实物粒子波粒二象性不确定关系
- 格式:ppt
- 大小:1.43 MB
- 文档页数:30
大学物理 量子物理基础知识点1.黑体辐射(1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。
(2)斯特藩—玻尔兹曼定律:4o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设(1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=⨯⋅ (2)普朗克黑体辐射公式:2521M T ()1hckthc eλπλλ=-(,)3.光电效应和光的波粒二象性(1)遏止电压a U 和光电子最大初动能的关系为:212a mu eU = (2)光电效应方程: 212h mu A ν=+ (3)红限频率:恰能产生光电效应的入射光频率: 00V A K hν== (4)光的波粒二象性(爱因斯坦光子理论):2mc hεν==;hp mc λ==;00m =其中0m 为光子的静止质量,m 为光子的动质量。
4.康普顿效应: 00(1cos )hm cλλλθ∆=-=- 其中θ为散射角,0m 为光子的静止质量,1200 2.42610hm m cλ-==⨯,0λ为康普顿波长。
5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()22111T T HR m n n m m nνλ==-=->()()(), (2)频率条件: k nkn E E hν-=(3) 角动量量子化条件:,1,2,3...e L m vr n n ===其中2hπ=,称为约化普朗克常量,n 为主量子数。
(4)氢原子能量量子化公式: 12213.6n E eVE n n=-=- 6.实物粒子的波粒二象性和不确定关系(1)德布罗意关系式: h h p u λμ== (2)不确定关系: 2x p ∆∆≥; 2E t ∆∆≥7.波函数和薛定谔方程(1)波函数ψ应满足的标准化条件:单值、有限、连续。
(2)波函数的归一化条件: (,)(,)1Vr t r t d ψψτ*=⎰(3)波函数的态叠加原理: 1122(,)(,)(,)...(,)iiir t c r t c r t c r t ψψψψ=++=∑(4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ⎡⎤∂=-∇+⎢⎥∂⎣⎦8.电子自旋和原子的壳层结构(1)电子自旋: 11),2S s ==;1,2z s s S m m ==±注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构①原子核外电子可用四个量子数(,,,l s n l m m )描述:主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。
4 实物粒子的波粒二象性5 不确定关系一、德布罗意物质波 1.粒子的波动性(1)德布罗意波:任何运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与它相对应,这种波叫物质波,又叫德布罗意波.(2)德布罗意波波长、频率的计算公式为λ=h p ,ν=E h.(3)我们之所以看不到宏观物体的波动性,是因为宏观物体的动量太大,德布罗意波长太小的缘故.2.电子波动性的实验验证(1)实验探究思路:干涉、衍射是波特有的现象,如果实物粒子具有波动性,则在一定条件下,也应该发生干涉或衍射现象.(2)实验验证:1926年戴维孙观察到了电子衍射图样,1927年汤姆孙得到了电子的衍射图样,证实了电子的波动性.(3)说明①人们陆续证实了质子、中子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=E h 和λ=h p关系同样正确.②德布罗意波也是一种概率波.德布罗意认为任何运动着的物体均有波动性,可是我们观察运动着的汽车(如图所示),并未感到它的波动性.你如何理解该问题?请与同学交流自己的看法.提示:一切微观粒子都存在波动性,宏观物体(汽车)也存在波动性,只是因为宏观物体质量大、动量大、波长短,难以观测.二、氢原子中的电子云1.定义用点的多少表示的电子出现的概率分布.2.电子的分布某一空间X围内电子出现概率大的地方点多,电子出现概率小的地方点少.电子云反映了原子核外的电子位置的不确定性,说明电子对应的波也是一种概率波.三、不确定关系1.定义在经典物理学中,可以同时用质点的位置和动量精确描述它的运动,在微观物理学中,要同时测出微观粒子的位置和动量是不太可能的.2.微观粒子运动的位置不确定量Δx和动量的不确定量Δp x的关系式Δx·Δp x≥h4π,其中h是普朗克常量,这个关系式叫不确定关系.3.不确定关系告诉我们,如果要更准确地确定粒子的位置(即Δx更小),那么动量的测量一定会更不准确(即Δp x更大),也就是说,不可能同时准确地知道粒子的位置和动量,也不可能用“轨迹”来描述粒子的运动.单个粒子的运动情况可否预知?粒子出现的位置是否无规律可循?提示:由不确定性关系可知,我们不能准确预知单个粒子的实际运动情况,但粒子出现的位置也并不是无规律可循,我们可以根据统计规律知道粒子在某点出现的概率.考点一对德布罗意波的理解1.物质的分类:物理学中把物质分为两类,一类是分子、原子、电子、质子及由这些粒子组成的物质;另一类是场,像电场、磁场、电磁场这种看不见的,不是由实物粒子组成的,而是一种客观存在的特殊物质.2.任何物体,小到电子、质子,大到行星、太阳都存在波动性,我们之所以观察不到宏观物体的波动性,是因为宏观物体对应的波长太小的缘故.3.德布罗意波是一种概率波,粒子在空间各处出现的概率受波动规律支配,不要以宏观观点中的波来理解德布罗意波.4.德布罗意假说是光子的波粒二象性的一种推广,使之包括了所有的物质粒子,即光子与实物粒子都具有粒子性,又都具有波动性,与光子对应的波是电磁波,与实物粒子对应的波是物质波.5.对于光,先有波动性(即ν和λ),再在量子理论中引入光子的能量ε和动量p来补充它的粒子性.反之,对于实物粒子,则先有粒子概念(即ε和p),再引入德布罗意波(即ν和λ)的概念来补充它的波动性.不过要注意这里所谓波动性和粒子性,仍然都是经典物理学的概念,所谓补充仅是形式上的.综上所述,德布罗意的推想基本上是爱因斯坦1905年关于光子的波粒二象性理论(光粒子由波伴随着)的一种推广,使之包括了所有的物质微观粒子.【例1】某某综合新闻网2010年8月21日报道:近日,一种发源于南亚没有抗生素可以抵御的“超级细菌”成为社会关注的热点.假若一个细菌在培养器皿中的移动速度为3.5μm/s,其德布罗意波长为1.9×10-19m ,试求该细菌的质量.【解析】 由公式λ=h p得该细菌的质量为m =p v =h vλ= 6.626×10-343.5×10-6×1.9×10-19kg =1.0×10-9kg. 【答案】 1.0×10-9kg德布罗意认为,任何一个运动着的物体,都有一种波与它对应,波长是λ=h p,式中p 是运动物体的动量,h 是普朗克常量.已知某种紫光的波长是440 nm ,若将电子加速,使它的德布罗意波长是这种紫光波长的1104.求: (1)电子的动量大小;(2)试推导加速电压跟德布罗意波长的关系,并计算加速电压的大小(电子质量m =9.1×10-31kg ,电子电荷量e =1.6×10-19C ,普朗克常量h =6.6×10-34J·s,加速电压的计算结果取1位有效数字).答案:(1)1.5×10-23kg·m/s(2)U =h 22emλ2 8×102V解析:(1)由λ=h p得电子的动量大小p =h λ= 6.6×10-34440×10-9×10-4kg·m/s =1.5×10-23kg·m/s(2)设加速电压为U ,由动能定理得eU =12mv 2而12mv 2=p 22m ,所以U =p 22em =h 22emλ2 代入数据得加速电压的大小U =8×102V考点二 对不确定关系的理解在经典力学概念中,一个粒子的位置和动量是可以同时精确测定的.在量子理论发展后,揭示出要同时测出微观物体的位置和动量,其精确度是有一定限制的.由不确定性关系Δx Δp x ≥h4π可知,微观粒子的位置和动量是不能同时被确定的,这也就决定了不能用“轨道”的观点来描述粒子的运动,因为“轨道”对应的粒子某时刻应该有确定的位置和动量,但这是不符合实验规律的.微观粒子的运动状态,不能像宏观物体的运动那样通过确定的轨迹来描述,而是只能通过概率波进行统计性的描述.【例2】 已知h4π=5.3×10-35J·s,试求下列情况中速度测定的不确定量,并根据计算结果,讨论在宏观和微观世界中进行测量的不同情况.(1)一个球的质量m =1.0 kg ,测定其位置的不确定量为10-6m. (2)电子的质量m e =9.0×10-31kg ,测定其位置的不确定量为10-10m(即原子的数量级).根据不确定性关系Δx ·Δp x ≥h4π,先求动量的不确定性关系,再由Δp =m Δv ,计算速度测量的不确定性关系.【解析】 (1)m =1.0 kg ,Δx 1=10-6m , 由Δx Δp x ≥h4π,Δp =m Δv 知Δv 1≥h4πΔx 1m =5.3×10-3510-6×1.0 m/s =5.3×10-29m/s.(2)m e =9.0×10-31kg ,Δx 2=10-10mΔv 2≥h4πΔx 2m e = 5.3×10-3510-10×9.0×10-31 m/s =5.89×105m/s.在宏观世界中物体的质量与微观世界中粒子的质量相比较,相差很多倍.根据计算的数据可以看出,宏观世界中物体的质量较大,位置和速度的不确定量较小,可同时精确地测出物体的位置和动量.在微观世界中,粒子的质量较小,不能同时精确地测出粒子的位置和动量,不能准确地把握粒子的运动状态.【答案】 见解析总结提能 ①不确定性关系不是说微观粒子的坐标测不准,也不是说微观粒子的动量测不准,更不是说微观粒子的坐标和动量都测不准,而是说微观粒子的坐标和动量不能同时测准.②普朗克常量是不确定性关系中的重要角色,如果h 的值可忽略不计,这时物体的位置、动量可同时有确定的值,如果h 不能忽略,这时必须考虑微粒的波粒二象性.h 成为划分经典物理学和微观物理学的一个界线.(多选)关于不确定性关系Δx Δp x ≥h4π有以下几种理解,其中正确的是( CD )A .微观粒子的动量不可能确定B .微观粒子的坐标不可能确定C .微观粒子的动量和坐标不可能同时确定D .不确定性关系不仅适用于电子和光子等微观粒子,也适用于其他宏观粒子 解析:不确定性关系Δx Δp x ≥h4π表示确定位置、动量的精度互相制约,此消彼长,当粒子位置不确定性变小时,粒子动量的不确定性变大;粒子位置不确定性变大时,粒子动量的不确定性变小.故不能同时准确确定粒子的动量和坐标.不确定性关系也适用于其他宏观粒子,不过这些不确定量微乎其微.故C 、D 正确.重难疑点辨析运用不确定性关系解题的方法1.运用不确定性关系ΔxΔp x≥h4π时,应明确两点:(1)位置不确定量Δx,在单缝衍射中,Δx为狭缝的宽度,也可以是光子或电子偏离中心的距离.子弹射出枪口时,Δx为枪口的直径,也可以认为是子弹偏离中心的距离.电子在晶体中衍射时,Δx为晶体中原子间的距离,其单位必须化为国际单位米(m),Δx同时也可以是粒子打在屏上偏离中心的距离.(2)动量的不确定量Δp x:①对宏观的运动物体,Δp x=mΔv,其中Δv为子弹射出枪口时横向速度的确定量,而m为物体的质量,单位应统一为国际单位.②对微观粒子如光子,Δp x=hλ.2.使用ΔxΔp x≥h4π可以求Δx≥h4πΔp x①Δp x≥h4πΔx②Δv≥h4πmΔx③由③式可知,在单缝衍射中狭缝越窄,即Δx越小,粒子通过狭缝时横向速度的不确定量Δv越大,反之当Δp x=mΔv或Δp x=hλ越大时,Δx越小而横向位置的不确定量越小.【典例】已知h4π=5.3×10-35J·s,试求下列两种情况中位置的不确定量.(1)一电子具有200 m/s的速率,动量的不确定X围为0.01%.(2)一颗质量为10 g的子弹,具有200 m/s的速率,动量的不确定量为0.01%. 【解析】(1)电子的动量为p=mv=9.1×10-31kg×200 m·s-1=1.8×10-28kg·m·s-1.动量的不确定X围为Δp x =0.01%p =1.0×10-4×1.8×10-28kg·m·s -1=1.8×10-32kg·m·s -1,由不确定性关系式Δx Δp x ≥h4π,得电子位置的不确定X 围为Δx ≥h4πΔp x,所以Δx ≥5.3×10-351.8×10-32 m =2.9×10-3m. (2)子弹的动量为p =mv =10×10-3 kg×200 m·s -1=2 kg·m·s -1动量的不确定X 围为Δp x =0.01%p =1.0×10-4×2 kg·m·s -1=2×10-4kg·m·s -1, 由不确定性关系式Δx Δp x ≥h4π,得子弹位置的不确定X 围为Δx ≥h4πΔp x,所以Δx ≥5.3×10-352×10-4 m =2.65×10-31m. 【答案】 (1)大于或等于2.9×10-3m (2)大于或等于2.65×10-31m宏观世界中的物体质量比微观世界中的物质(粒子)质量大许多倍,正是因为宏观物体质量较大,其位置和速度的不确定量极小,通常不计,可以认为其位置和速度(动量)可精确测定;而微观粒子由于其质量极小,其位置和动量的不确定性特明显,不可忽略,故不能准确把握粒子的运动状态.1.(多选)在用单缝衍射实验验证光的波粒二象性实验中,下列说法正确的是( AD ) A .使光子一个一个地通过狭缝,如果时间足够长,底片上将会显示衍射图样 B .单个光子通过狭缝后,底片上会出现完整的衍射图样 C .光子通过狭缝的运动轨迹是直线 D .光的波动性是大量光子运动的规律2.下列说法正确的是( B ) A .概率波就是机械波 B .物质波是一种概率波C .概率波和机械波的本质是一样的,都能发生干涉和衍射现象D .在光的双缝干涉实验中,若有一个光子,则能确定这个光子落在哪个点上 解析:概率波与机械波是两个概念,本质不同;物质波是一种概率波,符合概率波的特点;光的双缝干涉实验中,若有一个光子,这个光子的落点是不确定的,但有几率较大的位置.3.(多选)在光的双缝干涉实验中,在光屏上放上照相底片并设法减弱光子流的强度,尽可能使光子一个一个地通过狭缝,在曝光时间不长和曝光时间足够长的两种情况下,其实验结果是( ABC )A .若曝光时间不长,则底片上出现一些无规则的点B .若曝光时间足够长,则底片上出现干涉条纹C .这一实验结果证明了光具有波动性D .这一实验结果否定了光具有粒子性解析:实验表明,大量光子的行为表现为波动性,个别光子的行为表现为粒子性.上述实验表明光具有波粒二象性,故A 、B 、C 正确,D 错误.4.(多选)关于光的波动性与粒子性,下列说法正确的是( ABCD )A .大量光子的行为能明显地表现出波动性,而个别光子的行为往往表现出粒子性B .频率越低、波长越长的光子波动性明显,而频率越高、波长越短的光子粒子性明显C .光在传播时往往表现出波动性,而光在与物质相互作用时往往显示出粒子性D .光子的能量是与频率成正比的,这说明了光的波动性与光的粒子性是统一的 5.一辆摩托车以20 m/s 的速度向墙冲去,车身和人共重100 kg ,则车撞墙时的不确定X 围是Δx ≥2.64×10-38_m.解析:根据不确定关系Δx Δp x ≥h4π得:Δx ≥h4πΔp x = 6.63×10-344×3.14×100×20 m =2.64×10-38m.。
实物粒子波粒二象性的另一种观点作者:王天会王廷兴来源:《中国校外教育·理论》2010年第02期[摘要]本文提出实物粒子波动性不是自身特性,而是微观粒子在一定宏观作用下的统计规律表现,波动性原因不在于微观粒子自身,而在于宏观作用的微观变化(涨落),并用此观点合理解释了隧道效应现象和电子的单双缝衍射实验现象。
[关键词] 波粒二象性不确定关系衍射干涉微观粒子势垒经典力学——运动学和动力学是研究物体运动规律的理论。
无论是对宏观物体还是微观的实物粒子都是正确的。
目前人们能够测定和控制的是宏观作用力(宏观稳定统计平均值)。
由于宏观作用力的微小变化(涨落)对宏观物体或较大的实物粒子的作用影响微乎其微,完全可以忽略不计,因此,经典理论完全适用于宏观物体和较大的实物粒子;而宏观作用力的微小变化(涨落)对微小实物粒子——微观粒子的影响则不能忽略,因此,经典理论经常不适用于微观粒子。
这里强调指出经典理论对微观粒子不是不正确,而是经常不能用于微观粒子。
例如,在研究宏观引力场和电磁场对微观粒子的作用时用的恶就是经典理论,而且事实证明是完全正确的。
经典力学是关于物体运动学和动力学理论,而对微观粒子经常不适用。
也就是对于单一微观粒子的运动我们还无法研究和控制,但是微观粒子在宏观作用力下的统计运动是有规律的,也就是波动规律,是量子力学的理论。
所以,牛顿第二定律方程是研究物体(主要是宏观物体)运动规律的方程,而薛定谔方程则是研究物体(微观粒子)运动统计规律(多个粒子一次运动规律或单个粒子多次重复运动规律)的方程。
可以说实物粒子的波粒二象性与光的波粒二象性完全不同。
光波的波粒二象性。
光是连续物质、是波在一定条件下既有波动性,又有粒子性,光本身主要是波动性,而它与物质作用有时表现出粒子性。
即本身具有波动和粒子性。
而实物粒子却不同。
它是粒子只有粒子性,波动性不是它的自身特性,而是在宏观作用力下,粒子运动的统计规律的表现。
波动性的根本不是自身而是外作用力。
de Brolie假设:mv h =λ1.4.1 de Broglie 假设和de Broglie 波实物粒子:电子、中子等静止质量不等于零的粒子E h γ=de Brolie 关系式:。
值得注意的是,其中的等式不适用于光。
mv h P h ==λλhP =de Brolie 波:实物粒子具有的波,或称物质波。
波长由de Brolie 关系式确定。
二象性并不是一个特殊的光学现象,而应具有普遍的意义。
实物粒子也应具有波动性。
表征实物粒子粒子性的物理量E 和P 与表征波动性的物理量γ和λ 之间的关系:和例如,根据de Broglie 假设推测实物粒子波——电子波——的波长:电子运动速率:V e mv ⋅=3001212电子波的波长:)A (25.12 Vmv h ==λ1.4.2 de Brolie 假设的证实——电子衍射实验n λθd=sin 2(1927年,Davisson 和Germer )实验结果说明电子具有波动性。
通过Bragger 方程可算出电子波的波长λ:θλsin 2n d=,n = 0, 1, 2, ……这样计算出的波长与根据de Brolie 关系式计算的结果完全一致。
表明,动量为P 的自由电子的衍射行为与波长为λ 的平面波的衍射行为相同。
因此,动量为P 的自由电子的波长P h =λ波动性粒子的特点——不能在同一时刻具有确定的坐标和动量它的某个坐标被确定的越准,则在此方向上的动量分量就越不准;反之亦然。
1.4.3 测不准原理——微观粒子的坐标和动量不能同时具有确定值描述波动性粒子在x ,y ,z 方向坐标和动量的不确定程度,其中Δx ,Δy ,Δz ——微观粒子的坐标分别在x ,y ,z 三个方向上的分量的测定值与平均值之差≥∆⋅∆y P y≥∆⋅∆z P z≥∆⋅∆x P x 测不准关系式——ΔP x ,ΔP y ,ΔP z ——微观粒子的动量分别在x ,y ,z 三个方向上的分量的π2h =经典场合:h 极小(h = 6.626*10-34J.s ),约为0,测不准关系不起作用,波动性不显著。