化工原理实验时间
- 格式:doc
- 大小:45.50 KB
- 文档页数:2
篇一:化工原理实验报告吸收实验姓名专业月实验内容吸收实验指导教师一、实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数kya.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。
但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。
(一)、空塔气速与填料层压降关系气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。
若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。
当液体喷淋量l0=0时,可知为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z?p值较小时为恒持z折线位置越向左移动,图中l2>l1。
每条折线分为三个区段,液区,?p?p?p~uo关系曲线斜率与干塔的相同。
值为中间时叫截液区,~uo曲zzz?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。
姓名专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。
在液泛区塔已z无法操作。
塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。
图2-2-7-1 填料塔层的?p~uo关系图 z图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。
若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。
其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2]h——填料层高度[m]?ym——气相对数平均推动力kya——气相体积吸收系数[kmolnh3/m3·h]被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h]l——吸收剂(水)的流量[kmolh20/h]y1——塔底气相浓度[kmolnh3/kmol空气]y2——塔顶气相浓度[kmolnh3/kmol空气]x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20]由式(1)和式(2)联解得:kya?v(y1?y2)(3) ??h??ym为求得kya必须先求出y1、y2和?ym之值。
实验装置由循环泵、转子流量计、有机玻璃管路、循环水池和实验面板组成。
管路上装有进出口阀门和测压玻璃管。
管路中安装了23个测压点。
在φ40管的突扩和突缩处设置有两个排气点,在φ40管下设置有放净口。
四、实验方法与现象观察:循环水槽内无杂物,尽量灌满水。
全开回路阀,全关进口阀和出口阀,启动泵;全开出口阀,全开进口阀,逐渐关小回路阀到全关,使管内水流量达到最大。
此时可反复调节出口阀,观察系统内空气是否排出。
若最后粗管内剩余气泡可采用放气孔排出。
排净气体后全开出口阀。
此阶段为排气阶段;逐渐开大回路阀,调节水流量。
当调到合适水流量时,可进行现象观察;建议,本实验可进行大流量和小流量两种情况演示。
大流量以第1实验测压管内液面接近最大,小流量则以最后1个实验测压管内液面接近最低。
除注意由于位能,动能(扩大或缩小)、动能转化为静压能、摩擦损失引起的静压示值变化外,还可注意由于引射,局部速度分布异常而引起的示值异常,了解测压点的布置,以及相对压力示值的可能影响。
同一流速下现象观察分析:1、由上向下流动现象(1-2点);2、水平流动现象(3-4-5-6点);3、突然扩大旋涡区压力分布情况(6-7-8-9-10-11-12-13-15点);4、毕托管工作原理(13-14点);5、突然缩小的缩脉流区压力分布情况(16-17-18-19-20点);6、由下向上流动情况(22-23点);7、直管阻力测定原理(1-2点,4-5-6点,18-19点,22-23点等);8、局部阻力测定原理(2-4点和21-22点的弯头测定原理,6-12点突扩和16-19点的突缩测定原理)。
阀门调节现象观察:1、分别关小进、出口阀观察各点静压强的变化情况;2、关小进口阀并开大出口阀(或关小出口阀并开大进口阀)维持流量与阀门改变前后相同,观察各点静压强的变化情况;转子流量计现象观察:结构、原理、安装注意操作时的补充说明1、排气操作:当溢流管有溢流时,关出口阀,完全开大进口阀(让水从各测压点流出);然后开出口阀排主管气(可以关小,开大,反复进行,直到排完为止),然后调节出口阀到合适位置;再关小进口阀到合适位置。
北京化工大学化工原理实验报告实验名称:流化床干燥班级:化实1101学号:2011011499姓名:张旸同组人:黄凤磊、陈文汉、杨波实验日期:2014.04.24一、 报告摘要摘要:本实验利用流化床干燥器对物料干燥速率曲线进行测定。
本实验装置为间歇操作的沸腾床干燥器,可测定达到一定干燥要求所需的时间。
以此来测定干燥速率。
利用物料的干湿重量变化计算物料的各种含水量。
二、 实验目的及任务1.了解流化床干燥器的基本流程及操作方法。
2.掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
3.测定物料含水量及床层温度随时间变化的关系曲线。
4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量0X 及恒速阶段的传质系数H k 及降速阶段的比例系数X K 。
三、 实验原理1.流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。
当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中通过,压降与流速成正比,斜率约为1(在双对数坐标中)。
当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。
当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。
当气速增大到某一值后(D点),床层压降将减少,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。
D点处的流速即被称为带走速度。
在流化状态下降低气速,压降与气速的关系曲线将沿图中的DC线返回C点。
若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。
C点处的流速被称为起始流化速度。
在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。
据此,可以通过测定床层压降来判断床层流化的优劣。
2.干燥特性曲线将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得物料含水量与时间的关系曲线及物料温度与时间的关系曲线。
化工原理实验报告—流体流动阻力测定实验班级: 031112班小组:第六组指导老师:刘慧仙组长:陈名组员:魏建武曹然实验时间: 2013年10月18日目录一、实验内容 (1)二、实验目的 (1)三、实验基本原理 (1)1.直管阻力 (1)2.局部阻力 (3)四、实验设计 (3)1.实验方案 (3)2.测试点及测试方法 (3)原始数据 (3)测试点 (4)测试方法 (4)3.控制点及调节方法 (4)4.实验装置和流程设计 (4)主要设备和部件 (4)实验装置流程图 (4)五、实验操作要点 (5)六、实验数据处理和结果讨论分析 (6)实验数据处理 (6)1.实验数据记录表 (6)2.流体直管阻力测定实验数据整理表 (7)3.流体局部阻力测定实验数据整理表 (8)4.计算示例。
(9)结果讨论分析 (10)七、思考题 (11)实验一流体流动阻力的测定实验一、实验内容1.测定流体在特定材质和的直管中流动时的阻力摩擦系数,并确定和之间的关系。
2.测定流体通过阀门时的局部阻力系数。
二、实验目的1.了解测定流体流动阻力摩擦系数的工程定义,掌握测定流体阻力的实验方法。
2.测定流体流径直管的摩擦阻力和流经管件或局部阻力,确定直管阻力摩擦系数与雷诺数之间的关系。
3.熟悉压差计和流量计的使用方法。
4.认识组成管路系统的各部件、阀门并了解其作用。
三、实验基本原理流体管路是由直管、管件(如三通、肘管、弯头)、阀门等部件组成。
流体在管路中流动时,由于黏性剪应力和涡流的作用,不可避免地要消耗一定的机械能,流体在直管中流动的机械能损失为直管阻力;而流体通过阀门、管件等部件时,因流动方向或流动截面的突然改变导致的机械能损失称为局部阻力。
在化工过程设计中,流体流动阻力的测定或计算,对于确定流体输送所需推动力的大小,例如泵的功率、液位或压差,选择适当的输送条件都有不可或缺的作用。
1.直管阻力流体在水平的均匀管道中稳定流动时,由截面1流动至截面2的阻力损失表现为压力的降低,即①由于流体分子在流动过程中的运动机理十分复杂,影响阻力损失的因素众多,目前尚不能完全用理论方法来解决流体阻力的计算问题,必须通过实验研究掌握其规律。
化工原理实验精馏实验报告班级:化工1104姓名:吕游学号: 2011011105同组人员:刘晓林,许馨予,张少林实验日期:2011.4.18一、实验目的1、了解筛板式精馏塔的结构,学习数字显示仪表的原理及使用。
2、学习筛板式精馏塔的操作方法,观察汽液两相接触状况的变化。
3、测定在全回流时精馏塔总板效率,分析汽液接触状况对总板效率的影响。
4*、测定在全回流时精馏塔的单板效率。
分析汽液接触状况对单板效率的影响。
5*、测定部分回流时的总板效率,分析气液接触状况对总板效率的影响。
6*、测定精馏塔在全回流下塔体浓度(温度)分布。
带*项为教学大纲要求之外项目。
二、实验原理:在精馏过程中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液在塔板上多次部分汽化部分冷凝,进行传热与传质,使混合液达到一定程度的分离。
回流是精馏操作的必要条件,塔顶的回流量与采出量之比称为回流比。
回流比是精馏操作的主要参数,它的大小直接影响精馏操作的分离效果和能耗。
若塔在最小回流比下操作,要完成分离任务,则需要无穷多块塔板,在工业上是不可行的。
若在全回流下操作,既无任何产品的采出,也无任何原料的加入,塔顶的冷凝液全部返回到塔中,这在生产中无任何意义。
但是,由于此时所需理论板数最少,易于达到稳定,故常在科学研究及工业装置的开停车及排除故障时采用。
通常回流比取最小回流比的1.2~2.0倍。
1.塔板效率板式精馏塔中汽液两相在各塔板上相互接触而发生传质作用,由于接触时间短暂和不够充分,并且汽相上升也有一些雾沫夹带,因此其传质效率总不会达到理论板效果。
通常用塔板效率来表示塔板上传质的完善程度。
塔板效率是体现塔板性能及操作状况的主要参数。
影响塔板效率的因素很多,大致归纳为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)塔板结构以及操作条件等,由于影响塔板效率的因素相当复杂,目前仍以实验的方法测定。
a. 总板效率(或全塔的效率):反映全塔中各层塔板的平均分离效果,常用于板式塔的设计。
化工原理实验精馏实验报告实验日期:2014.5.5一、实验目的1、了解筛板式精馏塔的结构,学习数字显示仪表的原理及使用。
2、学习筛板式精馏塔的操作方法,观察汽液两相接触状况的变化。
3、测定在全回流时精馏塔总板效率,分析汽液接触状况对总板效率的影响。
4*、测定在全回流时精馏塔的单板效率。
分析汽液接触状况对单板效率的影响。
5*、测定部分回流时的总板效率,分析气液接触状况对总板效率的影响。
6*、测定精馏塔在全回流下塔体浓度(温度)分布。
带*项为教学大纲要求之外项目。
二、实验原理:在精馏过程中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液在塔板上多次部分汽化部分冷凝,进行传热与传质,使混合液达到一定程度的分离。
回流是精馏操作的必要条件,塔顶的回流量与采出量之比称为回流比。
回流比是精馏操作的主要参数,它的大小直接影响精馏操作的分离效果和能耗。
若塔在最小回流比下操作,要完成分离任务,则需要无穷多块塔板,在工业上是不可行的。
若在全回流下操作,既无任何产品的采出,也无任何原料的加入,塔顶的冷凝液全部返回到塔中,这在生产中无任何意义。
但是,由于此时所需理论板数最少,易于达到稳定,故常在科学研究及工业装置的开停车及排除故障时采用。
通常回流比取最小回流比的1.2~2.0倍。
1.塔板效率板式精馏塔中汽液两相在各塔板上相互接触而发生传质作用,由于接触时间短暂和不够充分,并且汽相上升也有一些雾沫夹带,因此其传质效率总不会达到理论板效果。
通常用塔板效率来表示塔板上传质的完善程度。
塔板效率是体现塔板性能及操作状况的主要参数。
影响塔板效率的因素很多,大致归纳为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)塔板结构以及操作条件等,由于影响塔板效率的因素相当复杂,目前仍以实验的方法测定。
a. 总板效率(或全塔的效率):反映全塔中各层塔板的平均分离效果,常用于板式塔的设计。
(2-44)式中: ET ——总板效率 NT ——理论板数 NP ——实际板数全回流操作时理论板数可通过逐板计算或利用汽液平衡数据通过图解法求出。
《化工原理(上)》教学大纲一、课程基本信息二、课程教育目标1.掌握流体流动及传热等化工过程的基本原理和典型设备的构造及性能;2. 通过本课程知识的系统学习,培养学生的工程观点和解决工程实际问题的能力,包括对化工单元操作进行工程计算的能力、正确运用工程图表的能力以及运用技术经济观点分析、解决工程实际问题的能力;3. 通过学习一些处理工程的基本方法,如因次分析法、数学模型法、过程分解法、试差计算法和图解计算法等,使学生具备在不同场合选用不同方法处理工程问题的能力;4. 通过对基本原理、工程计算和典型设备的讲授,培养学生从过程的基本原理出发,观察、分析、综合、归纳众多影响因素,从中找出问题的主要方面,运用所学知识解决工程问题的科学思维能力和创新思维能力;4、通过本课程学习,培养学生的自学能力和独立工作能力,能根据所处理问题的需要,寻找、阅读有关手册、参考书、文献资料并理解其内容。
三、理论教学内容与要求1. 绪论与流体流动概述(2学时)化工过程与单元操作;本课程性质和任务流体流动及输送问题;流体的连续性和压缩性;流体的物性2.流体静力学(2学时)压强的定义、性质、单位及表示方法;静力学方程及应用;液柱压差计3. 流体流动的守恒原理(5学时)流量与流速;定态流动与非定态流动;流体流动的连续性方程;流体流动的机械能衡算;伯努利方程及应用4.流体流动的内部结构(3学时)牛顿粘性定律;流体的粘度;牛顿型流体与非牛顿型流体;雷诺实验;两种流动型态及判据;层流与湍流的特征;管流剪应力分布和速度分布5.流体流动的阻力计算(3学时)直管内流动阻力与量纲分析;摩擦阻力系数;局部阻力损失;当量的概念(当量直径,当量长度);边界层概念;流动机械能损失计算6. 管路计算与流量测量(4学时)简单管路计算:复杂管路的特点及计算要点;毕托管、孔板流量计、文丘里流量计及转子流量计的测量原理和计算方法7.离心泵(5学时)流体输送机械的作用与分类;离心泵工作原理与主要部件;气缚现象;离心泵性能参数与特性曲线;管路特性方程;工作点的概念和流量调节;安装高度与气蚀现象;离心泵的类型、选用、安装与操作8.其它类型泵与气体输送机械(3学时)往复泵工作原理与结构、性能参数与流量调节、正位移泵特性;旋涡泵、计量泵与旋转泵;离心式通风机工作原理、性能参数与选型计算;罗茨鼓风机;离心式压缩机;真空泵与往复压缩机9.传热概述与热传导(3学时)传热过程在化工生产中的应用;传热的基本方式;工业换热过程;传热速率;傅立叶定律;导热系数及影响因素;一维定态热传导计算(单层与多层平壁、单层与多层圆筒壁)10. 对流传热(4学时)对流传热过程;牛顿冷却定律;对流传热系数及其影响因素;准数方程与准数的物理意义;管内强制对流传热;管外强制对流传热;自然对流传热;蒸汽冷凝传热;液体沸腾传热11. 热辐射(1学时)物体的辐射能力;斯蒂芬-波尔兹曼定律;克希霍夫定律;两灰体间的辐射传热12. 传热过程的计算(5学时)间壁传热过程;热量衡算式;总传热系数计算与分析;串联热阻与控制热阻;污垢热阻;总传热速率方程;平均温度差计算与分析;间壁换热过程计算13. 换热器(2学时)各类工业换热器结构及应用;列管式换热器的参数与流程的选择原则;列管式换热器的设计与选型计算;工业传热过程的强化14. 讨论课(4学时)流体流动计算;传热计算四.实验教学内容与要求1.绪论(2学时)介绍化工原理实验课的研究对象、一般研究方法、特点及数据处理方法2.柏努利演示实验(2学时)实测静止和流动的流体中各项压头及其相互转换;验证流体静力学原理和柏努利方程;实测流体流动压头变化及相应压头损失,确定两者相互之间关系3.雷诺演示实验(2学时)观测雷诺数与流体流动类型关系;观察层流中流体质点的速度分布4.流体阻力实验(4学时)掌握流体流动阻力测定方法,测定直管摩擦阻力系数及局部阻力系数;验证层流区摩擦阻力系数与雷诺数和管子相对粗糙度关系5.离心泵性能实验(4学时)测定离心泵性能曲线并确定最佳工作范围;测定孔板流量计的孔流系数6.强制对流传热膜系数的测定实验(4学时)通过实验确定传热膜系数准数关联式中的系数和指数;分析影响传热膜系数的因素;了解强化传热的途径五.作业每周布置和收交作业,作业每周4~7题,总计60道题左右。
2012年度化工原理实验现场操作分组表
组别学号
班级
人数分组情况
化工工艺0901 26 C1(1-10)C2(11-20)
C3(21-)化工工艺0902 25 D1(1-10)D2(11-20)
实验指导教师流体力学实验大厅:王俊文,王韵芳
传热实验大厅:张忠林
传质实验大厅:卫国强,邱丽,武爱莲
实验室教师张林香,温亚龙,李双志,王忠德
注意事项:
1、每班以表中分组为准,不得随意串组,仔细查看实验现场操作分组及排课表,按照实验安排提前
做好实验预习报告。
2、实验操作过程中,发现设备、仪表异常或损坏等情况,应及时告知实验指导教师。
实验室教师按
《实验室管理和仪器损坏处理条例》,视其责任和情节进行相应处理,并及时记录和处理实验现场。
3、实验过程中,由于工程实验的特殊性要求每个小组的同学相互配合,集中精力认真完成实验操作。
严禁谈笑打闹和乱串。
4、实验完成后必须清理实验操作现场,做好卫生将实验区地板拖干净,待指导教师同意后方可离开。
5、在实验全部完成后一周内,完成实验报告内容,以班为单位按照实验项目分别递交实验指导教师。
****做实验时一定要带考试证或身份证件,没有带者一律不准做实验;发现替代他人做实验者,双方均按替考作弊处分,绝不姑息!!
化工基础实验中心2012-4-10
2012年度化工原理实验现场操作排课表
时间总传
热
对流阻力过滤
离心
泵
精馏干燥吸收
第十四周周一
下午
5~6
节课
C1 C2 C3 D1 D2
下午
7~8
节课
C1 C2 C3 D1 D2 周二
下午
5~6
节课
D2 C1 C2 C3 D1 下午D1 D2 C1 C2 C3
7~8节课
周五下午
5~6
节课
C3 D1 D2 C1 C2
下午
7~8
节课
C2 C3 D1 D2 C1
时间总传
热
对流阻力过滤
离心
泵
精馏干燥吸收
十五周周三
下午
5~6
节课
D2 周五
上午
1~2
节课
C1 C2 C3 D1 D2
上午
3~4
节课
C1 C2 C3 D1。