20%)a=0.96a(2)(1﹣20%)(1+20%)a=0.96a(3)(1+15%)(1﹣15%)a=0.9775a所以:三种方案调价结果与原价都不一样,且低于原价.(1)(2)一样且低于(3).点评:解决本题的关键是得到最后价格的等量关系;注意应把原价a当成单位1.。
湖南省长沙市芙蓉区长郡芙蓉中学2023-2024学年七年级上学期期中数学模拟试题(二)一、单选题1.2021-=( )A .2021B .2021-C .1D .02.下列各数:﹣8,132-,π2,0.66666…,0,9.8181181118…(每两个8之间1的个数逐渐增加1),0.112134,其中有理数有( )A .6个B .5个C .4个D .3个 3.已知下列方程:①36x y =;②20x =;③413x x =-;④2250x x +-=;⑤31x =;⑥322x-=.其中一元一次方程的个数是( ) A .2个 B .3个 C .4个 D .5个 4.下列四个数,化简后结果为正的是( )A .()23-B .-32C .()33-D .3-- 5.2的绝对值的倒数是( )A .2-B .12C .2D .2±6.2021年9月20日“天舟三号”在海南成功发射,这是中国航天工程又一重大突破,它的运行轨道距离地球393 000米,数据393 000米用科学记数法表示为( ) A .70.39310⨯米 B .63.9310⨯米C .53.9310⨯米D .439.310⨯米 7.下列两数比较大小,正确的是( )A .12<-B .1255-<-C .01>-D .1123-<- 8.计算(2019+2020)×0÷2021的结果是( )A .1B .-1C .0D .2020 9.下列说法正确的是( )A .单项式﹣a 的系数是1B .单项式﹣3abc 2的次数是3C .4a 2b 2﹣3a 2b +1是四次三项式D .233m n 不是整式10.下列单项式中,23a b 的同类项是( )A .32a bB .233a bC .2a bD .3ab11.下列运算中正确的是( )A .22223x y yx x y +=B .235347+=y y yC .2a a a +=D .22x x -=12.如图所示,圆的周长为4个单位长度,在圆周的4等分点处标上字母A ,B ,C ,D ,先将圆周上的字母A 对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的2021所对应的点与圆周上字母( )所对应的点重合.A .AB .BC .CD .D二、填空题13.买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要元. 14.3.0万精确到位.15.若|2a ﹣7|=7﹣2a ,则a 的取值范围为.16.如果x 2-3x =1,那么2x 2-6x -5的值为.17.已知647x y -和23m n x y 是同类项,则m n -的值是.18.有理数a ,b ,c 在数轴上对应的位置如图所示,化简2a b b c c a +--+-=.三、解答题19.计算: (1)()5129121717⎛⎫-+--- ⎪⎝⎭; (2)()1.9 3.610.1 1.4-++-+. (3)75373696418⎛⎫-+-⨯ ⎪⎝⎭;(4)()22111822⎛⎫-⨯--÷- ⎪⎝⎭. 20.合并同类项:(1)523m n m n +--;(2)223254xy y xy y --+-.21.解方程:(1)13x ﹣15x +x =﹣3;(2)5y +5=9﹣3y .22.先化简,再求值:()()22225343a b ab ab a b ---+,其中23a b =-=、.23.教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):5+,4-,−8,10+,3+,6-,7+,11-. ()1将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?()2若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱?24.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.求a b m cd m+++的值. 25.已知22335A x y xy =+-,22234B xy y x =-+(1)化简:2B A -;(2)已知22x a b --与13y ab 是同类项,求2B A -的值. 26.综合题:阅读理解:(1)如图,在数轴上,点A 表示的数是2-,点B 表示的数为3,线段AB 的中点表示的数是0.5,即230.52-+=;AB 之间的距离为3(2)5--=,在数轴上表示x 和1的两点A 和B 之间的距离是1x -.①在数轴有A 、B 、C 三点,若点A 对应的数是4-,且A 、B 两点间的距离为6,C 为AB 中点,则AB 中点C 所对应的数是.②当1+3x x --取最小值时,相应的x 的值或取值范围是.当2+35x x x -+++取最小值时,相应的x 的值或取值范围是.(2)已知55432012345(32)x a x a x a x a x a x a -=+++++,当1x =时,左边5(312)1=⨯-=,右边012345=a a a a a a +++++,所以0123451a a a a a a +++++=, 求以下代数式的值:①012345a a a a a a -+--+,②024a a a ++.。
人教版数学七年级(上)期中达标测试卷(02)一、选择题(每小题3分,共18分)1.﹣的倒数是()A.6B.﹣6C.D.﹣2.下列各式中,不是整式的是()A.3a B.0C.D.7m﹣8n3.健康成年人的心脏每分钟流过的血液约4900mL.数据4900用科学记数法表示为()A.0.49×104B.4.9×104C.4.9×103D.49×1024.多项式a3+2ab+a﹣3的次数和常数项分别是()A.6,3B.6,﹣3C.3,﹣3D.3,35.数学活动课上,老师在黑板上出了一道有理数的混合运算题,则该题的运算结果为()A.﹣5B.1C.﹣1D.56.要使多项式2x2﹣2(7+3x﹣2x2)+mx2化简后不含x的二次项,则m的值是()A.2B.0C.﹣2D.﹣6二、填空题(每小题3分,共24分)7.化简分数:﹣=.8.单项式﹣m9n5的系数是.9.用四舍五入法把数据2.234精确到百分位是.10.菜场上西红柿每千克a元,白菜每千克b元,学校食堂买20kg西红柿,30kg白菜共需元.11.某地星期一上午的温度是﹣7℃,中午上升了8℃,下午由于冷空气南下,到夜间又下降了10℃,则这天夜间的温度是℃.12.若单项式﹣3a m﹣3b与2a4b是同类项,则m的值是.13.若|a﹣1|+(b+9)2=0,则ab的值为.14.多项式A与多项式﹣x2﹣3x+2的差为4x﹣1,则多项式A=.三、解答题(每小题5分,共20分)15.计算:9+(﹣2)×3﹣(﹣4).16.合并同类项:3a+1.5b﹣(7a﹣2b).17.计算:﹣12+8×(﹣)2﹣2÷.18.先化简,再求值:﹣2(mn﹣3m2)+3(2mn﹣5m2),其中m=﹣,n=.四、解答题(每小题7分,共28分)19.已知a、b互为相反数,c、d互为倒数,x的绝对值是3,求x3﹣(a+b+cd)x+(﹣cd)2024的值.20.已知﹣nx2y m+1+xy2﹣3x5﹣6是关于x、y的七次四项式,且它的最高次项的系数是8.(1)求m、n的值;(2)把这个多项式按x的降幂重新排列.21.已知多项式A=2x2﹣xy,B=x2+xy﹣6.(1)化简4A﹣3B;(2)当x=﹣2,y=﹣3时,求4A﹣3B的值.22.已知长为9a+6b﹣1的铝条,裁下一部分后可以围成一个长方形铝框(部分数据如图所示).(1)求裁下的铝条的长(用含a、b的式子表示);(2)若a=5,b=3,,求裁下的铝条的长.五、解答题(每小题8分,共16分)23.现规定一种新运算“※”,规则如下:x※y=6x﹣2y.(1)求(﹣3)※4的值;(2)化简(2※2a)※(﹣3a).24.一建筑物的地面结构如图所示(图中各图形均为长方形或正方形),请根据图中的数据(单位:米),解答下列问题:(1)用含x,y的代数式表示地面总面积;(2)图中阴影部分需要铺设地砖,铺地砖每平方米的平均费用为80元,若x=6,y=2,则铺地砖的总费用为多少元?六、解答题(每小题10分,共20分)25.某校为提升生态环境质量,面向全市招募绿化养护公司,已知A、B两家公司每月每平方米绿化养护费用均为10元,且各自推出了如下收费方案:公司A:每月每平方米绿化养护费用均打八折;公司B:每月绿化面积在200平方米以内(含200平方米)不打折,超过200平方米的部分每月每平方米打六折.设该校每月绿化面积为x(x>200)平方米.(1)请用含x的式子分别表示选择A、B两家公司每月所需的绿化养护费用;(2)如果该校目前每月的绿化面积是600平方米,请通过计算说明选择哪家公司比较合算.26.如图,在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.(1)求点B表示的数,并在数轴上将点B表示出来;(2)动点P从点B出发,沿着数轴的正方向,以每秒2个单位长度的速度运动,求经过多少秒,点P与点A的距离是2个单位长度?(3)在(2)的条件下,点P出发的同时,点Q从点A出发,沿着数轴的负方向,以每秒4个单位长度的速度运动.当点Q与点B的距离是6个单位长度时,直接写出此时点P与点Q的距离.。
2024-2025学年七年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪科2024七上第1~3.3章(有理数+整式及其加减+一元一次方程及其应用)。
5.难度系数:0.65。
第一部分(选择题共40分)一、选择题(本大题共10个小题,每小题4分,满分40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列各数中,负数的是()A .|-2025|B .()2025+-C .2025D .()2025--2.下列方程中,解是1x =-的方程是()A .10x +=B .10x -=C .112x -=D .()210x x --=3.点A 为数轴上表示2-的点,将点A 沿数轴移动4个单位长度得到点B ,点B 表示的数为()A .2B .6-C .2或6-D .2-4.下列几位同学的方程变形中,正确的是()A .小高B .小红C .小英D .小聪5.用四舍五入法,分别按要求取0.17326的近似值,下列结果中错误的是()A .0.2(精确到0.1)B .0.17(精确到0.01)C .0.174(精确到0.001)D .0.1733(精确到0.0001)6.若7x =,9y =,且x y >则x y +的值为()A .2-或16-B .2或16C .2-或16D .2±或16±8.有理数a ,b 在数轴上的位置如图所示,则下列结论正确的是()A .a−b>0B .a+b<0C .ab>0D .a+2>09.已知多项式ax bx +合并后的结果为2x ,则下列关于,a b 的叙述一定正确的是()A .2a b x ===B .2a b -=C .2a b ==D .2a b +=10.一根1m 长的小木棒,第一次截去它的,第二次截去剩余部分的,第三次再截去剩余部分的,如此截下去,第10次后剩余的小木棒的长度是()A .10314m⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦B .1034m⎛⎫ ⎪⎝⎭C .9314m⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦D .934m⎛⎫ ⎪⎝⎭第二部分(非选择题共110分)二、填空题(本大题共4小题,每小题5分,满分20分)13.张方和哥哥按相同的路径步行前往新华书店,已知张方每步比哥哥少0.1米,他们的运动手环记录显示,张方去新华书店的路上走了4800步,哥哥走了4000步,请问张方和哥哥每步各走多少米?设张方每步走x 米,则可列方程为.14.设221,22x a ax A B +-=+=,a 为常数,x 的取值与A 的对应值如下表:x …1…A…4…小明观察上表并探究出以下结论:①5a =;②当4x =时,7A =;③当1x =时,1B =;④若A B =,则4x =.上面结论中正确结论的序号是.三、解答题(本大题共9个小题,共90分,其中15~18题每题8分,19~20题每题10分,21~22题每题12分,第23题14分.解答应写出文字说明,证明过程或演算步骤)(10分)如果汽车以每小时40千米的速度从甲地开往乙地,正好在预定时间内到达.实际上汽车行驶了3小时后,速度减慢为30千米/小时,因此比预定时间迟到(12分)若()2530x y -++=,求222x y x -+(12分)用“*”定义一种新运算:对于任何有理数(3)已知23120x x +-=,求代数式3212060x x -+的值.2024-2025学年七年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2024-2025学年上海世外教育附属浦江外国语学校七年级(上)期中数学模拟试卷一、填空题(第1、2、3题每空.1分,其余每空2分,满分32分)1.计算(直接写出答案)(1)2323a a _______;(2)226282x y xy _______;(3) 2332x x _______;(4) 2224822x y x y xy xy_______;(5)22025202520242026 _______;(6) 22a b c _______.2.因式分解(直接写出答案)(1) 2291b a _______.(2)21618x x _______.(3)3256x x x _______.(4)2212x y y _______.3.在横线上填入适当的整式:(1)2232x y ()4494x y ;(2)223a ab b _______ 2a b .4.当x 满足条件_______时,分式21628x x 有意义.5.若 02322x x 有意义,则x 满足的条件是_______.6.若49m x ,23n x ,则3m n x_______.7.若a k 、为整数,且不论x 取何值,关于x 的整式 2x a 和 229x k x 的值都相等,则k 的值为_______.8.已知 202420222023a a ,则 2220242022a a _______.9.按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是_____.10.如图,大正方形与小正方形的面积之差是40,则阴影部分的面积是_____.11.已知a 、b 、c 满足227a b ,221b c ,2617c a ,则a b c _______.12.当120x ,119,L ,12,1,2,L ,19,20时,分别计算代数式1x x 的值,再将所有结果相加,则总和为______.13.若a ,b 为有理数且满足50ab a b ,22235S a ab b a b ,则S 的最小值为_______.二、选择题(每题2分,满分4分)14.下列各式从左到右的变形,是因式分解的是()A. 22a b a b a b B. 221a b a b a b =C. 2212 a a a a D. 322331a a a a a a 15.如图,动点P 从到原点距离为8的点M 处向原点方向跳动,第一次跳到OM 的中点1M 处,第二次从点1M 跳到1OM 的中点2M 处,第三次从点2M 跳到2OM 的中点3M 处,如此不断跳动下去,第2024次跳动后,该动点到原点O 的距离为()A.20182B.20212C.20242D.20272 三、解答题(第16题8分,第17题16分,第18题10分,第19、20题各5分,第21、22题各6分,第23题8分)16.计算:(1) 4211621214116a a a a;(2)11211236x y x x y y.17.因式分解:(1)23218ax a ;(2)2675x x ;(3)322x xyz x y x z ;(4) 222316181x x x x .18.解方程:(1)4122x x x x ;(2)22263525815215x x x x x .19.设b ma ,是否存在有理数m ,使得 2222422a b a b a b b a b a a总是成立?若存在,求出满足条件的m ;若不存在,说明理由.20.先化简2223744111111x x x x x x x x,再从1 ,2 ,3 中选择合适的x 值代入求值.21.如果关于x 的方程21221232a a x x x x 有增根,求a 的值.22.两台续航里程相同的燃油车和新能源车的相关数据如下所示,若燃油车每千米行驶费用比新能源车多0.5元,则续航里程a 的值是多少?燃油车邮箱容量:50升油价:7.5元/升续航里程:km a 新能源车电池电量:75千瓦时电价:0.5元/千瓦时续航里程:km a 23.我们把形如(,ab x a b a b x不为零),且两个解分别为1x a ,2x b 的方程称为“十字分式方程”.例如34x x 为十字分式方程,可化为1313x x ,11x ,23x .再如86x x 为十字分式方程,可化为 2424x x,12x ,24x .应用上面的结论解答下列问题:(1)若65x x为十字分式方程,则1x ______,2x ______.(2)若十字分式方程52x x 的两个解分别为1x m ,2x n ,求n m m n 的值.(3)若关于x 的十字分式方程22312k k x k x 的两个解分别为1x ,212(0,)x k x x ,求1221x x 的值.2024-2025学年上海世外教育附属浦江外国语学校七年级(上)期中数学模拟试卷一、填空题(第1、2、3题每空.1分,其余每空2分,满分32分)1.计算(直接写出答案)(1)2323a a _______;(2)226282x y xy _______;(3) 2332x x _______;(4) 2224822x y x y xy xy_______;(5)22025202520242026 _______;(6)22a b c _______.【答案】①.56a ②.262484x y x y ③.249x ④.241xy x ⑤.2025⑥.2224424a ab b ac bc c 【解析】【分析】本题考查整式的混合运算,平方差公式,完全平方公式等,熟练掌握相关的运算法则是解题的关键.(1)运用单项式乘单项式的法则计算即可;(2)运用积的乘方计算即可;(3)运用平方差公式计算即可;(4)运用多项式除以单项式的法则计算即可;(5)运用平方差公式计算即可;(6)运用完全平方公式计算即可.【详解】解:(1)235236a a a ;故答案为:56a (2) 226226248284x y xy x y x y ;故答案为:262484x y x y(3) 22223322349x x x x ;故答案为:249x (4) 2224822241x y x y xy xy xy x ;故答案为:241xy x (5) 2222202520252025202520252024202620252025120251202520251 ;故答案为:2025(6) 22222222224424a b c a b c a b c a ab b ac bc c .故答案为:2224424a ab b ac bc c 2.因式分解(直接写出答案)(1) 2291b a _______.(2)21618x x _______.(3)3256x x x _______.(4)2212x y y _______.【答案】①. 3131b a b a ②. 241x ③. 61x x x ④.11x y x y 【解析】【分析】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.(1)运用平方差公式进行因式分解;(2)运用完全平方公式进行因式分解;(3)先提公因式后,运用十字相乘法进行因式分解;(4)先分组运用完全平方公式分解后,再运用平方差公式金色因式分解.【详解】解:(1) 22913131b a b a b a .故答案为:3131b a b a (2) 22161841x x x .故答案为:241x (3)322565661x x x x x x x x x .故答案为:61x x x (4) 2222221221111x y y x y y x y x y x y .故答案为:11x y x y 3.在横线上填入适当的整式:(1) 2232x y ()4494x y ;(2)223a ab b _______ 2a b .【答案】①.2232x y ②. 5ab 【解析】【分析】(1)根据平方差公式即可求解;(2)根据完全平方公式即可求解;本题考查了整式的乘法公式,掌握平方差公式和完全平方公式是解题的关键.【详解】解:(1)∵222244323294x yx y x y ,故答案为:2232x y ;(2)∵ 22222352a ab b ab a ab b a b ,故答案为: 5ab .4.当x 满足条件_______时,分式21628x x 有意义.【答案】4x 【解析】【分析】本题考查分式有意义的条件,要使分式有意义,则分式的分母不为0,据此即可解答.【详解】解:当280x ,即4x 时,分式21628x x 有意义.故答案为:4x 5.若 02322x x 有意义,则x 满足的条件是_______.【答案】3x 且2x 【解析】【分析】本题考查了负整数指数幂和0指数幂,代数式中有分式,分母不为0,0指数幂和负整数指数的底数不能为0,再求x 的取值范围.解决本题的关键是明确负整数指数幂和0指数幂的底数不能为0.【详解】解:根据题意可知,30x 且20x ,解得3x 且2x .故答案为:3x 且2x .6.若49m x ,23n x ,则3m n x _______.【答案】19【解析】【分析】此题考查同底数幂的除法,幂的乘方,负指数幂,解题关键在于利用代替法计算.根据同底数幂的除法,幂的乘方运算法则计算即可.【详解】解:∵44199m x ,2193n x ,∴ 33334431111199999m n m n m n x x x x x ,故答案为:19.7.若a k 、为整数,且不论x 取何值,关于x 的整式 2x a 和 229x k x 的值都相等,则k 的值为_______.【答案】−8或4【解析】【分析】本题考查了整式的无关型问题,由 2229x a x k x 可得 22290k a x a ,进而可得220k a ,即得290a ,再根据a k 、为整数解答即可求解,根据题意得到220k a 和290a 是解题的关键.【详解】解:∵ 2229x a x k x ∴ 222229x ax a x k x ,∴ 22290k a x a ,∵不论x 取何值,关于x 的整式 2x a 和 229x k x 的值都相等,∴220k a ,290a ,∴29a ,∵a k 、为整数,∴3a ,当3a 时,260k ,解得8k ;当3a 时,260k ,解得4k ;∴k 的值为−8或4,故答案为:−8或4.8.已知 202420222023a a ,则 2220242022a a _______.【答案】4050【解析】【分析】本题考查完全平方公式的应用,熟练掌握完全平方公式,运用整体代入思想是解题的关键.根据完全平方公式对原式进行变形,再整体代入求值即可.【详解】解:∵ 202420222023a a ∴ 202420222023a a ∴ 2220242022a a 220242022220242022a a a a22220242022a a2222023 4050 .故答案为:4050.9.按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是_____.【答案】1【解析】【分析】根据程序分析即可求解.【详解】解:∵输出y 的值是2,∴上一步计算为121x或221x 解得1x (经检验,1x 是原方程的解),或32x当10x 符合程序判断条件,302x不符合程序判断条件故答案为:1【点睛】本题考查了解分式方程,理解题意是解题的关键.10.如图,大正方形与小正方形的面积之差是40,则阴影部分的面积是_____.【答案】20【解析】【详解】设大正方形的边长为a ,小正方形的边长为b ,先根据正方形的面积得出a 2﹣b 2=40,再利用正方形的性质、三角形的面积公式可得阴影部分的面积表达式,然后化简求值即可.【分析】解:设大正方形的边长为a ,小正方形的边长为b ,∵大正方形与小正方形的面积之差是40,∴a 2﹣b 2=40,由正方形的性质得:BC ⊥AB ,BD ⊥AB ,BC =AB =a ,BD =BE =b ,∴AE =AB ﹣BE =a ﹣b ,∴阴影部分的面积=S △ACE +S △AED =12AE •BC +12AE •BD =12AE •(BC +BD )=12(a ﹣b )(a +b )=12(a 2﹣b 2)=12×40=20,即阴影部分的面积是20.故答案为:20【点睛】本题考查了正方形的性质、平方差公式等知识点,利用正方形的性质、三角形的面积公式正确列出阴影部分的面积表达式是解题关键.11.已知a 、b 、c 满足227a b ,221b c ,2617c a ,则a b c _______.【答案】3【解析】【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值.【详解】解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ,即222226110a b b c c a ,∴ 2223110a b c ,∴a=3,b=-1,c=1,∴a+b+c=3-1+1=3,故答案为3.【点睛】本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键.12.当120x ,119,L ,12,1,2,L ,19,20时,分别计算代数式1x x 的值,再将所有结果相加,则总和为______.【答案】20【解析】【分析】本题考查了分式的化简求值,由1111111111x x x x x x x xx,即可求解,得出11111x x x x是解题的关键.【详解】解:∵1111111111x x x x x x x xx,∴总和为12020 ,故答案为:20.13.若a ,b 为有理数且满足50ab a b ,22235S a ab b a b ,则S 的最小值为_______.【答案】6【解析】【分析】本题主要考查了完全平方公式,熟练掌握完全平方公式的结构特征是解决本题的关键.先将50ab a b 变形为5ab a b ,再代入S ,然后进行变形,得到 222216S a b ,最后探究S 的最小值.【详解】解:由题得5ab a b ,22235S a ab b a b22233155a a b b a b2228215a ab b22244216a ab b 222216a b ,∵ 220a , 210b ,∴6S ,(当且仅当2a ,1b 时取等号),经验证:2a ,1b 满足50ab a b ,综上,S 的最小值为6.故答案为:6.二、选择题(每题2分,满分4分)14.下列各式从左到右的变形,是因式分解的是()A. 22a b a b a b B. 221a b a b a b =C. 2212 a a a a D. 322331a a a a a a 【答案】D【解析】【分析】本题考查了因式分解的定义,根据因式分解的定义:因式分解是把一个多项式化为几个整式的积的形式,逐一判断即可得到答案.【详解】解:A 、 22a b a b a b ,从左到右的变形不是把多项式转化成几个整式积的形式,故不是因式分解;B 、 221a b a b a b =,从左到右的变形不是把多项式转化成几个整式积的形式,故不是因式分解;C 、 2212 a a a a ,从左到右的变形不是把多项式转化成几个整式积的形式,故不是因式分解;D 、 322331a a a a a a ,从左到右的变形是把多项式转化成几个整式积的形式,故是因式分解.故选:D15.如图,动点P 从到原点距离为8的点M 处向原点方向跳动,第一次跳到OM 的中点1M 处,第二次从点1M 跳到1OM 的中点2M 处,第三次从点2M 跳到2OM 的中点3M 处,如此不断跳动下去,第2024次跳动后,该动点到原点O 的距离为()A.20182 B.20212 C.20242 D.20272 【答案】B【解析】【分析】本题考查了点的运动规律,根据计算可得每次运动后点距原点的距离是上一个点距原点距离的一半,据此即可求解,根据计算找到点的运动规律是解题的关键.【详解】解:第一次跳动到OM 的中点1M 处,得112OM OM,第二次从1M 跳到1OM 的中点2M 处,得22111222OM OM OM ,第三次从点2M 跳到2OM 的中点3M 处,得233111222O OM M M O ,L ,∴第n 次跳动后,该质点到原点O 的距离为12n OM ,∴第2024次跳动后,该质点到原点O 的距离为202412OM ,∵8OM ,∴2024320212024202411822222OM ,故选:B .三、解答题(第16题8分,第17题16分,第18题10分,第19、20题各5分,第21、22题各6分,第23题8分)16.计算:(1) 4211621214116a a a a;(2)11211236x y x x y y .【答案】(1)82561a (2)2xy y x【解析】【分析】本题考查平方差公式,分式的化简.(1)多次运用平方差公式进行求解即可;(2)先将分子分母同乘以22x y ,将负整数指数幂化为正整数指数幂,再将分子分母因式分解后约分,即可解答.【小问1详解】解: 4211621214116a a a a242116414116a a a4411616116a a44161161a a 82561a ;【小问2详解】解:11211236x y x x y y221122211236x y x y x y x x y y 222236xy x yy xy x332xy y xy x y x 2xyy x .17.因式分解:(1)23218ax a ;(2)2675x x ;(3)322x xyz x y x z ;(4) 222316181x x x x .【答案】(1)233a x a x a (2)2135x x (3)x x y x z (4)341x x x x 【解析】【分析】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.(1)先提公因式后,运用平方差公式进行因式分解;(2)运用十字相乘法进行因式分解;(3)运用分组分解法进行因式分解;(4)将原式变形为 222316315x x x x ,将231x x 看成整体,运用十字相乘法进行分解后,再次运用十字相乘法和提公因式法进行因式分解.【小问1详解】解:232221829233ax a a x aa x a x a 【小问2详解】解: 26752135x x x x 【小问3详解】解:322x xyz x y x z322x x y xyz x z2x x y xz y x2x y x xzx x y x z 【小问4详解】解: 222316181x x x x 2223161865x x x x222316315x x x x 22315311x x x x22343x x x x341x x x x 18.解方程:(1)4122x x x x ;(2)22263525815215x x x x x .【答案】(1)无解(2)4x 【解析】【分析】本题考查解分式方程,掌握解分式方程的步骤是解题的关键.(1)方程两边同乘最简公分母 2x x ,将分式方程转化为整式方程,求解后检验即可;(2)将各分母进行因式分解,找出各分母的最简公分母,方程两边同乘该最简公分母,将分式方程转化为整式方程,求解后检验即可.【小问1详解】解:4122x x x x 方程两边同乘 2x x ,得 242x x x ,化简,得240x ,解得2x ,检验:当2x 时, 20x x ,∴2x 不是原分式方程的解,原分式方程无解.【小问2详解】解:22263525815215x x x x x 方程可化为 635555353x x x x x x ,方程两边同乘 553x x x ,得 633555x x x ,化简,得280x ,解得4x ,检验:当4x 时, 5530x x x ,∴4x 是原分式方程的解.19.设b ma ,是否存在有理数m ,使得 2222422a b a b a b b a b a a总是成立?若存在,求出满足条件的m ;若不存在,说明理由.【答案】存在,1m 【解析】【分析】本题考查完全平方公式,平方差公式,整式的混合运算.先化简 222242a b a b a b b a b a,并把b ma 代入后得到52m a ,因此根据题意得到522m -=,求解即可解答.【详解】解:当b ma 时, 222242a b a b a b b a b a22222444442a ab b a b ab b a2252a b a22252a m a a252m a ,∵ 2222422a b a b a b b a b a a,∴2522m ,∴1m ,∴当1m 时, 2222422a b a b a b b a b a a总成立.20.先化简2223744111111x x x x x x x x,再从1 ,2 ,3 中选择合适的x 值代入求值.【答案】1x ,当3x 时,原式2【解析】【分析】本题考查分式的化简求值,分式有意义的条件,先根据分式的混合运算对式子进行化简,再根据分式有意义的条件得到x 的取值,代入即可求解.【详解】解:2223744111111x x x x x x x x2131712441111x x x x x x x x x x 22144441111x x x x x x x x x 22111441441x x x x x x x x x 1x ,要使原式有意义,则21010440x x x x,∴1x 且1x 且2x ,∴当3x 时,原式1312x .21.如果关于x 的方程21221232a a x x x x 有增根,求a 的值.【答案】32a或2a 【解析】【分析】本题考查分式方程的增根.先将方程两边同乘 12x x ,转化为整式方程 134a x a ,根据方程有增根得到1x 或2x ,再分别代入整式方程,求解即可解答.【详解】解:21221232a a x x x x 方程两边同乘 12x x ,得 2122x a x a ,∵该分式方程有增根,∴1x 或2x ,当1x 时, 121122a a ,解得32a ;当=2时, 222122a a ,解得2a ;综上所述,32a 或2a .22.两台续航里程相同的燃油车和新能源车的相关数据如下所示,若燃油车每千米行驶费用比新能源车多0.5元,则续航里程a 的值是多少?燃油车邮箱容量:50升油价:7.5元/升续航里程:km a 新能源车电池电量:75千瓦时电价:0.5元/千瓦时续航里程:kma 【答案】续航里程a 的值是675【解析】【分析】本题考查分式方程解决应用题,根据“两台续航里程相同,燃油车每千米行驶费用比新能源车多0.5元”列出方程即可求解,解题的关键是根据题意找到等量关系式列式求解.【详解】解:由题意可知,507.575050.5a a,解得:675a ,经检验:675a 是原方程的解,答:续航里程a 的值是675.23.我们把形如(,ab x a b a b x不为零),且两个解分别为1x a ,2x b 的方程称为“十字分式方程”.例如34x x 为十字分式方程,可化为1313x x ,11x ,23x .再如86x x 为十字分式方程,可化为 2424x x,12x ,24x .应用上面的结论解答下列问题:(1)若65x x为十字分式方程,则1x ______,2x ______.(2)若十字分式方程52x x 的两个解分别为1x m ,2x n ,求n m m n 的值.(3)若关于x 的十字分式方程22312k k x k x 的两个解分别为1x ,212(0,)x k x x ,求1221x x 的值.【答案】(1)2 ,3(2)145(3)12 【解析】【分析】(1)类比题目中“十字方程”的答题方法即可求解.(2)结合运用“十字方程”并代数运算即可求解;(3)把原方程变形为223232k k x k x ,再结合运用“十字方程”并代入运算即可求解.【小问1详解】解:6 5x x 可化为 2323x x,12x ,23x .【小问2详解】解∶根据题意得:5mn ,2m n ,n m m n22m n mn2()2m n mn mn4105145.【小问3详解】解∶原方程变为223232k k x k x ,232232k k x k k x 12x k ,2223x k ,12212x k x k,12.【点睛】本题考查完全平方公式,分式方程;理解“十字方程”的定义以及题目中的答题方法是解题的关键.。
2024-2025学年七年级数学上学期期中模拟卷(湖北省卷专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版第1章有理数+第2章有理数的运算+第3章代数式+第4章整式的加减。
5.难度系数:0.72。
第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣60元表示( )A.收入60元B.收入20元C.支出60元D.支出20元2.下列四个数中,是负数的是( )A.|﹣1|B.﹣|﹣4| C.﹣(﹣3)D.(﹣2)23.下列说法正确的是( )A.―2xy5的系数是﹣2B.x2+x﹣1的常数项为1C.22ab3的次数是6次D.x﹣5x2+7是二次三项式4.2023年4月26日,成都市统计局、国家统计局成都调查队联合发布2023年第一季度成都市经济运行情况.数据显示,一季度全市实现地区生产总值5266.82亿元,同比增长5.3%.将数据“5266.82亿”用科学记数法表示为( )A .5266.82×108B .5.26682×109C .5.26682×1010D .5.26682×10115.下列运算中,正确的是( )A .3a +2b =5abB .2x 2+2x 3=4x 5C .3a 2b ﹣3ba 2=0D .5a 2b ﹣4a 2b =16.在数轴上,a 所表示的点在b 所表示的点的左边,且|a |=3,b 2=1,则a ﹣b 的值为( )A .﹣2B .﹣3C .﹣4或﹣2D .﹣2或47.下列说法:①平方等于4的数是±2;②若a ,b 互为相反数,则b a=―1;③若|﹣a |=a ,则(﹣a )3<0;④若ab ≠0,则a |a|+b |b|的取值在0,1,2,﹣2这4个数中,不能得到的是0,其中正确的个数为( )A .0个B .1个C .2个D .3个8.如图,把半径为1的圆放到数轴上,圆上一点A 与表示﹣1的点重合,圆沿着数轴滚动2周,此时点A 表示的数是( )A .﹣1+4πB .﹣1+2πC .﹣1+4π或﹣1﹣4πD .﹣1+2π或﹣1﹣2π9.如图,把四张形状大小完全相同的小长方形卡片(如图1),不重叠地放在一个长为a cm 、宽为b cm 长方形内(如图2),未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是( )A .4b cmB .4a cmC .2(a +b )cmD .4(a ﹣b )cm10.如图是一组有规律的图案,它们是由边长相同的灰白两种颜色的小正方形组成的,按照这样的规律,若组成的图案中有2025个灰色小正方形,则这个图案是( )A .第505个B .第506个C .第507个D .第508个第二部分(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,满分15分)11.若x 与3互为相反数,则2x +4等于 .12.若x ,y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y )2023的值为 .13.定义一种新运算:a *b =a 2﹣b +ab .例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]= .14.当x =2时,ax 3﹣bx +3的值为15,那么当x =﹣2时,ax 3﹣bx +3的值为 .15.如图是一个运算程序的示意图,若开始输入的x 的值为81,我们看到第一次输出的结果为27,第二次输出的结果为9…第2024次输出的结果为 .三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(每小题4分,共8分)计算:(1)―4+|5―8|+24÷(―3)×13; (2)―14―(1―0.5)×13×[2―(―3)2].17.(每小题4分,共8分)计算:(1)3(4x 2﹣3x +2)﹣2(1﹣4x 2+x ); (2)4y 2﹣[3y ﹣(3﹣2y )+2y 2].18.(6分)先化简,再求值:x2﹣3(2x2﹣4y)+2(x2﹣y),其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)已知a2=4,|b|=3.(1)已知ba<0,求a+b的值;(2)|a+b|=﹣(a+b),求a﹣b的值.20.(8分)已知M=2x2+ax﹣5y+b,N=bx2―32x―52y﹣3,其中a,b为常数.(1)求整式M﹣2N;(2)若整式M﹣2N的值与x的取值无关,求(a+2M)﹣(2b+4N)的值.21.(8分)随着网络直播的兴起,凉山州“建档立卡户”刘师傅在帮扶队员的指导下做起了“主播”,把自家的石榴放到网上销售.他原计划每天卖100千克石榴,但由于种种原因,实际每天的销售量与计划量相比有出入.如表是某周的销售情况(超额记为正,不足记为负,单位:千克):星期一三三四五六日与计划量的差值+5﹣2﹣5+14﹣8+22﹣6(1)根据记录的数据可知前三天共卖出 千克.(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售多少千克?(3)若石榴每千克按10元出售,每千克石榴的运费平均3元,那么刘师傅本周出售石榴的纯收入一共多少元?22.(8分)已知有理数a,b,c在数轴上的位置如图所示且|a|=|b|,(1)求值:a+b= ;(2)分别判断以下式子的符号(填“>”或“<”或“=”):b+c 0;a﹣c 0;ac 0;(3)化简:﹣|2c|+|﹣b|+|c﹣a|+|b﹣c|.23.(9分)定义一种新的运算⊗:已知a,b为有理数,规定a⊗b=ab﹣b+1.(1)计算(﹣2)⊗3的值.(2)已知x2⊗a与3⊗x2的差中不含x2项,求a的值.(3)如图,数轴上有三点A,B,C,点A在数轴上表示的数是(﹣6)⊗1,点C在数轴上表示的数是1⊗(﹣8)点B在点A的右侧,距点A两个单位长度.若点B以每秒3个单位长度的速度向右匀速运动,8同时点C以每秒1个单位长度的速度向左匀速运动,问运动多少秒时,BC=4?24.(12分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20):(1)若该客户按方案①购买,需付款 元(用含x的代数式表示);(答案写在下面)若该客户按方案②购买,需付款 元(用含x的代数式表示);(答案写在下面)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30。