负整数指数幂
- 格式:docx
- 大小:23.15 KB
- 文档页数:2
含负整数指数幂的科学计数法科学计数法有助于表示大数字或小数字,它的格式是将一个数字表示为两个因子的乘积,其中一个因子是在10的某次幂,另一个因子为小于10的数字。
例如,1.23 x 10^4表示为1.23乘以10的4次方。
然而,如果一个数字的指数幂是负数,科学计数法的表示方式会发生变化。
这篇文章将讨论含负整数指数幂的科学计数法,包括如何表示和计算。
1.科学计数法的概述科学计数法是一种用于表示数字的方式,包括带有大指数和小指数的数字。
它的格式是将一个数字表示为两个因子的乘积,其中一个因子是在10的某次幂,另一个因子为小于10的数字。
例如,1.23 x 10^4表示为1.23乘以10的4次方,1.23 x 10^-4表示为1.23乘以10的负4次方。
科学计数法最初被开发用于表示宇宙的尺度,因为在宇宙中存在大量的大数字和小数字。
此后,科学计数法已被广泛应用于各个领域,包括自然科学、工程学、医学和金融等。
2.含负整数指数幂的科学计数法在科学计数法中,将一个数字表示为另一个数字乘以10的指数幂,其中指数幂可以是正数或负数。
当指数幂为负数时,我们称其为含负整数指数幂的科学计数法。
例如,0.00734可以表示为7.34 x 10^-3。
在这个示例中,指数幂为负3,这意味着小数点向左移动三位。
为了获得原始数字,我们将这个小数点向右移动三位,得到0.00734。
对于较大的数字,如3,942,000,000,可以将其表示为3.942 x 10^9。
在这个示例中,指数幂为9,这意味着小数点向右移动九位。
为了获得原始数字,我们将这个小数点向左移动九位,得到3,942,000,000。
3.计算含负整数指数幂的科学计数法计算含负整数指数幂的科学计数法相对而言有些困难,因为在某些情况下可能会涉及指数幂的加减,或者需要将指数幂从负数转换为正数。
下面是一些计算含负整数指数幂的科学计数法的示例。
示例1:计算7.34 x 10^-3与3.56 x 10^6的积。
第十七章 分式§17.4 零指数幂与负整指数幂一. 知识点:1.零指数幂:任何不等于零的数的零次幂都等于1。
2.负整指数幂:任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数.3.科学记数法:可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤∣a ∣<10.二.自主学习类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n .是正整数,.....1.≤∣..a .∣<..10....例如,0.000021可以表示成2.1×10-5.三.练习(一)基础1.计算(1)810÷810; (2)10-2; (3)(-0.1)0; (4)2-2;2.用科学记数法表示:(1)0.000 03; (2)-0.000 0064; (3)0.000 0314; (4)2013 000.3.用科学记数法填空:(1)1秒是1微秒的1000000倍,则1微秒=_______秒;(2)1毫克=_________千克; (3)1微米=_________米; (4)1纳米=_________微米;(5)1平方厘米=_________平方米; (6)1毫升=_________立方米.(二)巩固4.计算:(1)101)1)-+ (2)0221(()(2)2--+---(3)16÷(-2)3-(31)-1+(3-1)05.用小数表示下列各数:(1)10-4; (2)2.1×10-5.6.用小数表示下列各数:(1)-10-3×(-2) (2)(8×105)÷(-2×104)3(三)提高7.计算下列各式,并且把结果化为只含有正整数指数幂的形式:(1)(a -3)2(ab 2)-3; (2)(2mn 2)-2(m -2n -1)-3.8.计算)102.3()104(36⨯⨯⨯- 2125)103()103(--⨯÷⨯。
15.2.3整数指数幂(2课时)
一、教学目标:
1.知道负整数指数幂=(a ≠0,n 是正整数). 2.掌握整数指数幂的运算性质.
3.会用科学计数法表示小于1的数.
4、渗透类比转化的数学思想方法,提高学生的运算能力.
二、重点、难点
1.重点:掌握整数指数幂的运算性质.
2.难点:会用科学计数法表示小于1的数.
三、教学过程
1、课堂引入
1.回忆正整数指数幂的运算性质:
(1)同底数的幂的乘法:(m,n 是正整数);
(2)幂的乘方:(m,n 是正整数);
(3)积的乘方:(n 是正整数);
(4)同底数的幂的除法:( a ≠0,m,n 是正整数,m >n);
(5)商的乘方:(n 是正整数); 2.回忆0指数幂的规定,即当a ≠0时,.
3.你还记得1纳米=10-9米,即1纳米=
米吗? 4.计算当a ≠0时,===,再假设正整数指数幂的运算性质(a ≠0,m,n 是正整数,m >n)中的m >n 这个条件去掉,那么==.于是得到=(a ≠0),就规定负整数指数幂的运算性质:当n 是正整数时,=
(a ≠0). 2、例题讲解
例9.计算(1)20= ( 2)2 -3= (3)(-2) -3= 例10. 计算
n a -n
a 1n m n m a a a +=⋅mn n m a a =)(n n n
b a ab =)(n m n m a a a -=÷n n n b
a b a =)(10=a 910153a a ÷53a a 233a a a ⋅21a
n m n m a a a -=÷53a a ÷53-a 2-a 2-a 2
1a n a -n a 1
(1)x2y-2·(x-2y)3 (2) (2×10-3)2÷(10-3)3
例11. 用科学计数法表示下列各数:
0. 003 009 -0. 0000000307
3、随堂练习
1.填空(1)-22= (2)(-2)2= (3)(-2) 0=
2.计算
(1) (x3y-2)2(2)x2y-2·(x-2y)3 (3)(3x2y-2) 2÷(x-2y)3
3. 用科学计数法表示下列各数:
0.000 04, -0. 034, 0.000 000 45,
4.计算(3×10-8)×(4×103)
4、小结
谈谈你的收获
5、布置作业.
6、板书设计
四、教学反思:。