第一届凝聚态物理会议
- 格式:pdf
- 大小:780.15 KB
- 文档页数:46
第一届凝聚态物理会议The 1st Conference on Condensed Matter Physics2015年7月15日- 17日清华大学目录01 会议概况02 组织委员会04 会议日程•总日程•大会报告•分会场报告•海报会场会议概况为了配合凝聚态物理在中国的迅速发展和国际地位的全面提升,进一步加强国内科研工作者在不同前沿领域的交流,推进国内和国际在凝聚态物理领域的相互交流和合作,为青年学生和研究人员学习和了解国际前沿进展创造更广泛的交流平台,拟定在过去已经成功举办了13届的“凝聚态理论与材料计算国际会议”系列会议的基础上,拓宽会议的主题,特别是加强凝聚态物理实验和理论的交流与融合,于2015年7月15日-17日在北京举办“第一届凝聚态物理会议”年会。
2015年第一届凝聚态物理会议是由清华大学物理系、中国科学院物理研究所、北京大学物理学院、量子物质科学协同创新中心联合主办。
这是国内首次在凝聚态物理方面举办的大型学术交流会。
本次会议是凝聚态理论与材料计算国际会议的延续和拓展,旨在增进国内外物理学者的学术交流,分享前沿科研成果,提高国内凝聚态物理的科研水平,扩大学术声誉。
第一届凝聚态物理会议将于2015年7月15日-17日在清华大学举行。
会议主题包括:拓扑量子态和多铁性、超导和多体物理、能源和低维物理、Quantum many-body theory and statistical physics、计算凝聚态物理、量子信息及其它与凝聚态物理的交叉领域等六个主题。
本次会议共设30个专题分会,将以大会特邀报告、分会特邀报告、口头报告和张贴海报等形式进行交流探讨。
组织委员会主办单位•清华大学物理系•中国科学院物理研究所•北京大学物理学院•量子物质科学协同创新中心顾问委员会:(按姓氏拼音序)崔田、杜瑞瑞、冯世平、龚新高、解士杰、李东海、李建新、林海青、李树深、陆卫、卢仲毅、吕力、沈保根、沈健、沈志勋、苏刚、王恩哥、王孝群、王玉鹏、向涛、薛其坤、张富春、张振宇组织委员会•清华大学物理系:陈曦、薛其坤•中科院物理研究所:胡江平、戴希、方忠、丁洪、周兴江、向涛•北京大学物理学院:谢心澄分会场负责人•拓扑量子态和多铁性:胡江平、陈曦、吕力、戴希、翁红明、寇谡鹏、吴从军•超导和多体物理:孙力玲、杨义峰、刘俊明、雒建林、袁辉球、李永庆、万歆、周毅•能源和低维物理:张振宇、李泓、陈弘、赵怀周、张远波•Quantum many-body theory and statistical physics:孟子扬、张广铭、郭文安、姚宏•计算凝聚态物理:姚裕贵、段文晖、龚新高、孟胜•量子信息及其它与凝聚态物理的交叉领域:范珩、田琳、翟荟、崔晓玲会议协调人•清华大学物理系:任俊(总协调人)•中国科学院物理研究所:齐建为、刘青梅•会务组:黄文艳、唐林、井小苏、周丹、骆洁、甘翠云、付德永、杨红、肖琳、胡文婷赞助单位•清华大学物理系•量子物质科学协同创新中心•中国科学院物理研究所•北京大学物理学院2015年第一届凝聚态物理会议分会场主题:A.拓扑量子态和多铁性A1拓扑半金属IA2拓扑半金属IIA3拓扑超导体和Majorana 费米子A4多铁性材料模拟与计算A5多铁性体系B.超导和多体物理B1铬基和锰基超导体B2极端条件下的超导行为B3铁基超导B4凝聚物质的激发态和动力学理论和实验B5重费米子物理C.能源和低维物理C1锂电池中的物理C2二维材料C3二维电子系统中的物理C4硅烯的最新进展C5热电中的新物理D.Quantum many-body theory and statistical physicsD1 Recent developments in strongly correlated quantum systems ID2 Recent developments in strongly correlated quantum systems IID3 Recent developments in strongly correlated quantum systems IIID4 Recent developments in strongly correlated quantum systems IVD5 Recent developments in strongly correlated quantum systems V注意事项:为了尊重外籍邀请报告人,如无特殊情况,D分会场报告请用英文。
上世纪初,一位比利时的实业家欧内斯特·索尔维创立了索尔维会议。
1911年,第一届索尔维会议在布鲁塞尔召开,每3年举行一届。
1927年,第五届索尔维会议在比利时布鲁塞尔召开了,因为发轫于这次会议的爱因斯坦与玻尔两人的大辩论,这次索尔维峰会被冠之以“最著名”的称号。
一张汇聚了物理学界智慧之脑的“明星照”则成了这次会议的见证,十数个涵盖了众多分支的物理学家都留下了他们的身影,爱因斯坦、玻尔更是照片的灵魂人物。
量子力学前辈马克斯·普朗克第五届索尔维会议讨论的核心是有关量子力学的,而追溯量子力学就不得不提及一个人,那便是马克斯·普朗克(MaxPlanck1858~1947,前排左二),德国物理学家,“量子力学之父”。
参加这届索尔维会议时他已经69岁,德高望重,是当然的前辈。
19世纪末,扬弃古典物理学的观念已提上日程。
因而消除牛顿力学和麦克斯韦电磁场这两大理论之间的不一致,就成为二十世纪物理学发展的前提。
普朗克此时提出了一个大胆的假说,在科学界一鸣惊人。
这一假说认为辐射能(即光波能)不是一种连续的流,而是由小微粒组成的。
他把这种小微粒叫做量子。
普朗克的假说与经典的光学学说和电磁学说相对立,使物理学发生了一场革命,使人们对物质性和放射性有了更为深刻的了解。
反叛的哥本哈根学派该届索尔维会议上有三大阵营。
以玻尔为中心的便是哥本哈根学派,年轻、激情是他们的标签,因而被称为反叛的一群。
其中有尼尔斯·玻尔、马克斯·玻恩、海森堡、沃尔夫冈·泡利等。
尼尔斯·玻尔(Niels Bohr,1885-1962,中排右一),在量子力学的发展上提出了具有突破性的“对应理论”,成为量子力学的奠基人之一,哥本哈根学派的掌门人。
马克斯·玻恩(MaxBorn,1882-1970,中排右二)是德国理论物理学家,量子力学的奠基人之一。
从1923年开始,他致力于发展量子理论。
凝聚态物理相关知识内容凝聚态物理学是研究凝聚态物质的物理性质与微观结构以及它们之间的关系,即通过研究构成凝聚态物质的电子、离子、原子及分子的运动形态和规律,从而认识其物理性质的学科。
下面给大家带来一些关于凝聚态物理相关知识内容,希望对大家有所帮助。
一.凝聚态物理凝聚态物理学是当今物理学最大也是最重要的分支学科之一。
其研究层次,从宏观、介观到微观,进一步从微观层次统一认识各种凝聚态物理现象;物质维数从三维到低维和分数维;结构从周期到非周期和准周期,完整到不完整和近完整;外界环境从常规条件到极端条件和多种极端条件交叉作用,等等,形成了比固体物理学更深刻更普遍的理论体系。
经过半个世纪多的发展,凝聚态物理学已成为物理学中最重要、最丰富和最活跃的学科,在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起关键性作用,为发展新材料、新器件和新工艺提供了科学基础。
前沿研究热点层出不穷,新兴交叉分支学科不断出现是凝聚态物理学的一个重要特点;与生产实践密切联系是它的另一重要特点,许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力。
二.起源发展凝聚态物理学起源于19世纪固体物理学和低温物理学的发展。
19世纪,人们对晶体的认识逐渐深入。
1840年法国物理学家A·布拉维导出了三维晶体的所有14种排列方式,即布拉维点阵。
1912年,德国物理学家冯·劳厄发现了X 射线在晶体上的衍射,开创了固体物理学的新时代,从此,人们可以通过X射线的衍射条纹研究晶体的微观结构。
19世纪,英国著名物理学家法拉第在低温下液化了大部分当时已知的气体。
1908年,荷兰物理学家H·昂内斯将最后一种难以液化的气体氦气液化,创造了人造低温的新纪录-269 °C(4K),并且发现了金属在低温下的超导现象。
超导具有广阔的应用前景,超导的理论和实验研究在20世纪获得了长足进展,临界转变温度最高纪录不断刷新,超导研究已经成为凝聚态物理学中最热门的领域之一。
HISTORY 科学史菲利普•安德森:凝聚态物理的一代宗师编译 王晓涛这位理论物理学家因在无序性和磁性材料方面的工作获得了诺贝尔奖,但这远不足以表彰他在凝聚态物理学界无与伦比的贡献。
菲利普•沃伦•安德森(Philip Warren Anderson ,1923—2020)是20世纪下半叶最富有成就也是最重要的物理学家之一。
在贝尔实验室、剑桥大学和普林斯顿大学的五十多年的职业生涯中,他凭借超凡的品味、深刻的洞察力和非凡的创造力,一直在努力探索大自然的规律。
安德森将多体物理学融入了固体物理的理论中,从而推动了如今的凝聚态物理学的诞生,他在这方面的贡献远超他人。
他在1984年所著的《凝聚态物理学的基本概念》(BasicNotions of Condensed Matter Physics )中指出,要想对含有1023个粒子的系统进行描述,应当构建并使用模型哈密顿量,而不是求解多体系统的薛定谔方程。
在过去的几十年里,这一观点已经成为各种凝聚态物理教材中的主流思想。
另一位诺贝尔奖得主皮埃尔-吉勒•德热纳(Pierre-Gillesde Gennes )非常钦佩安德森,曾经形容他为“固体物理学界的教皇”。
这个绰号颇为贴切,因为安德森确实就像是建立起了这个领域的一系列信条。
忠实的追随者们时刻关注着他的每一句话,许多人还会努力揣测并尝试证明他的观点。
但在安德森自己看来,他是一个不受规矩束缚的反叛者,总是对自然规律背后的原因有着永远无法满足的好奇心。
本文将具体介绍安德森的生活和科研工作,阐述他给物理世界带来的巨大影响。
来自中西部的少年安德森双亲的祖先分别是来自苏格兰和爱尔兰的移民,他们都参加过美国独立战争,子孙后代在印第安纳州西部肥沃的土地上定居,经营农庄。
并不是所有人都喜欢干农活,比如安德森的外公和舅舅,他们在克劳福德斯维尔的沃巴什学院从事拉丁文、数学和英文的长期教学工作。
安德森的父亲和叔叔都是植物病理学家。
安德森在厄巴纳-香槟长大,因为他的父亲是伊利诺伊大学香槟分校的教授。
凝聚态物理学的研究与进展凝聚态物理学是研究物质宏观状态的物理学科,主要研究固体、液体和气体等凝聚态物质的性质及其相互作用。
这一领域的研究对于材料科学、能源技术、半导体技术等产业有着重要的意义。
本文旨在介绍凝聚态物理学的研究内容与进展。
一、凝聚态物理学的研究内容凝聚态物理学的研究内容非常广泛,主要包括以下方面:1. 凝聚态物质的结构和物理性质研究物质的微观结构对于理解材料的性质十分重要。
凝聚态物理学家通过实验和理论计算,研究物质的微观结构与其宏观性质的关系,包括热力学性质、电学性质、磁学性质、光学性质等。
2. 凝聚态物质的相变凝聚态物质的相变是指物质由一种相转变为另一种相(如固态、液态、气态等)的过程。
相变不仅是物理学研究的重要课题,对于科学与工程技术的应用也具有极高的价值。
例如,相变储能技术、相变材料的应用等。
3. 凝聚态物质中电子与强子的相互作用凝聚态物质中电子与强子(如质子、中子等)之间的相互作用对固体材料的性质具有重要影响。
如超导材料、磁性材料等的应用。
4. 凝聚态物质中的新现象与新物理凝聚态物理学是物理学中最富有生气和活力的学科之一。
新出现和发展的一些新物理现象,如高温超导、磁性固态材料、凝胶形成,很多还不为人们所完全把握和所理解,但科学家们通过实验与理论的研究,越来越深入地挖掘和发现它们的新性质和特点。
二、凝聚态物理学的研究进展凝聚态物理学自问世以来,一直是物理学研究的重要领域之一。
其研究对于现代科技的发展有着重要的贡献。
近年来,凝聚态物理学的研究不断取得新的成果和进展:1. 量子物理学的兴起量子物理学是凝聚态物理学中最快发展的分支之一。
通过对凝聚态物质的量子性质进行实验和理论计算,物理学家们揭示了许多经典物理理论无法解释的新现象,例如量子液体、量子震荡等。
2. 对凝聚态物质的原子级理解通过加速器与显微术等技术的不断发展,科学家们逐渐能够对凝聚态物质的原子级结构进行观测与实测,为研究凝聚态物质的微观原理提供了有力支持。