matlab与分布拟合
- 格式:ppt
- 大小:1.13 MB
- 文档页数:65
%--------------------------------------------------------------------------% 分布的拟合与检验%--------------------------------------------------------------------------%--------------------------------------------------------------------------% 描述性统计量和统计图%--------------------------------------------------------------------------%读取文件中数据% 读取文件examp02_14.xls的第1个工作表中的G2G52中的数据,即总成绩数据score = xlsread('examp02_14.xls','Sheet1','G2G52';% 去掉总成绩中的0,即缺考成绩score = score(score 0;%计算描述性统计量score_mean = mean(score % 计算平均成绩s1 = std(score % 计算(5.1式的标准差s1 = std(score,0 % 也是计算(5.1式的标准差s2 = std(score,1 % 计算(5.2式的标准差score_max = max(score % 计算样本最大值score_min = min(score % 计算样本最小值score_range = range(score % 计算样本极差score_median = median(score % 计算样本中位数score_mode = mode(score % 计算样本众数score_cvar = std(scoremean(score % 计算变异系数score_skewness = skewness(score % 计算样本偏度score_kurtosis = kurtosis(score % 计算样本峰度%绘制箱线图figure; % 新建图形窗口boxlabel = {'考试成绩箱线图'}; % 箱线图的标签% 绘制带有刻槽的水平箱线图boxplot(score,boxlabel,'notch','on','orientation','horizontal' xlabel('考试成绩'; % 为X轴加标签%绘制频率直方图% 调用ecdf函数计算xc处的经验分布函数值f[f, xc] = ecdf(score;figure; % 新建图形窗口% 绘制频率直方图ecdfhist(f, xc, 7;xlabel('考试成绩'; % 为X轴加标签ylabel('f(x'; % 为Y轴加标签%绘制理论正态分布密度函数图% 产生一个新的横坐标向量xx = 400.5100;% 计算均值为mean(score,标准差为std(score的正态分布在向量x处的密度函数值y = normpdf(x,mean(score,std(score;hold onplot(x,y,'k','LineWidth',2 % 绘制正态分布的密度函数曲线,并设置线条为黑色实线,线宽为2% 添加标注框,并设置标注框的位置在图形窗口的左上角legend('频率直方图','正态分布密度曲线','Location','NorthWest';%绘制经验分布函数图figure; % 新建图形窗口% 绘制经验分布函数图,并返回图形句柄h和结构体变量stats,% 结构体变量stats有5个字段,分别对应最小值、最大值、平均值、中位数和标准差[h,stats] = cdfplot(scoreset(h,'color','k','LineWidth',2; % 设置线条颜色为黑色,线宽为2%绘制理论正态分布函数图x = 400.5100; % 产生一个新的横坐标向量x% 计算均值为stats.mean,标准差为stats.std的正态分布在向量x处的分布函数值y = normcdf(x,stats.mean,stats.std;hold on% 绘制正态分布的分布函数曲线,并设置线条为品红色虚线,线宽为2plot(x,y,'k','LineWidth',2;% 添加标注框,并设置标注框的位置在图形窗口的左上角legend('经验分布函数','理论正态分布','Location','NorthWest';%绘制正态概率图figure; % 新建图形窗口normplot(score; % 绘制正态概率图%--------------------------------------------------------------------------% 分布的检验%--------------------------------------------------------------------------%读取文件中数据% 读取文件examp02_14.xls的第1个工作表中的G2G52中的数据,即总成绩数据score = xlsread('examp02_14.xls','Sheet1','G2G52';% 去掉总成绩中的0,即缺考成绩score = score(score 0;%调用chi2gof函数进行卡方拟合优度检验% 进行卡方拟合优度检验[h,p,stats] = chi2gof(score% 指定各初始小区间的中点ctrs = [50 60 70 78 85 94];% 指定'ctrs'参数,进行卡方拟合优度检验[h,p,stats] = chi2gof(score,'ctrs',ctrs[h,p,stats] = chi2gof(score,'nbins',6 % 指定'nbins'参数,进行卡方拟合优度检验% 指定分布为默认的正态分布,分布参数由x进行估计[h,p,stats] = chi2gof(score,'nbins',6;% 求平均成绩ms和标准差ssms = mean(score;ss = std(score;% 参数'cdf'的值是由函数名字符串与函数中所含参数的参数值构成的元胞数组[h,p,stats] = chi2gof(score,'nbins',6,'cdf',{'normcdf', ms, ss};% 参数'cdf'的值是由函数句柄与函数中所含参数的参数值构成的元胞数组[h,p,stats] = chi2gof(score,'nbins',6,'cdf',{@normcdf, ms, ss};% 同时指定'cdf'和'nparams'参数[h,p,stats] = chi2gof(score,'nbins',6,'cdf',{@normcdf,ms,ss},'nparams',2[h,p] = chi2gof(score,'cdf',@normcdf % 调用chi2gof函数检验数据是否服从标准正态分布% 指定初始分组数为6,检验总成绩数据是否服从参数为ms = 79的泊松分布[h,p] = chi2gof(score,'nbins',6,'cdf',{@poisscdf, ms}% 指定初始分组数为6,最小理论频数为3,检验总成绩数据是否服从正态分布h = chi2gof(score,'nbins',6,'cdf',{@normcdf, ms, ss},'emin',3%调用jbtest函数进行正态性检验randn('seed',0 % 指定随机数生成器的初始种子为0x = randn(10000,1; % 生成10000个服从标准正态分布的随机数h = jbtest(x % 调用jbtest函数进行正态性检验x(end = 5; % 将向量x的最后一个元素改为5h = jbtest(x % 再次调用jbtest函数进行正态性检验% 调用jbtest函数进行Jarque-Bera检验[h,p,jbstat,critval] = jbtest(score%调用kstest函数进行正态性检验% 生成cdf矩阵,用来指定分布:均值为79,标准差为10.1489的正态分布cdf = [score, normcdf(score, 79, 10.1489];% 调用kstest函数,检验总成绩是否服从由cdf指定的分布[h,p,ksstat,cv] = kstest(score,cdf%调用kstest2函数检验两个班的总成绩是否服从相同的分布% 读取文件examp02_14.xls的第1个工作表中的B2B52中的数据,即班级数据banji = xlsread('examp02_14.xls','Sheet1','B2B52';% 读取文件examp02_14.xls的第1个工作表中的G2G52中的数据,即总成绩数据score = xlsread('examp02_14.xls','Sheet1','G2G52';% 去除缺考数据score = score(score 0;banji = banji(score 0;% 分别提取60101和60102班的总成绩score1 = score(banji == 60101;score2 = score(banji == 60102;% 调用kstest2函数检验两个班的总成绩是否服从相同的分布[h,p,ks2stat] = kstest2(score1,score2%分别绘制两个班的总成绩的经验分布图figure; % 新建图形窗口% 绘制60101班总成绩的经验分布函数图F1 = cdfplot(score1;% 设置线宽为2,颜色为红色set(F1,'LineWidth',2,'Color','r'hold on% 绘制60102班总成绩的经验分布函数图F2 = cdfplot(score2;% 设置线型为点划线,线宽为2,颜色为黑色set(F2,'LineStyle','-.','LineWidth',2,'Color','k'% 为图形加标注框,标注框的位置在坐标系的左上角legend('60101班总成绩的经验分布函数','60102班总成绩的经验分布函数',...'Location','NorthWest'%调用kstest2函数进行正态性检验randn('seed',0 % 指定随机数生成器的初始种子为0% 产生10000个服从均值为79,标准差为10.1489的正态分布的随机数,构成一个列向量xx = normrnd(mean(score,std(score,10000,1;% 调用kstest2函数检验总成绩数据score与随机数向量x是否服从相同的分布[h,p] = kstest2(score,x,0.05%调用lillietest函数进行分布的检验% 调用lillietest函数进行Lilliefors检验,检验总成绩数据是否服从正态分布[h,p,kstat,critval] = lillietest(score% 调用lillietest函数进行Lilliefors检验,检验总成绩数据是否服从指数分布[h, p] = lillietest(score,0.05,'exp'。
matlab拟合公式
Matlab是一款强大的数学软件,可以用于拟合各种类型的数据。
在拟合过程中,我们可以选择不同的拟合公式来适应不同的数据类型。
本文将介绍一些常见的拟合公式及其用途。
1. 线性拟合公式
线性拟合公式是最常见的一种拟合公式,用于拟合形如y = ax + b的数据。
在Matlab中,可以使用polyfit函数对数据进行线性拟合,得到系数a和b。
2. 多项式拟合公式
多项式拟合公式用于拟合形如y = a0 + a1x + a2x^2 + … + anxn 的数据。
在Matlab中,可以使用polyfit函数进行多项式拟合,需
要指定拟合的阶数n。
3. 指数拟合公式
指数拟合公式用于拟合形如y = ab^x的数据。
在Matlab中,可以使用fit函数进行指数拟合,需要指定拟合的变量x和对应的因变量y。
4. 对数拟合公式
对数拟合公式用于拟合形如y = a + b ln(x)的数据。
在Matlab 中,可以使用fit函数进行对数拟合,需要指定拟合的变量x和对应的因变量y。
5. 幂函数拟合公式
幂函数拟合公式用于拟合形如y = ax^b的数据。
在Matlab中,
可以使用fit函数进行幂函数拟合,需要指定拟合的变量x和对应的因变量y。
6. 正态分布拟合公式
正态分布拟合公式用于拟合符合正态分布的数据。
在Matlab中,可以使用normfit函数进行正态分布拟合,得到均值和标准差。
总之,在Matlab中,拟合公式的选择需要根据不同的数据类型进行调整,以得到最准确的结果。
matlab威布尔分布拟合
在MATLAB中,可以使用"wblfit"函数对数据进行威布尔分布的拟合。
威布尔分布常用于描述可靠性分析、寿命分析等方面的数据。
该函数的使用方法如下:
假设有一组数据存储在数组"data"中,我们要求其威布尔分布的参数。
可以使用以下代码:
```
% 数据
data = [1.2, 3.5, 2.1, 4.7, 5.6];
% 拟合
params = wblfit(data);
```
拟合完成后,可以获得两个参数:威布尔分布的形状参数"shape"和尺度参数"scale"。
参数的具体含义是:数据从0到正无穷的概率分布函数F(x)可以表示为F(x) = 1 - exp(-(x/s)^b),其中s 为尺度参数,b为形状参数。
如果想要生成符合拟合分布的随机数,可以使用"wblrnd"函数:```
% 生成100个符合拟合分布的随机数
random_nums = wblrnd(params(1), params(2), 100, 1);
```
以上代码将生成100个符合威布尔分布的随机数,并存储在"random_nums"数组中。
以上是使用MATLAB进行威布尔分布拟合的基本方法,通过调整数据和参数的输入,可以得到适合实际问题的拟合结果。
matlab正态分布拟合曲线
本篇文章将介绍如何使用MATLAB对一组数据进行正态分布拟合,并绘制出拟合曲线。
正态分布是一种常见的概率分布,它在统计学中有着广泛的应用。
我们将通过以下步骤来实现正态分布拟合曲线:
1. 导入数据:我们首先需要将数据导入到 MATLAB 中。
可以使
用 MATLAB 中的“readtable”函数来读取数据文件,并将数据存储
到表格中。
2. 统计数据:在拟合曲线前,我们需要对数据进行一些统计分析。
可以使用 MATLAB 中的“mean”和“std”函数来计算样本均值
和样本标准差。
3. 计算概率密度函数:根据正态分布的定义,我们可以使用计
算公式计算概率密度函数。
可以使用 MATLAB 中的“normpdf”函数
来计算。
4. 拟合曲线:使用 MATLAB 中的“fit”函数可以对数据进行正态分布拟合。
该函数将返回一个包含拟合参数的结构体。
5. 绘制拟合曲线:使用 MATLAB 中的“plot”函数将拟合曲线
绘制出来。
通过以上步骤,我们可以很容易地在 MATLAB 中实现正态分布拟合曲线。
这对于进行统计分析和数据可视化是非常有帮助的。
- 1 -。
、单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱cftool,使用方便,能实现多种类型的线性、非线性曲线拟合。
下面结合我使用的Matlab R2009b来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是y=A*x*x + B*x,且A>0,B>0。
1、在命令行输入数据:》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];》y=[5 10 15 20 25 30 35 40 45 50];2、启动曲线拟合工具箱》cftool3、进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口;(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗口;(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:∙Custom Equations:用户自定义的函数类型∙Exponential:指数逼近,有2种类型,a*exp(b*x)、a*exp(b*x) + c*exp(d*x)∙Fourier:傅立叶逼近,有7种类型,基础型是a0 + a1*cos(x*w) + b1*sin(x*w)∙Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2)∙Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving∙Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~∙Power:幂逼近,有2种类型,a*x^b、a*x^b + c∙Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型∙Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)∙Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1)∙Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)选择好所需的拟合曲线类型及其子类型,并进行相关设置:——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。
matlab学生t分布拟合
在Matlab中,可以使用自带的曲线拟合工具去拟合学生t分布。
下面是一般步骤:
1. 准备数据:将数据整理成适合混合效应逻辑回归模型的格式。
确保数据包括一个二分类的因变量和一个或多个自变量。
2. 导入工具箱:在Matlab命令窗口中输入"toolbox",然后选择并导入统计和机器学习工具箱。
3. 拟合模型:使用`fitglme`函数来拟合混合效应逻辑回归模型。
该函数的语法如下:`mdl = fitglme(data, formula, 'Distribution', 'binomial', 'Link', 'logit')`,其中,`data`是包含因变量和自变量的数据表或数据集,`formula`是描述模型的公式,`'Distribution'`参数指定分布为二项分布,`'Link'`参数指定链接函数为对数函数。
拟合学生t分布需要一定的数学和统计学知识,如果你需要更详细的指导或有特定的问题,请提供更多信息,以便我能更好地帮助你。
matlab拟合正态分布在Matlab中,拟合正态分布可以使用正态拟合函数normfit(),该函数可以帮助我们对数据进行正态分布拟合并返回其均值和标准差。
此外,还可以使用拟合工具箱中的拟合函数fitdist()来拟合正态分布。
下面我将详细介绍如何使用这两种拟合方法。
1. normfit()函数这个函数主要用于对已有数据进行正态拟合。
假设我们有一组数据如下:x = [1.2, 2.9, 3.5, 4.2, 5.1, 6.7, 8.3, 9.9];接着,我们可以调用normfit()函数来进行拟合:[mu, sigma] = normfit(x)拟合结果会被保存在mu和sigma变量中。
其中,mu表示拟合得到的正态分布的均值,sigma表示标准差。
如果需要自定义置信度,可以通过增加第三个参数来实现:[mu, sigma, muci, sigmaci] = normfit(x, alpha)其中,muci和sigmaci分别是均值和标准差的置信区间。
另外,如果需要查看拟合后的正态分布在数据中的图像,可以使用如下代码:histfit(x)其中,histfit()函数默认使用normfit()函数拟合数据。
2. fitdist()函数该函数可用于拟合多种分布,包括正态分布。
与normfit()函数不同,fitdist()函数需要先选择分布类型,之后再进行拟合。
例如,要使用正态分布拟合上文中的数据,可以使用如下代码:pd = fitdist(x, 'Normal')这里pd表示已经得到的正态分布对象。
如果需要查看拟合效果,可以使用如下代码:histfit(x)hold onx_values = -5:0.1:15;y = pdf(pd, x_values);plot(x_values, y, 'r')hold off其中,pdf()函数是用于计算概率密度函数的函数。
在这段代码中,我们对数据进行了绘图,并在上面叠加了拟合后的正态分布曲线。
正态分布拟合matlab
在MATLAB中,可以使用normfit函数对数据进行正态分布拟合。
该函数返回给定数据的正态分布拟合参数,包括均值、标准差和拟合优度。
以下是一个简单的示例:
matlab% 生成一些随机数据data = randn(1000,1);% 进行正态分布拟合params = normfit(data);% 输出拟合参数mean =
params(1);stddev = params(2);gof = params(3);disp(['均值:', num2str(mean)]);disp(['标准差:', num2str(stddev)]);disp(['拟合优度:', num2str(gof)]);
在上面的示例中,randn函数用于生成1000个标准正态分布的随机数。
然后,使用normfit函数对这些数据进行正态分布拟合,并将返回的拟合参数存储在params变量中。
最后,通过索引将拟合参数的均值、标准差和拟合优度提取出来,并使用disp函数将其输出到命令窗口。
除了normfit函数,还有其他一些函数可以用于正态分布拟合,例如fitdist和pdfndist。
这些函数的使用方法可能会有所不同,但它们的基本原理都是通过对数据进行最小二乘拟合来计算正态分
布的参数。
需要注意的是,正态分布拟合并不一定能够完全拟合数据,因为数据通常不是完全符合正态分布的。
因此,在进行正态分布拟合时,
需要谨慎评估数据的拟合程度,并使用适当的的方法对数据进行处理和分析。
matlab拟合柯西公式柯西分布(Cauchy Distribution)也被称为洛伦兹分布或布伦特-霍尔茨马克分布,是一个连续概率分布。
其概率密度函数通常被定义为:f(x; x0, γ) = 1 / [π * γ * (1 + ((x - x0) / γ)²)]其中,x0 是位置参数,表示分布的中位数或峰值的位置,γ 是尺度参数,表示分布的半宽度或半最大值处的全宽度的一半。
在MATLAB 中,你可以使用fitdist函数来拟合柯西分布。
但请注意,fitdist函数并没有直接为柯西分布提供预设。
因此,你需要自定义概率密度函数(PDF)来进行拟合。
下面是一个例子,说明如何使用MATLAB 的优化工具箱中的fminsearch函数来拟合柯西分布:matlab复制代码% 示例数据data = randn(1000,1) + 5; % 这只是示例数据,你应该使用你自己的数据% 定义柯西分布的负对数似然函数function nll = negloglik_cauchy(params, data)x0 = params(1);gamma = params(2);n = length(data);nll = -n*log(pi*gamma) - sum(log(1 + ((data - x0)./gamma).^2));end% 使用fminsearch 找到使负对数似然函数最小的参数initial_params = [0, 1]; % 初始参数猜测optimal_params = fminsearch(@(params) negloglik_cauchy(params, data), initial_params);% 显示最优参数disp(optimal_params);在这个例子中,negloglik_cauchy函数计算了给定参数和数据下的柯西分布的负对数似然函数。
fminsearch函数则用于找到使这个函数最小的参数值,这些参数值就是最优的拟合参数。