云南省玉溪市名校2018-2019学年七下数学《8份合集》期末模拟试卷
- 格式:doc
- 大小:1.34 MB
- 文档页数:61
云南省玉溪市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题:(本大题共12小题,每小题3分,共36分.) (共12题;共36分)1. (3分) (2019七下·港南期中) 下列是二元一次方程的是()A . 3x-6=xB . 3x=2yC . x- =0D . 2x-3y=xy2. (3分) (2018九上·洛阳期中) 下面四个手机应用图标中是轴对称图形的是()A .B .C .D .3. (3分)下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A .B .C .D .4. (3分)马小虎同学做了一道因式分解的习题,做完之后,不小心让墨水把等式:a4-■=(a2+4)(a+2)(a-▲)中的两个数字盖住了,那么式子中的■、▲处对应的两个数字分别是().A . 64,8B . 24,3C . 16,2D . 8,15. (3分)如图,在新型俄罗斯方块游戏中(出现的图案可进行顺时针、逆时针旋转;向左、向右平移),已拼好的图案如图3所示,现又出现-一个形如“ ”的方块正向下运动,你必须进行以下哪项操作,才能拼成一个完整的图形().A . 顺时针旋转90°,向右平移B . 逆时针旋转90°,向右平移C . 顺时针旋转90°,向左平移D . 逆时针旋转90°,向左平移6. (3分)(2018·滨州) 下列运算:①a2•a3=a6 ,②(a3)2=a6 ,③a5÷a5=a,④(ab)3=a3b3 ,其中结果正确的个数为()A . 1B . 2C . 3D . 47. (3分)(2018·百色) 某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是()A . 5和5.5B . 5和5C . 5和D . 和5.58. (3分)如果a-3b=-3,那么代数式5-a+3b的值是()A . 0B . 2C . 5D . 89. (3分)如图,下列判断正确的是()A . 若∠1=∠2,则AD∥BCB . 若∠1=∠2,则AB∥CDC . 若∠A=∠3,则AD∥BCD . 若∠A+∠ADC=180°,则AD∥BC10. (3分)如图所示,下列推理及所注理由正确的是()A . 因为∠1=∠3,所以AB∥CD(两直线平行,内错角相等)B . 因为AB∥CD,所以∠2=∠4(两直线平行,内错角相等)C . 因为AD∥BC,所以∠3=∠4(两直线平行,内错角相等)D . 因为∠2=∠4,所以AD∥BC(内错角相等,两直线平行)11. (3分) (2015七上·阿拉善左旗期末) 下列各图经过折叠不能围成一个正方体的是()A .B .C .D .12. (3分)(2015·宁波模拟) 如图,四边形ABCD是平行四边形,顶点A、B的坐标分别是A(1,0),B(0,﹣2),顶点C、D在双曲线上,边AD与y轴相交于点E,=10,则k的值是()A . -16B . -9C . -8D . -12二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)13. (3分) (2019八下·宁都期中) 计算(2 +3 )(2 ﹣3 )的结果等于________.14. (3分) (2017七下·宁波期中) 已知x2+y2+6x+4y=-13,则yx的值为________15. (3分) (2019九下·中山月考) 如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC =60°,则∠BDE=________。
七年级下学期期末数学试卷一、选择题(每题2分)1.下列方程的解为x=1的是()A. =10 B.2﹣x=2x﹣1 C. +1=0 D.x2=22.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)3.下列长度的三条线段能组成三角形的是()A.1、2、3 B.3、3、7 C.20、15、8 D.5、15、84.如图,天平右盘中的每个砝码的质量都是1克,则物体A的质量m克的取值范围表示在数轴上为()A. B. C.D.5.为了了解某县七年级2018名学生的视力情况,从中抽查了100名学生的视力情况,就这个问题来说,下面说法正确的是()A.2018名学生是总体B.每个学生是个体C.100名学生是所抽取的一个样本D.样本容量是1006.已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为()A.3 B.5 C.6 D.107.若点P(a,b)在第四象限,则点Q(﹣a,b﹣1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.49.解二元一次方程组,最恰当的变形是()A.由①得x=B.由②得y=2x﹣5 C.由①得x=D.由②得x=10.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.B.﹣1+C.﹣1D.1二、填空题(每题2分)11.已知是方程2x﹣ay=3的一个解,那么a的值是.12.如图,将三角尺与直尺贴在一起,使三角尺的直角顶点C(∠ACB=90°)在直尺的一边上,若∠1=60°,则∠2的度数等于.13.要使在实数范围内有意义,x应满足的条件是.14.不等式4x﹣6≥7x﹣12的非负整数解为.15.如图,把图中的圆A经过平移得到圆O(如图),如果左图⊙A上一点P的坐标为(m,n),那么平移后在右图中的对应点P′的坐标为.16.如图,在Rt△ABC中,各边的长度如图所示,∠C=90°,AD平分∠CAB交BC于点D,则点D到AB的距离是.17.如图,在△ABC中,∠ACB=120°,按顺时针方向旋转,使得点E在AC上,得到新的三角形记为△DCE.则①旋转中心为点;②旋转角度为.18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是.三、解答题19.计算﹣+.20.已知n边形的内角和等于2018°,试求出n边形的边数.21.解不等式组并把它的解集用数轴表示出来.四、22.如图,三角形ABC在直角坐标系中,若把三角形ABC向左平移1个单位再向上平移2个单位,得到三角形A′B′C′(1)写出三角形ABC三个顶点的坐标;(2)请画出平移后的三角形,并写出三角形A′B′C′的顶点坐标.23.完成下面的证明如图,BE平分∠ABD,DE平分∠B DC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α().∵DE平分∠BDC(已知),∴∠BDC=2∠β()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°().∴AB∥CD().五、解答题24.去年4月,国民体质监测中心等机构开展了青少年形体测评,专家组随机抽查了某市若干名初中生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制成了如下两幅不完整的统计图,请你根据图中所给信息解答些列问题:(1)请将两幅图补充完整;(2)在这次形体测评中,一共抽查了名学生,如果全市有20万名初中生,那么全市初中生中,三姿良好的学生约有人.六、解答题25.如图,在Rt△ABC中,∠C=90°,∠A=33°,将△ABC沿AB方向向右平移得到△DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm.请求出CF的长度.七、解答题母亲节那天,某班很多同学给妈妈准备了鲜花和礼盒,根据图中的信息(1)求每束鲜花和一个礼盒的价格;(2)小强给妈妈买了三束鲜花和四个礼盒一共花了多少钱?参考答案一、选择题(每题2分)1.A2.C3D4.C5.D6.A7.A8.D9.B10.D二、填空题(每题2分)11. a=.12.30°.13.即x≥2.14. 0,1,2.15.(m+2,n﹣1)16. +2.17.4.18.(3,2),三、解答题19.计算﹣+.解:原式=﹣4﹣3+=﹣6.20.解方程组.解:,①﹣②得,2x=7,解得x=,将x=代入②得,﹣y=1,解得y=,所以,方程组的解是.21.解:,由①得,x≤2,由②得,x>,在数轴上表示为:,在数轴上表示为:<x≤2.四、22.解:(1)A(﹣2,﹣2),B(3,1),C(0,2);(2)如图所示:△A′B′C′即为所求.23.证明:BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).五、解答题24.解:(1)三姿良好所占的百分比为:1﹣20%﹣31%﹣37%=1﹣88%=12%,三姿良好的人数为:×12%=60人,补全统计图如图;(2)抽查的学生人数为:100÷20%=500人,三姿良好的学生约有:201800×12%=20180人.故答案为:500,20180.六、解答题25.解:(1)∵在Rt△ABC中,∠C=90°,∠A=33°,∴∠CBA=90°﹣33°=57°,由平移得,∠E=∠C BA=57°;(2)由平移得,AD=BE=CF,∵AE=9cm,DB=2cm,∴AD=BE=×(9﹣2)=3.5cm,∴CF=3.5cm.七、解答题26.解:(1)设买1束鲜花x元,买1个礼盒花y元,由题意得:,解得:,答:买1束鲜花33元,买1个礼盒花55元;(2)由题意得:3×33+4×55=313(元),答:小强给妈妈买了三束鲜花和四个礼盒一共花了313元.七年级下学期期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.14-等于A .4B .4-C .14D .14- 2.下列图形中1∠与2∠是内错角的是A .B .C .D .3.下列运算正确的是 A .(ab)2=a 2b 2B .a 2+a 4=a 6C .(a 2)3=a 5D .a 2•a 3=a 64.如果216x mx ++是完全平方式,则常数m 的值是A .8B .-8C .8±D .175.下列各式从左边到右边的变形是因式分解的是A .()22121x x x x ++=++ B .43222623x y x y x y =⋅C .()()2111x x x +-=- D .()22442x x x -+=-6.若方程组⎩⎨⎧-=++=+ay x ay x 13313的解满足2-=-y x ,则a 的值为A .1-B .1C .2-D . 不能确定7.下列命题:①三角形的一条中线将三角形分成面积相等的两部分;②平行于同一条直线的两条直线互相平行;③若a b =,则a b =;④对于任意x ,代数式2610x x -+的值总是正数.其中正确命题的个数是A .4个B .3个C .2个D .1个 8.下列四个不等式组中,解为13x -<<的不等式组有可能是 A .11ax bx >⎧⎨>⎩ B .22ax bx <⎧⎨<⎩ C .33ax bx >⎧⎨<⎩ D .44ax bx <⎧⎨>⎩二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相....应位置...上) 9.()201720160.254⨯-= ▲ .A 10.小明同学在百度搜索引擎中输入“中国梦,我的梦”,引擎搜索耗时0.20185秒,将这个数用科学记数法表11.十五边形的外角和等于 ▲ .12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=60°,则∠2的度数为 ▲ . 13.如图,47A B ∠=∠=,106C ∠=,则D ∠= ▲ °.14.“相等的角是对顶角”的逆命题是 ▲ 命题(填“真”或“假”).15.关于x 的代数式()()2231ax x x -+- 的展开式中不含x 2项,则a= ▲ .16.若2530x y --=,则432x y÷= ▲ .17.若关于x 的不等式20x m -<仅有两个正整数解,则m 的取值范围是 ▲ .18.△ABC 的两条高的长度分别为3和6,若第三条高也为整数,则第三条高的长度为 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)()20171()312π-+-+- (2)()()()b a b a b a 2232-+--20.(本题满分8分)分解因式:(1)22242x xy y -+ (2)()()2m m n n m -+-21.(本题满分8分)(1) 解方程组:123x y x y =+⎧⎨-=⎩(2)解不等式组:3561132x x x x -≤+⎧⎪⎨-<-⎪⎩,并将解集在数轴上表示出来.22.(本题满分8分)在正方形格中,每个小正方形的边长都为1个单位长度,△ABC 的三个顶点的位置如图所示,现将△ABC 平移后得△DEF ,使点A 的对应点为点D ,点B 的对应点为点E . (1)画出△DEF ;(2)连接AD 、BE ,则线段AD 与BE 的关系是 ▲ ; (3)求△DEF 的面积.(第12题)(第13题)① aabb②③23.(本题满分10分)若关于x 、y 的二元一次方程组⎩⎨⎧+=+-=-332523a y x a y x 的解x 是负数,y 为正数.(1)求a 的取值范围; (2)化简2223a a ++-.24.(本题满分10分)如图1,有若干张边长为a 的小正方形①、长为b 宽为a 的长方形②以及边长为b 的大正方形③的纸片.(1)已知小正方形①与大正方形③的面积之和为169,长方形②的周长为34,求长方形②的面积.(2)如果现有小正方形①1张,大正方形③2张,长方形②3张,请你将它们拼成一个大长方形 (在图2虚线框内画出图形),并运用面积之间的关系,将多项式2232a ab b ++分解因式.25.(本题满分10分)如图①,△ABC 中, BD 平分∠ABC ,且与△ABC 的外角∠ACE 的角平分线交于点D .(1)若75ABC ∠=,45ACB ∠=,求∠D 的度数;(2)若把∠A 截去,得到四边形MNCB ,如图②,猜想∠D 、∠M 、∠N 的关系,并说明理由.①②26.(本题满分10分)按如下程序进行计算:规定:程序运行到“结果是否 55”为一次运算.(1)若x=8,则输出结果是▲;(2)若程序一次运算就输出结果,求x的最小值;(3)若程序运算三次才停止,则可输入的整数x是哪些?27.(12分)在“五•一”期间,某公司组织员工到扬州瘦西湖旅游,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.(1)请问甲、乙两种客车每辆分别能载客多少人?(2)若该公司有303名员工,旅行社承诺每辆车安排一名导游,导游也需一个座位.①现打算同时租甲、乙两种客车共8辆,请帮助旅行社设计租车方案.②旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游,为保证所租的每辆车均有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?D28.(本题满分12分)如图,△ABC 中,ABC ACB ∠=∠,点D 在BC 所在的直线上,点E 在射线AC 上,且ADE AED ∠=∠,连接DE .(1)如图①,若30B C ∠=∠=,70BAD ∠=,求CDE ∠的度数; (2)如图②,若70ABC ACB ∠=∠=,15CDE ∠=,求BAD ∠的度数;(3)当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究BAD ∠与CDE ∠的数量关系,并说明理由.参考答案一、选择题(每题3分)⑴.C ⑵. A ⑶.A ⑷.C ⑸.D ⑹.A ⑺.B ⑻.B 二、填空题(每题3分)⑼.4- ⑽.-31.7510⨯ ⑾.360 ⑿.30 ⒀.12 ⒁.真 ⒂.23⒃.8 ⒄.46m <≤ ⒅.345或或 19、解:(1)解:原式=131π+--……………… 2分=3π- ……………………4分(2)原式=ab b b a b ab a b a b ab a 613496)4(96222222222-=+-+-=--+- 4分图②备用图20、(1)原式=()22x y -……………… 4分(2)原式=)1)(1)(()1)((2-+-=--m m n m m n m …………… 4分21.(1)方程组的解为⎩⎨⎧==12y x …………… 4分(2) 不等式组的解集为 2114≤<x ,数轴略 ……………4分 22、解:(1)………………………… 3分(2)平行且相等……………… 5分 (3)3.5………………8分23、(1)解方程组的:⎩⎨⎧+=-=21a y a x 00><y x , ,⎩⎨⎧>+<-∴0201a a , 12<<-∴a …………6分 (2)12<<-a ,原式=()72322=-++a a …………10分 24、(1)由题意得:169,1722=+=+b a b a()ab b a b a 2222++=+ ab 2169289+=∴,60=∴ab ,∴长方形②的面积为60. ………… 5分 (2)如图:…………9分()()b a b a b ab a ++=++∴22322 …………10分25、(1)30D ∠=…………………… 4分(2) ()11802D M N ∠=∠+∠-或写成()1902D M N ∠=∠+∠- 提示:延长BM 、CN 交于点A ,则180A BMN CNM ∠=∠+∠-o…………………10分 26、(1)64 ……………………………………………… 3分(2) 3255,19,19x x x -≥≥∴= ……………………… 6分(3)由9855272655x x ⎧-<⎪⎨-≥⎪⎩,得3≤x<7,∴整数x=3,4,5,6……………………………………10分27. (1)设甲种客车每辆能载客x 人,乙两种客车每辆能载客x 人,根据题意得⎩⎨⎧=+=+165318032y x y x ,解之得:⎩⎨⎧==3045y x答:甲种客车每辆能载客45人,乙两种客车每辆能载客30人. ………………4分 (2)设租甲种客车a 辆,则租乙种客车()a -8辆,依题意得()830383045+≥-+a a ,解得15114≥a ∵打算同时租甲、乙两种客车,∴7,6,5=a 有三种租车方案:①租甲种客车5辆,则租乙种客车3辆. ②租甲种客车6辆,则租乙种客车2辆;③租甲种客车7辆,则租乙种客车1辆.…………8分(3)设同时租65座、45座和30座的大小三种客车各m 辆,n 辆,(7﹣m ﹣n )辆, 根据题意得出:65m+45n+30(7﹣m ﹣n )=303+7, 整理得出:7m+3n=20,故符合题意的有:m=2,n=2,7﹣m ﹣n=3,租车方案为:租65座的客车2辆,45座的客车2辆,30座的3辆.…………12分 28、解:(1)35CDE ∠=…………………………………… 3分 (2)30BAD ∠=………………………………………………… 6分 (3)设ABC ACB y ∠=∠=,ADE AED x ∠=∠=,CDE α∠=,BAD β∠=①如图1,当点D 在点B 的左侧时,ADC x α∠=-∴()()12y x y x ααβ⎧=+⎪⎨=-+⎪⎩,()()12-得,20αβ-=,∴2αβ=……………… 8分②如图2,当点D 在线段BC 上时,ADC y α∠=+ ∴()()12y x y x ααβ⎧=+⎪⎨+=+⎪⎩ ,()()21-得,αβα=-,∴2αβ=……………… 10分③如图3,当点D 在点C 右侧时,ADC y α∠=-∴()()18011802y x x y αβα⎧-++=⎪⎨++=⎪⎩,()()21-得,20αβ-=,∴2αβ= ……………… 12分图2七年级下学期期末数学试卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下面4个图案,其中不是轴对称图形的是()A. B. C. D.2.下列运算正确的是()A.a3+a2=2a5B.2a(1-a)=2a-2a2C.(-ab2)3=a3b6D.(a+b)2=a2+b23.不等式-3x+2>-4的解集在数轴上表示正确的是()A. B.C. D.4.为了了解某市初一年级20180名学生的视力情况,抽查了2018名学生的视力进行统计分析.下面四种说法正确的是()21·cn·jy·comA.20180名学生是总体B.每名学生是总体的一个个体C.样本容量是20180D.2018名学生的视力是总体的一个样本5.化简:﹣=()A. 0B. 1C. xD.6.下列命题中,正确的是( )A. 三角形的一个外角大于任何一个内角B. 三角形的一条中线将三角形分成两个面积相等的三角形C. 两边和其中一边的对角分别相等的两个三角形全等D. 三角形的三条高都在三角形内部7.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A. CB=CDB. ∠BAC=∠DACC. ∠BCA=∠DCAD. ∠B=∠D=90°8.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°9.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°21教育10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A. B. C. D.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.21·世纪*教育11.分解因式:a2b-b3= ____ __ .12.若一个正n边形的每个内角为156°,则这个正n边形的边数是13.如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.则△AEG的周长为 ______ .14.在图中涂黑一个小正方形,使得图中黑色的正方形成为轴对称图形,这样的小正方形可以有 ______ 个21*cnjy*com15.如果二次三项式x2-mx+9是一个完全平方式,则实数m的值是 ______ .16.关于x的分式方程= -2解为正数,则m的取值范围是 ______ .17.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C 三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是18.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a 1,第2个等边三角形的边长记为a 2,以此类推.若OA 1=1,则a 2018= 【:21cnj*y.co*m 】三、解答题:本大题共8小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤. 19.计算(本题共7分(1)(3分)(-2xy2)2÷xy (2)(4分)(x+2)2+2(x+2)(x-4)-(x+3)(x-3)【出处:21教育名师】20. (7分)先化简,再求值:(a+)÷(1+).其中a 是不等式组⎩⎨⎧<-≤-81302a a 的整数解.21.(7分)如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (-2,-1).(1)如图中作出△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)写出点A 1,B 1,C 1的坐标(直接写答案).A 1 ______ B 1 ______ C 1 ______ ; (3)求△ABC 的面积.22. (7分) 在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对七年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:21cnjy(1)本次抽样调查的样本容量是多少? (2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市20180名七年级学生中日人均阅读时间在0.5~1.5小时的多少人.【:21·世纪·教育·】23. (6分)如图,△ABC中,∠A=40°∠B=76°,CE平分∠ACB,CD⊥AB 于点D,DF⊥CE于点F,求∠CDF的度数.【24. (7分)如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.25. (10分)东营市某学校2018年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2018元,购买乙种足球共花费2018元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.2·1·c·n·j·y(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2018元,那么这所学校最多可购买多少个乙种足球?2-1-c-n-j-y26. (11分)在△ABC中,∠ACB=2∠B,如图①,当∠C=900,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.21世纪教育(1)如图②,当∠C≠900,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:21教育名师原创作品(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.21*cnjy*com参考答案一、1.D 2.B 3.D 4.D 5.C 6.B 7.C 8.B 9.B 10.A二、11.b(a+b)(a-b) 12.15 13.7 14. 3 15.±6 16.m<6且m≠-6 17. (0,3) 18.三、19.(1)原式=4x2y4÷xy ………………1分=12xy3;………………3分(2)解:(x+2)2+2(x+2)(x-4)-(x+3)(x-3)=x2+4x+4+2x2-4x-16-x2+9 ………………2分=2x2-3 ………………4分20.解:原式=. ………………3分解不等式组得………………5分∵a=1, a=2分式无意义∴a=0 ………………6分当a=0时,原式=-1.…………………………7分21.(1)图略………………2分(2)(-1,2);(-3,1);(2,-1)………………5分(3)S△ABC=4.5 ………………7分22.(1)样本容量是:30÷20%=150;………………2分(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75.;………………3分(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;………………5分(4)20180×=2018(人).………………7分23.解:∵∠A=40°,∠B=76°,∴∠ACB=180°-40°-76°=64°,………………2分∵CE 平分∠ACB ,∴∠ACE=∠BCE=32°,∴∠CED=∠A+∠ACE=72°,………………4分∴∠CDE=90°,DF ⊥CE ,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=72°.………………6分24.(1)证明:∵△ABC 是等边三角形,BD 是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).………………1分又∵CE=CD ,∴∠CDE=∠CED .又∵∠BCD=∠CDE+∠CED ,∴∠CDE=∠CED=∠BCD=30°.………………3分 ∴∠DBC=∠DEC .∴DB=DE (等角对等边);………………4分(2)解: ∵∠CDE=∠CED=∠BCD=30°, ∴∠CDF=30°,∵CF=4,∴DC=8,………………5分∵AD=CD ,∴AC=16,………………6分∴△ABC 的周长=3AC=48.………………7分25.(1)设购买一个甲种足球需x 元,则购买一个乙种足球需(x +20)元,由题意得:x 2000=2×x +201400.………………3分解得:x =50. ………………4分经检验,x =50是原方程的解. ………………5分x +20=70.答:购买一个甲种足球需50元,购买一个乙种足球需70元.………………6分(2)设这所学校再次购买y 个乙种足球,则购买(50-y)个甲种足球,由题意得:50×(1+10% )×(50-y)+70×(1-70% )y ≤解得:y≤18.75. ………………9分由题意知,最多可购买18个乙种足球.笞:这所学校此次最多可购买18个乙种足球.………………10分26.(1)猜想:AB=AC+CD.------------------2分(2)猜想:AB+AC=CD. ---------------4分证明:在BA的延长线上截取AE=AC,连接ED.------------------5分∵AD平分∠FAC,∴∠EAD=∠CAD.在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD. ---------------7分∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB. ----------8分又∵∠ACB=2 ∠B,∠FED=∠B+∠EDB,.∠EDB=∠B.∴EB=ED.∴EA+AB=EB=ED=CD.∴AC十AB=CD. ------------11分七年级下学期期末数学试卷一、选择题(本大题共30分,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a<b,则下列四个不等式中,不正确的是()A.a-2<b-2 B.-2a<-2b C.2a<2b D.a+2<b+22.在实数、、、0.、π、2.2018201820182018314…(自然数依次排列)、中,无理数有()A.2个B.3个C.4个D.5个3.下列命题中,属于真命题的是()A.两个锐角的和是锐角 B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.同位角相等 D.在同一平面内,如果a//b,b//c,则a//c4.点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是()A.(﹣4,3)B.( 4,﹣3)C.( 3,﹣4)D.(﹣3,4).5.如图,直线AB,CD被直线EF所截,交点分别为点E,F.若AB∥CD,下列结论正确的是()A.∠2=∠3 B.∠2=∠4 C.∠1=∠5 D.∠3+∠AEF=180°6.下列说法正确的是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等边三角形都全等7.某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:)A.20,20 B.20,25 C.30,25 D.40,208.点A在直线m外,点B在直线m上,A、B两点的距离记作a,点A到直线m的距离记作b,则a与b的大小关系是()A.a>b B.a≤b C.a≥b D.a<b9.不等式组的整数解为()A.0,1,2,3 B.1,2,3 C.2,3 D.310.要反映本县一周内每天的最高气温的变化情况,宜采用()A.条形统计图 B.扇形统计图 C.折线统计图 D.频数分布直方图二、填空题(本共18分,每小题3分)11.分解因式:﹣m2+4m﹣4═.12.已知点A(﹣2,﹣1),点B(a,b),直线AB∥y轴,且AB=3,则点B的坐标是)13小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫左眼的坐标为(–4,3)、则移动后猫左眼的坐标为14.如图,AD是△ABC的中线,E是AD的中点,如果S△ABD=12,那么S△CDE= .15.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点。
玉溪七年级下册数学期末试卷测试卷附答案一、解答题1.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F .①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数. ②如图3,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BFD 的度数.(用含有α,β的式子表示)2.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示); (2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示); ②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.3.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数. 4.综合与探究 (问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动, ①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系. 5.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B .问题解决:(1)如图1,直接写出∠A 和∠C 之间的数量关系; (2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =3∠DBE ,则∠EBC = .二、解答题6.已知直线//AB CD ,M ,N 分别为直线AB ,CD 上的两点且70MND ∠=︒,P 为直线CD 上的一个动点.类似于平面镜成像,点N 关于镜面MP 所成的镜像为点Q ,此时,,NMP QMP NPM QPM MNP MQP ∠=∠∠=∠∠=∠.(1)当点P 在N 右侧时:①若镜像Q 点刚好落在直线AB 上(如图1),判断直线MN 与直线PQ 的位置关系,并说明理由;②若镜像Q 点落在直线AB 与CD 之间(如图2),直接写出BMQ ∠与DPQ ∠之间的数量关系;(2)若镜像PQ CD ⊥,求BMQ ∠的度数.7.已知点A ,B ,O 在一条直线上,以点O 为端点在直线AB 的同一侧作射线OC ,OD ,OE 使60BOC EOD ∠=∠=.(1)如图①,若OD 平分BOC ∠,求AOE ∠的度数;(2)如图②,将EOD ∠绕点O 按逆时针方向转动到某个位置时,使得OD 所在射线把BOC ∠分成两个角.①若:1:2COD BOD ∠∠=,求AOE ∠的度数;②若:1:COD BOD n ∠∠=(n 为正整数),直接用含n 的代数式表示AOE ∠. 8.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值; (3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示). 9.已知ABC ,//DE AB 交AC 于点E ,//DF AC 交AB 于点F .(1)如图1,若点D 在边BC 上, ①补全图形; ②求证:A EDF ∠=∠.(2)点G 是线段AC 上的一点,连接FG ,DG .①若点G 是线段AE 的中点,请你在图2中补全图形,判断AFG ∠,EDG ∠,DGF ∠之间的数量关系,并证明;②若点G 是线段EC 上的一点,请你直接写出AFG ∠,EDG ∠,DGF ∠之间的数量关系. 10.(感知)如图①,//,40,130AB CD AEP PFD ︒︒∠=∠=,求EPF ∠的度数.小明想到了以下方法:解:如图①,过点P 作//PM AB ,140AEP ︒∴∠=∠=(两直线平行,内错角相等)//AB CD (已知),//∴PM CD (平行于同一条直线的两直线平行),2180PFD ︒∴∠+∠=(两直线平行,同旁内角互补). 130PFD ︒∠=(已知),218013050︒︒︒∴∠=-=(等式的性质). 12405090︒︒︒∴∠+∠=+=(等式的性质).即90EPF ︒∠=(等量代换).(探究)如图②,//AB CD ,50,120AEP PFC ︒︒∠=∠=,求EPF ∠的度数.(应用)如图③所示,在(探究)的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_______________︒.三、解答题11.如图,直线//AB CD ,E 、F 是AB 、CD 上的两点,直线l 与AB 、CD 分别交于点G 、H ,点P 是直线l 上的一个动点(不与点G 、H 重合),连接PE 、PF .(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.12.(1)如图1,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,AB ∥CD ,∠ADC =50°,∠ABC =40°,求∠AEC 的度数;(2)如图2,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,∠ADC =α°,∠ABC =β°,求∠AEC 的度数;(3)如图3,PQ ⊥MN 于点O ,点A 是平面内一点,AB 、AC 交MN 于B 、C 两点,AD 平分∠BAC 交PQ 于点D ,请问ADPACB ABC∠∠-∠的值是否发生变化?若不变,求出其值;若改变,请说明理由.13.(1)如图1所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F ;①若∠B =90°则∠F = ;②若∠B =a ,求∠F 的度数(用a 表示);(2)如图2所示,若点G 是CB 延长线上任意一动点,连接AG ,∠AGB 与∠GAB 的角平分线交于点H ,随着点G 的运动,∠F +∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.14.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,A 、B 不与点O 重合,如图1,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线, (1)点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.(2)如图2,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,则∠ABO =________, 如图3,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,则∠ABO =________ (3)如图4,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其反向延长线交于E 、F ,则∠EAF = ;在△AEF 中,如果有一个角是另一个角的32倍,求∠ABO的度数.15.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.【参考答案】一、解答题1.(1)见解析;(2)55°;(3) 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图解析:(1)见解析;(2)55°;(3)1118022αβ︒-+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数. 【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒,55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒; ②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠,BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=,1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+.答:BFD ∠的度数为1118022αβ︒-+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.2.(1) ;(2)① ;② 【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1)1902a ︒- ;(2)①1454a ︒+ ;②50︒【分析】(1)由平行线的性质得到4'B FC a ∠=∠=,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F , ∴14a ∠=∠=, ∵//AD BC , ∴4'B FC a ∠=∠=, 180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- ,∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-,再由折叠可知:113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭',13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠,11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭,又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠, ''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,1=50∴∠︒. 【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.3.(1)120°;(2)90°-x°;(3)不变,;(4)45° 【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x °;(3)不变,12;(4)45° 【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN =180°-x °,根据角平分线的定义知∠ABP =2∠CBP 、∠PBN =2∠DBP ,可得2∠CBP +2∠DBP =180°-x °,即∠CBD =∠CBP +∠DBP =90°-12x °; (3)由AM ∥BN 得∠APB =∠PBN 、∠ADB =∠DBN ,根据BD 平分∠PBN 知∠PBN =2∠DBN ,从而可得∠APB :∠ADB =2:1;(4)由AM ∥BN 得∠ACB =∠CBN ,当∠ACB =∠ABD 时有∠CBN =∠ABD ,得∠ABC +∠CBD =∠CBD +∠DBN ,即∠ABC =∠DBN ,根据角平分线的定义可得∠ABP =∠PBN =12∠ABN =2∠DBN ,由平行线的性质可得12∠A +12∠ABN =90°,即可得出答案. 【详解】解:(1)∵AM ∥BN ,∠A =60°, ∴∠A +∠ABN =180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.4.(1);(2)①,理由见解析;②图见解析,或【分析】(1)作PQ∥EF,由平行线的性质,即可得到答案;(2)①过作交于,由平行线的性质,得到,,即可得到答案;②根据题意,可对点P 进行分类讨论解析:(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,∵APB APQ BPQ ∠=∠+∠∴360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;②当点P 在BA 延长线时,如备用图1:∵PE ∥AD ∥BC ,∴∠EPC=β,∠EPD =α,∴CPD βα∠=∠-∠;当P 在BO 之间时,如备用图2:∵PE ∥AD ∥BC ,∴∠EPD =α,∠CPE =β,∴CPD αβ∠=∠-∠.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.5.(1);(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质即可求解.【详解】解:(1)如图1,设AM 与BC 交于点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)证明:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB =∠AFC =3α+β,△BCF 中,由∠CBF +∠BFC +∠BCF =180°得:2α+β+3α+3α+β=180°,∵AB ⊥BC ,∴β+β+2α=90°,∴α=15°,∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.二、解答题6.(1)①,证明见解析,②,(2)或.【分析】(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,解析:(1)①//MN PQ ,证明见解析,②70DPQ BMQ ∠∠+=︒,(2)160︒或20︒.【分析】(1) ①根据//AB CD 和镜像证出NMP QPM ∠=∠,即可判断直线MN 与直线PQ 的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证DPQ BM MQP Q ∠=∠∠+即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,分类讨论,依据平行线的性质求解即可.【详解】(1)①//MN PQ ,证明:∵//AB CD ,∴NPM QMP ∠=∠,∵,NMP QMP NPM QPM ∠=∠∠=∠,∴NMP QPM ∠=∠,∴//MN PQ ;②过点Q 作QF ∥CD ,∵//AB CD ,∴////AB CD QF ,∴1BMQ ∠=∠,2QPD ∠=∠,∴DPQ BM MQP Q ∠=∠∠+,∵70MNP MQP ∠=∠=︒,∴70DPQ BMQ ∠∠+=︒;(2)如图,当点P 在N 右侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,∴180NP FQP Q ∠=∠+︒,FQM BMQ ∠=∠,∵PQ CD ⊥,∴90NPQ ∠=︒,∴90FQP ∠=︒,∵70MND PQM ∠=∠=︒,∴20FQM ∠=︒,∴20BMQ ∠=︒,如图,当点P 在N 左侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF , 同理可得,90FQP ∠=︒,∵70MND ∠=︒,∴110MNP PQM ∠=∠=︒,∴20FQM ∠=︒,∵//AB QF ,∴180BM FQM Q ∠=∠+︒,∴160BMQ ∠=︒;综上,BMQ ∠的度数为160︒或20︒.【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.7.(1);(2)①;②.【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)①根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得,最 解析:(1)90AOE ∠=︒;(2)①80AOE ∠=︒;②60(120)1n AOE n -+∠=︒. 【分析】(1)依据角平分线的定义可求得30COD ∠=︒,再依据角的和差依次可求得EOC ∠和∠BOE ,根据邻补角的性质可求得结论;(2)①根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得BOD ∠,最后依据角的和差和邻补角的性质可求得结论;②根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得BOD ∠,最后依据角的和差和邻补角的性质可求得结论.【详解】解:(1)∵OD 平分BOC ∠,60BOC EOD ∠=∠=︒, ∴1302COD BOC ∠=∠=︒, ∴30EOC EOD COD ∠=∠-∠=︒,∴90BOE EOC BOC ∠=∠+∠=︒,∴18090AOE BOE ∠=︒-∠=︒;(2)①∵BOC EOD ∠=∠,∴∠EOC+∠COD=∠BOD+∠COD ,∴∠EOC=∠BOD ,∵60BOC ∠=︒,:1:2COD BOD ∠∠=, ∴260403BOD ∠=︒⨯=︒, ∴40EOC BOD ∠=∠=︒,∴100BOE EOC BOC ∠=∠+∠=︒,∴18080AOE BOE ∠=︒-∠=︒;②∵BOC EOD ∠=∠,∴∠EOC+∠COD=∠BOD+∠COD ,∴∠EOC=∠BOD ,∵60BOC ∠=︒,:1:COD BOD n ∠∠=, ∴6060()11n n BOD n n ∠=︒⨯=︒++, ∴60()1n EOC BOD n ∠=∠=︒+, ∴60(60)1BOE EOC BOC n n ∠=∠+∠+=︒+, ∴18060(120)1AOE BO n E n ∠=︒-∠=-︒+. 【点睛】本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键.8.(1)60°;(2)50°;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60°;(2)50°;(3)18021n α︒--或18021n α︒-+ 【分析】(1)根据平行线的性质可得CBD ∠的度数,再根据角平分线的性质可得ABE 的度数,应用三角形内角和计算BAC ∠的度数,由已知条件BAE CAE ∠=∠,可计算出CAE ∠的度数; (2)根据题意画出图形,先根据:5:1BAE CAE ∠∠=可计算出CAE ∠的度数,由100BAE ∠=︒可计算出BAC ∠的度数,再根据平行线的性质和角平分线的性质,计算出CBD ∠的度数,即可得出结论;(3)根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可等处结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可等处结论.【详解】解:(1)30α=︒,//AC BD ,30CBD ∴∠=︒, BC 平分ABD ∠,30ABE CBD ∴∠=∠=︒,1801803030120BAC ABE α∴∠=︒-∠-=︒-︒-︒=︒,又BAE CAE ∠=∠, 111206022CAE BAC ∴∠=∠=⨯︒=︒; (2)根据题意画图,如图1所示,100BAE ∠=︒,:5:1BAE CAE ∠∠=,20CAE ∴∠=︒,1002080BAC BAE CAE ∴∠=∠-∠=︒-︒=︒,//AC BD ,180100ABD BAC ∴∠=︒-∠=︒,又BC 平分ABD ∠,111005022CBD ABD ∴∠=∠=⨯︒=︒, 50CBD α∴=∠=︒;(3)①如图2所示,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又:BAE CAE n ∠∠=,():BAC CAE CAE n ∴∠+∠∠=,(1802):CAE CAE n α︒-+∠∠=,解得18021CAE n α︒-∠=-;②如图3所示,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又:BAE CAE n ∠∠=,():BAC CAE CAE n ∴∠-∠∠=,(1802):CAE CAE n α︒--∠∠=, 解得18021CAE n α︒-∠=+.综上CAE ∠的度数为18021n α︒--或18021n α︒-+. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键. 9.(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF ;②∠AFG-∠EDG=∠DGF【分析】(1)①根据题意画出图形;②依据DE ∥AB ,DF ∥AC ,可得∠EDF+∠AFD=180°,∠解析:(1)①见解析;②;见解析(2)①∠AFG +∠EDG =∠DGF ;②∠AFG -∠EDG =∠DGF【分析】(1)①根据题意画出图形;②依据DE ∥AB ,DF ∥AC ,可得∠EDF +∠AFD =180°,∠A +∠AFD =180°,进而得出∠EDF =∠A ;(2)①过G 作GH ∥AB ,依据平行线的性质,即可得到∠AFG +∠EDG =∠FGH +∠DGH =∠DGF ;②过G 作GH ∥AB ,依据平行线的性质,即可得到∠AFG -∠EDG =∠FGH -∠DGH =∠DGF .【详解】解:(1)①如图,②∵DE ∥AB ,DF ∥AC ,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如图2所示,过G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如图所示,过G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【点睛】本题考查了平行线的判定和性质:两直线平行,内错角相等.正确的作出辅助线是解题的关键.10.[探究] 70°;[应用] 35【分析】[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线解析:[探究] 70°;[应用] 35【分析】[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数.【详解】解:[探究]如图②,过点P作PM∥AB,∴∠MPE=∠AEP=50°(两直线平行,内错角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠PFC=∠MPF=120°(两直线平行,内错角相等).∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).答:∠EPF的度数为70°;[应用]如图③所示,∵EG是∠PEA的平分线,PG是∠PFC的平分线,∴∠AEG=12∠AEP=25°,∠GCF=12∠PFC=60°,过点G作GM∥AB,∴∠MGE=∠AEG=25°(两直线平行,内错角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一条直线的两直线平行),∴∠GFC=∠MGF=60°(两直线平行,内错角相等).∴∠G=∠MGF-MGE=60°-25°=35°.答:∠G的度数是35°.故答案为:35.【点睛】本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.三、解答题11.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点P与点E、F在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可∠=∠=60°,计算∠PFD即可;以推出GEP EGP(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB 上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点P与点E、F在一直线上时,作图如下,∠=∠,∵AB∥CD,∠FHP=60°,GEP EGP∠=∠=∠FHP=60°,∴GEP EGP∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP ,∴∠AEP=∠EPF+∠CFP ;③当点P 在CD 下方时,∵AB ∥CD ,∴∠AEP=∠EQF ,∴∠EQF=∠EPF+∠CFP ,∴∠AEP=∠EPF+∠CFP ,综上所述,∠AEP 、∠EPF 、∠CFP 之间满足的关系式为:∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,故答案为:∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP .【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.12.(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=∠解析:(1)∠E =45°;(2)∠E =2βα-;(3)不变化,12【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,则可得∠E= 12(∠D+∠B ),继而求得答案;(2)首先延长BC 交AD 于点F ,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D ,又由角平分线的性质,即可求得答案.(3)由三角形内角和定理,可得90ADP ACB DAC ∠+︒=∠+∠ADP DFO ABC OEB ∠+∠=∠+∠,利用角平分线的性质与三角形的外角的性质可得答案.【详解】解:(1)∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E ,∴∠E=12(∠D+∠B ), ∵∠ADC=50°,∠ABC=40°,∴∠AEC=12×(50°+40°)=45°;(2)延长BC 交AD 于点F ,∵∠BFD=∠B+∠BAD ,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D ,∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠E+∠ECB=∠B+∠EAB ,∴∠E=∠B+∠EAB -∠ECB=∠B+∠BAE -12∠BCD =∠B+∠BAE -12(∠B+∠BAD+∠D ) = 12(∠B -∠D ), ∠ADC =α°,∠ABC =β°,即∠AEC=.2βα-(3)ADP ACB ABC ∠∠-∠的值不发生变化,1.2ADP ACB ABC ∠∴=∠-∠ 理由如下:如图,记AB 与PQ 交于E ,AD 与CB 交于F ,,PQ MN ⊥90,DOC BOE ∴∠=∠=︒90ADP ACB DAC ∠+︒=∠+∠①,ADP DFO ABC OEB ∠+∠=∠+∠②,∴ ①-②得:90,DFO ACB ABC DAC OEB ︒-∠=∠-∠+∠-∠90,DFO OEB DAC ACB ABC ∴︒-∠+∠-∠=∠-∠90,,ADP DFO OEB EAD ADP ∠=︒-∠∠-∠=∠AD 平分∠BAC ,,BAD CAD ∴∠=∠,OEB CAD ADP ∴∠-∠=∠2,ADP ACB ABC ∠=∠-∠1.2ADP ACB ABC ∠∴=∠-∠【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.13.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC解析:(1)①45°;②∠F=12a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=12∠CAE,∠ACF=12∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=12∠CAE-12∠ACB=12(∠CAE-∠ACB)=12∠B;(2)由(1)可得,∠F=12∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+12∠ABG,进而得到∠F+∠H=90°+12∠CBG=180°.【详解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=12a;(2)由(1)可得,∠F=12∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH=12∠AGB,∠GAH=12∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣12(∠AGB+∠GAB)=180°﹣12(180°﹣∠ABG)=90°+12∠ABG,∴∠F+∠H=12∠ABC+90°+12∠ABG=90°+12∠CBG=180°,∴∠F+∠H的值不变,是定值180°.【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.14.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=12∠PAB,∠ABC=12∠ABM,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E=∠EOQ﹣∠EAO=12(∠BOQ﹣∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=∠EAO+∠FAO=12(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= 12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵有一个角是另一个角的32倍,故有:①∠EAF=32∠F,∠E=30°,∠ABO=60°;②∠F=32∠E,∠E=36°,∠ABO=72°;③∠EAF=32∠E,∠E=60°,∠ABO=120°(舍去);④∠E=32∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想. 15.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论; (2)先利用三角形的内角和定理求出,即可得出结论; (3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论; (2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.【详解】解:(1)//MN GH ,180ACB NAC ∴∠+∠=︒,90ACB ∠=︒,90CAN ∴∠=︒,30BAC ∠=︒,9060BAN BAC ∴∠=︒-∠=︒;(2)由(1)知,60BAN ∠=︒,45EDF ∠=︒,18075AFD BAN EDF ∴∠=︒-∠-∠=︒,90DFE ∠=︒,15AFE DFE AFD ∴∠=∠-∠=︒;(3)当90DAF ∠=︒时,如图3,由(1)知,60BAN ∠=︒,30FAN DAF BAN ∴∠=∠-∠=︒;当90AFD ∠=︒时,如图4,90DFE ∠=︒,∴点A ,E 重合,45EDF ∠=︒,45DAF ∴∠=︒,由(1)知,60BAN ∠=︒,15FAN BAN DAF ∴∠=∠-∠=︒,即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.。
玉溪市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列四个图案中,具有一个共有性质.则下面四个数字中,满足上述性质的一个是()A . 6B . 7C . 8D . 92. (2分) (2019七下·綦江期中) 是下列哪一个方程的一个解()A . 2x-3y=4B . x-y=-1C . 2x+y=0D . x-2y=-53. (2分)计算(-4x-5y)(5y-4x)的结果是()A . 25y2-16x2B . 16x2-25y2C . -16x2-25y2D . 16x2+25y24. (2分)(2016·北仑模拟) 将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为()A . 10°B . 15°C . 20°D . 25°5. (2分) (2018七下·马山期末) 如图,BE是AB的延长线,下面说法正确的是()A . 由∠1=∠2,可得到AB∥CDB . 由∠2=∠C,可得到AD∥BCC . 由∠1=∠C,可得到AD∥BCD . 由∠1=∠C,可得到AB∥CD6. (2分)已知多项式x2+a能用平方差公式在有理数范围内分解因式,那么在下列四个数中a可以等于()A . 9B . 4C . -1D . -27. (2分)(2019·海南模拟) 某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50,则这组数据的众数是()A . 36B . 45C . 48D . 508. (2分)(2019·包河模拟) 我国古典数学文献《增删算法统宗·六均输》中这样一道题:甲、乙两人一同放牧,两人暗地里数羊,如果乙给甲9只羊,则甲的羊数为乙的两倍;如果甲给乙9只羊,则两人的羊数相同,设甲有羊只,乙有羊只,根据题意,可列方程组为()A .B .C .D .9. (2分)已知式子x2+2x-2的值为3,则式子2x2+4x-5的值为()A . 5B . -5C . 5或-5D . 010. (2分)某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有()A . 6种B . 5种C . 4种D . 3种二、填空题 (共8题;共8分)11. (1分) (2019七下·宜兴月考) 计算:a6÷a2=________;(x2y3)4=________.12. (1分)(2020·长春模拟) 因式分解:a3-16a=________。
玉溪市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC的周长为()A . 10B . 14C . 10或14D . 8或102. (2分) (2016八下·鄄城期中) 已知a>b,则下列不等式中正确的是()A . ﹣3a>﹣3bB . ﹣>﹣C . 3﹣a>3﹣bD . a﹣3>b﹣33. (2分) (2019七下·遂宁期中) 不等式组的解集是x<6m+3,则m的取值范围是()A . m≤0B . m=0C . m>0D . m<04. (2分)下列各式由左边到右边的变形,是因式分解的是()A . (a+1)(a﹣1)=a2﹣1B . (x﹣y)(m﹣n)=(y﹣x)(n﹣m)C . ab﹣a﹣b+1=(a﹣1)(b﹣1)D . m2﹣2m﹣3=m(m﹣2)﹣35. (2分)已知a﹣b=3,b+c=﹣4,则代数式ac﹣bc+a2﹣ab的值为()A . 4B . -4C . 3D . -36. (2分)如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 不能确定7. (2分)已知是二元一次方程组的解,则2m﹣n的算术平方根为()A . 4B . 2C .D . ±28. (2分) (2018九下·龙岩期中) 下列运算:①a2•a3=a6 ,②(a3)2=a6 ,③a5÷a5=a,④(ab)3=a3b3 ,其中结果正确个数为()A . 1B . 2C . 3D . 49. (2分)如图,在△ABC中,AB=AC,过点A作AD∥BC.若∠1=70°,则∠BAC的大小为()A . 30°B . 40°C . 50°D . 70°10. (2分) (2016八上·孝南期中) 一个三角形的三内角的度数的比为1:1:2,则此三角形()A . 锐角三角形B . 钝角三角形C . 等边三角形D . 等腰直角三角形二、填空题 (共10题;共11分)11. (1分)分解因式:x3﹣4x2y+4xy2= ________.12. (1分) (2018七下·市南区期中) 如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为________.13. (1分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为________.14. (1分)计算: =________.15. (1分) (2016八下·鄄城期中) 某中学举办了“汉字听写大会”,准备为获奖的40名同学颁奖(每人一个书包或一本词典),已知每个书包28元,每本词典20元,学校计划用不超过900元钱购买奖品,则最多可以购买________个书包.16. (1分) (2016七下·瑶海期中) 若M=(x﹣3)(x﹣5),N=(x﹣2)(x﹣6),则M与N的大小关系为________.17. (1分)关于x﹣a=2的解为正数,则a的取值范围为________.18. (1分)如图,把一块等腰直角三角板△ABC,∠C=90°,BC=5,AC=5.现将△ABC沿CB方向平移到△A′B′C′的位置,若平移距离为x(0≤x≤5),△ABC与△A′B′C′的重叠部分的面积y,则y=________(用含x的代数式表示y).19. (1分) (2019七下·巴中期中) 乙组人数是甲组人数的一半,且甲组人数比乙组多15人.设甲组原有x 人,乙组原有y人,则可得方程组为________.20. (2分) x2﹣________﹣20=(x+4)(________).三、解答题 (共6题;共45分)21. (5分)解不等式组,把每个不等式的解集在数轴上表示出来,并写出不等式组的整数解.22. (5分) (2016八上·东宝期中) 阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.仿照上面的解答过程,求m2+m+4的最小值和4﹣x2+2x的最大值.23. (15分) (2016七下·鄂城期中) 如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+b)2+|a﹣b+4|=0,过C作CB⊥x轴于B.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.24. (5分)如图AE∥BD,∠CBD=57°,∠AEF=125°,求∠C的度数,并说明理由。
玉溪市七年级下册数学期末试卷(带答案)-百度文库一、选择题1.12-等于()A.2-B.12C.1 D.12-2.已知∠1与∠2是同位角,则()A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.以上都有可能3.a5可以等于()A.(﹣a)2•(﹣a)3B.(﹣a)•(﹣a)4C.(﹣a2)•a 3D.(﹣a3)•(﹣a2)4.如图,下列结论中不正确的是()A.若∠1=∠2,则AD∥BC B.若AE∥CD,则∠1+∠3=180°C.若∠2=∠C,则AE∥CD D.若AD∥BC,则∠1=∠B5.将下列三条线段首尾相连,能构成三角形的是()A.1,2,3 B.2,3,6 C.3,4,5 D.4,5,96.下列图形中,能将其中一个三角形平移得到另一个三角形的是()A.B.C.D.7.计算a10÷a2(a≠0)的结果是( )A.5a B.5a-C.8a D.8a-8.如图,在△ABC中,BC=6,∠A=90°,∠B=70°.把△ABC沿BC方向平移到△DEF 的位置,若CF=2,则下列结论中错误的是()A.BE=2 B.∠F=20°C.AB∥DE D.DF=69.下列方程组中,是二元一次方程组的为()A.1512nmmn⎧+=⎪⎪⎨⎪+=⎪⎩B.2311546a bb c-=⎧⎨-=⎩C.292xy x⎧=⎨=⎩D.xy=⎧⎨=⎩10.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题11.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________. 12.已知关于x 的不等式组521{0x x a -≥-->无解,则a 的取值范围是________. 13.20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ =______.14.已知m a =2,n a =3,则2m n a -=_______________.15.已知()223420x y x y -+--=,则x=__________,y=__________.16.已知2x +3y -5=0,则9x •27y 的值为______.17.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________.18.一个容量为40的样本的最大值为35,最小值为15,若取组距为4,则应该分的组数是为_______.19.()22x y --=_____.20.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.三、解答题21.计算:(1)(12)﹣3﹣20160﹣|﹣5|; (2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2;(3)(x+5)2﹣(x ﹣2)(x ﹣3);(4)(2x+y ﹣2)(2x+y+2).22.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品.(1)若24W=万元,求领带及丝巾的制作成本是多少?(2)若用W元钱全部用于制作领带,总共可以制作几条?(3)若用W元钱恰好能制作300份其他的礼品,可以选择a条领带和b条丝巾作为一份礼品(两种都要有),请求出所有可能的a、b的值.23.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.24.解下列二元一次方程组:(1)70231x yx y+=⎧⎨-=-⎩①②;(2)239 345x yx y-=⎧⎨+=⎩①②.25.已和,如图,BE平分∠ABC,∠1=∠2,请说明∠AED=∠C.根据提示填空.∵BE平分∠ABC(已知)∴∠1=∠3,()又∵∠1=∠2,(已知)∴=∠2,()∴∥,()∴∠AED=.()26.因式分解(1)228ax a(2) a3-6a2 b+9ab2(3)(a﹣b)2+4ab27.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩它的解是正数. (1)求m 的取值范围;(2)化简:2|2|m --28.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.【详解】解: 12-=12. 故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.D解析:D【分析】根据同位角的定义和平行线的性质判断即可.【详解】解:∵只有两直线平行时,同位角才可能相等,∴当没有限定“两直线平行”时,已知∠1与∠2是同位角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能.故选:D .【点睛】本题考查了同位角的定义和平行线的性质,正确理解同位角的定义是解此题的关键,“两直线平行”这个前提条件易遗漏.3.D解析:D【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】A、(﹣a)2(﹣a)3=(﹣a)5,故A错误;B、(﹣a)(﹣a)4=(﹣a)5,故B错误;C、(﹣a2)a3=﹣a5,故C错误;D、(﹣a3)(﹣a2)=a5,故D正确;故选:D.【点睛】本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.4.D解析:D【分析】由平行线的性质和判定解答即可.【详解】解:A、∵∠1=∠2,∴AD∥BC,原结论正确,故此选项不符合题意;B、∵AE∥CD,∴∠1+∠3=180°,原结论正确,故此选项不符合题意;C、∵∠2=∠C,∴AE∥CD,原结论正确,故此选项不符合题意;D、∵AD∥BC,∴∠1=∠2,原结论不正确,故此选项符合题意;故选:D.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键,注意它们之间的区别.5.C解析:C【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误.【详解】解:A选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形;B选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形,故选:C .【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.6.A解析:A【解析】【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.【详解】A 、可以通过平移得到,故此选项正确;B 、可以通过旋转得到,故此选项错误;C 、是位似图形,故此选项错误;D 、可以通过轴对称得到,故此选项错误;故选A .【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.7.C解析:C【解析】【分析】根据同底数幂的除法法则即可得.【详解】1021028(0)a a a a a -÷==≠故选:C.【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.8.D解析:D【分析】根据平移的性质可得BC=EF ,然后求出BE=CF .【详解】∵△ABC 沿BC 方向平移得到△DEF ,∴BC=EF ,∴BC-EC=EF-EC ,即BE=CF ,∵CF=2cm ,∴BE=2cm .∵BC=6,∠A=90°,∠B=70°,∴∠ACB=20°,根据平移的性质可得AB∥DE,∴∠F=20°;故选:D.【点睛】本题考查了平移的性质,主要利用了平移对应点所连的线段平行且相等.9.D解析:D【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】A、属于分式方程,不符合题意;B、有三个未知数,为三元一次方程组,不符合题意;C、未知数x是2次方,为二次方程,不符合题意;D、符合二元一次方程组的定义,符合题意;故选:D.【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.10.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题11.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】=故答案为.【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则. 解析:12019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯ ⎪⎝⎭=12019 故答案为12019. 【点睛】 此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.12.a≥3【详解】解:解5-2x≥-1,得x≤3;解x -a >0,得x >a ,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x -a >0,得x >a ,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.13.【分析】根据同底数的幂的乘法运算的逆运算,先将分成 ,再根据积的乘方的逆运算,把指数相同的数相乘即可.【详解】解:故答案为: .【点睛】本题考查幂的乘方和积的乘方,将不同底数 解析:5-12【分析】 根据同底数的幂的乘法运算的逆运算,先将2019512⎛⎫- ⎪⎝⎭分成2018551212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭ ,再根据积的乘方的逆运算,把指数相同的数相乘即可.【详解】 解:20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ 20182018551212125⎛⎫⎛⎫⎛⎫=-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 20182018512512512⎛⎫⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2018512512512⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭ ()20185112⎛⎫=-⨯- ⎪⎝⎭ 512=- 故答案为:512-. 【点睛】本题考查幂的乘方和积的乘方,将不同底数且不同指数的幂转化为底数相同或者指数相同的幂是解题关键.14.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an )2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的 解析:29【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m ÷a 2n=a m ÷(a n )2=2÷9 =29故答案为29 【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.15..【解析】试题分析:因,所以,解得.考点:和的非负性;二元一次方程组的解法.解析:⎩⎨⎧==12y x . 【解析】 试题分析:因()223420x y x y -+--=,所以⎩⎨⎧=--=-024302y x y x ,解得⎩⎨⎧==12y x . 考点:a 和2a 的非负性;二元一次方程组的解法.【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x27y=32x解析:243【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x⋅27y=32x⋅33y=32x+3y=35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则. 17.6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边解析:6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边形的边数是n,重复计算的内角的度数是x,则(n﹣2)•180°=840°﹣x,n=6…120°,∴这个多边形的边数是6,故答案为:6.本题考查了多边形的内角和公式,正确理解多边形角的大小的特点,以及多边形的内角和定理是解决本题的关键.18.5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是,已知组距为4,那么由于,故可以分成5组.故答案为:解析:5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是351520-=,已知组距为4,那么由于2054=,故可以分成5组.故答案为:5.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.19.x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2解析:x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2.【点睛】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.该题要求熟练掌握完全平方公式,并灵活运用.20.36°如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.三、解答题21.(1)2;(2)7a4+4a6+a2;(3)15x+19;(4)4x2+4xy+y2﹣4【分析】(1)首先利用负整数指数幂的性质、零次幂的性质、绝对值的性质进行计算,再算加减即可;(2)首先利用积的乘方的计算法则、单项式乘以单项式计算法则计算,再合并同类项即可;(3)首先利用完全平方公式、多项式乘以多项式计算法则计算,再合并同类项即可;(4)首先利用平方差计算,再利用完全平方公式进行计算即可.【详解】解:(1)原式=8﹣1﹣5=2;(2)原式=9a4﹣2a4+4a6+a2,=7a4+4a6+a2;(3)原式=x2+10x+25﹣(x2﹣3x﹣2x+6),=x 2+10x+25﹣x 2+3x+2x ﹣6,=15x+19;(4)原式=(2x+y )2﹣4,=4x 2+4xy+y 2﹣4.【点睛】本题考查的是实数的运算,幂的运算及合并同类项,整式的混合运算,掌握以上知识点是解题的关键.22.(1)领带的制作成本是120元,丝巾的制作成本是160元;(2)可以制作2000条领带;(3)42a b =⎧⎨=⎩【分析】(1)设领带及丝巾的制作成本是x 元和y 元,根据题意列出方程组求解即可; (2)由600(2)W x y =+与400(3)W x y =+可得到43y x =,代入可得2000W x =,即可求得答案;(3)根据44600(2)300()33x x ax bx +=+即可表达出a 、b 的关系式即可解答. 【详解】解:(1)设领带及丝巾的制作成本是x 元和y 元,则600(2)240000400(3)240000x y x y +=⎧⎨+=⎩ 解得:120160x y =⎧⎨=⎩答:领带的制作成本是120元,丝巾的制作成本是160元.(2)由题意可得:600(2)W x y =+,且400(3)W x y =+,∴600(2)400(3)x y x y +=+, 整理得:43y x =,代入 600(2)W x y =+ 可得:4600(2)20003W x x x =+=, ∴可以制作2000条领带.(3)由(2)可得:43y x =, ∴44600(2)300()33x x ax bx +=+ 整理可得:3420a b +=∵a 、b 都为正整数,∴42 ab=⎧⎨=⎩【点睛】本题考查了二元一次方程组的综合应用,解题的关键是根据题意列出方程,并对已知条件进行适当的变形.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD=∠EFG,进而判定AB∥CD,即可得出∠AED+∠D=180°;(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.【详解】(1)∵∠CED=∠GHD,∴CB∥GF;(2)∠AED+∠D=180°;理由:∵CB∥GF,∴∠C=∠FGD,又∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠GHD=∠EHF=80°,∠D=30°,∴∠CGF=80°+30°=110°,又∵CE∥GF,∴∠C=180°﹣110°=70°,又∵AB∥CD,∴∠AEC=∠C=70°,∴∠AEM=180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.24.(1)43x y =⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)由①得:x =7﹣y ③,把③代入②得:2(7﹣y )﹣3y =﹣1,解得:y =3,把y =3代入③得:x =4,所以这个二元一次方程组的解为:43x y =⎧⎨=⎩; (2)①×4+②×3得:17x =51,解得:x =3,把x =3代入①得:y =﹣1,所以这个方程组的解为31x y =⎧⎨=-⎩. 【点睛】本题主要考查了方程组的解法,准确运用代入消元法和加减消元法解题是解题的关键.25.角平分线的定义,∠3,等量代换,DE ,BC ,内错角相等,两直线平行,∠C ,两直线平行,同位角相等【分析】先根据角平分线的定义,得出∠1=∠3,再根据等量代换,得出∠3=∠2,最后根据平行线的判定与性质得出结论.【详解】证明:∵BE 平分∠ABC (已知)∴∠1=∠3 ( 角平分线的定义)又∵∠1=∠2(已知)∴∠3=∠2 ( 等量代换)∴DE ∥BC ( 内错角相等,两直线平行)∴∠AED =∠C ( 两直线平行,同位角相等)【点睛】本题主要考查了平行线的判定与性质,解题时注意:内错角相等,两直线平行;两直线平行,同位角相等.26.(1)2a (x+2)(x-2); (2)2a a 3b -();(3)2a b)+(. 【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式先将(a ﹣b )2展开,再利用完全平方公式分解即可.【详解】(1)原式=22(4)a x -=2a (x+2)(x-2);(2)原式=22(69)a a ab b =2a a 3b -()(3)原式=2224a ab b ab -++=222a ab b ++=2a b)+( 【点睛】本题主要考查了多项式的因式分解,在因式分解时,有公因式的首先提公因式,然后用公式法进行因式分解,注意分解要彻底.27.(1)213m -<< (2)m -【分析】(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】 解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m =+⎧⎨=-⎩因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.28.(1)电脑0.5万元,电子白板1.5万元;(2)14台【分析】(1)设每台电脑x 元,每台电子白板y 元,根据题意列出方程组,解方程组即可;(2)设购进电子白板m 台,则购进电脑()31m -台,根据总费用不超过30万元,列出不等式,根据m 实际意义即可求解.【详解】(1)设每台电脑x 元,每台电子白板y 元,则2 3.52 2.5x y x y +=⎧⎨+=⎩,解得0.51.5x y =⎧⎨=⎩故每台电脑0.5万元,每台电子白板1.5万元;(2)设购进电子白板m 台,则购进电脑()31m -台,由题意得1.50.5(31)30m m +-≤解得14.5m ≤,又因为m 是正整数,则14m ≤,故至多购买电子白板14台.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用,综合性较强,难度不大,根据题意列出二元一次方程组、一元一次不等式是解题关键.。
玉溪市七年级下学期数学期末考试卷姓名:________ 班级:________ 成绩:________一、填空题(本大题共6小題,共18分) (共6题;共18分)1. (3分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C 三点的抛物线上.过点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,点P的坐标为________.2. (3分) (2020七下·阳信期末) 关于x、y的二元一次方程组的解满足不等式x-y>4,则m的取值范围是________。
3. (3分) (2018八上·宁波期末) 若点A(2,n)在x轴上,则点B(n+2,n-5)位于第________象限.4. (3分)平移是由平移的________和平移的________决定的,所以在平移作图时,首先要明确图形原来的位置及平移的________,再进行画图.5. (3分)已知二次函数y=ax2+bx+c(a≠0),其中自变量x与函数值y之间满足下面的对应关系:x…135…y… 1.5 1.5﹣2.6…则a﹣b+c=________.6. (3分) (2019七下·武汉月考) 如果方程组的解中的、 ,满足≤4,则非负数的取值范围是________.二、选择题(本大题共8小题,共32分) (共8题;共32分)7. (4分)(2017·天门) 下列运算正确的是()A . (π﹣3)0=1B . =±3C . 2﹣1=﹣2D . (﹣a2)3=a68. (4分)如图,四边形ABCD的顶点坐标A(﹣3,6)、B(﹣1,4)、C(﹣1,3)、D(﹣5,3).若四边形ABCD绕点C按顺时针方向旋转90°,再向左平移2个单位,得到四边形A′B′C′D′,则点A的对应点A′的坐标是()A . (0,5)B . (4,3)C . (2,5)D . (4,5)9. (4分) (2019八下·乐亭期末) 点P在第四象限内,P到x轴的距离是4,到y轴的距离是3,那么点P 的坐标为()A . (-4,3)B . (-3,4)C . (4,-3)D . (3,-4)10. (4分)在下列各数:﹣0.333…,,,﹣π,3π,3.1415,2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成)中,是无理数的有()A . 3个B . 4个C . 5个D . 6个11. (4分)(2011·泰州) 为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是()A . 某市八年级学生的肺活量B . 从中抽取的500名学生的肺活量C . 从中抽取的500名学生D . 50012. (4分) (2017七下·高安期中) 如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A . ∠1=∠3B . ∠5=∠4C . ∠5+∠3=180°D . ∠4+∠2=180°13. (4分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A .B .C .D .14. (4分)已知(x2+y2)2﹣y2=x2+6,则x2+y2的值是()A . ﹣2B . 3C . ﹣2或3D . ﹣2且3三、解答题(70分) (共9题;共70分)15. (6分) (2019七下·凤凰月考) 计算: .16. (6分) (2019八上·高州期末) 解方程组和计算(1)(用代入法)(2)计算: +(1﹣)017. (6分)(2017·宝坻模拟) 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得________;(Ⅱ)解不等式②,得________;(Ⅲ)把不等式①和②的阶级在数轴上表示出来;________(Ⅳ)原不等式组的解集为________18. (8分) (2019八上·榆树期末) 如图,在△ABC中,AC=BC ,∠ACB=90°,点D是AB的中点,点E 是AB边上一点.直线BF垂直于直线CE于点F ,交CD于点G .求证:AE=CG .19. (10.0分)(2017八下·兴化期中) 综合题(1)阅读:若一个三角形的三边长分别为a、b、c,设,则这个三角形的面积为.(2)应用:如图1,在△ABC中,AB=6,AC=5,BC=4,求△ABC面积.(3)引申:如图2,在(2)的条件下,AD、BE分别为△ABC的角平分线,它们的交点为I,求I到AB的距离.20. (10.0分)(2017·泾川模拟) 国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t<1,C组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生数为________人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是________;(4)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有________人.21. (6分)(2018·绍兴模拟) 小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2 ,面积为S(m2),区域Ⅱ的瓷砖均价为2 00元/m2 ,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2 ,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.22. (6分) (2015七下·徐闻期中) 如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,试说明AD平分∠BAC的理由.23. (12分) (2020七上·武城期末) 已知将一副三角板(直角三角板OAB和直角三角板OCD∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)(1)如图1摆放,点O,A,C在一直线上,则∠BOD的度数是多少?(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD 在∠AOB内绕点Q任意转动,∠M0N的度数是否发生变化?如果不变,求其值;如果变化,说明理由。
2018-2019学年云南省玉溪市七年级(下)期末数学试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.(3分)9的平方根是.2.(3分)如果水位升高2m时水位变化记作+2m,那么水位下降3m时水位变化记作m.3.(3分)点P在第四象限内,点P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为.4.(3分)若x=﹣1是关于x的方程2x+a=2的解,则a的值为.5.(3分)如图,AB∥CD,AD⊥BD,∠A=56°,则∠BDC的度数为.6.(3分)某次知识竞赛共有道25题,每一道题答对得5分,答错或不答扣3分,在这次竞赛中小明的得分超过了100分,他至少答对题.二、选择题(本大题共8个小题,每小题4分,满分32分)7.(4分)下列各点中,在第二象限的点是()A.(﹣4,2)B.(﹣2,0)C.(3,5)D.(2,﹣3)8.(4分)据统计,今年全国共有10310000名考生参加高考,10310000用科学记数法可表示为()A.1031×104B.10.31×106C.1.031×107D.1.031×1089.(4分)如图,已知直线a∥b,∠1=100°,则∠2等于()A.60°B.70°C.80°D.100°10.(4分)下列调查中,适宜采用全面调查方式的是()A.了解我县中学生每周使用手机所用的时间B.了解一批手机电池的使用寿命C.调查端午节期间市场上粽子质量情况D.调查某校七年级(三)班45名学生视力情况11.(4分)下列不等式中一定成立的是()A.5a>4a B.﹣a>﹣2a C.a+2<a+3D.<12.(4分)不等式﹣x﹣5≤0的解集在数轴上表示正确的是()A.B.C.D.13.(4分)已知,如图,直线AB,CD相交于点O,OE⊥AB于点O,∠BOD=35°.则∠COE的度数为()A.35°B.55°C.65°D.70°14.(4分)如图,已知点A,B的坐标分别为(3,0),(0,4),将线段AB平移到CD,若点A的对应点C的坐标为(4,2),则B的对应点D的坐标为()A.(1,6)B.(2,5)C.(6,1)D.(4,6)三、解答题(本大题共9个小题,满分70分)15.(6分)计算:16.(10分)(1)解方程组:(2)不等式组,并写出它的所有整数解.17.(6分)某班去看演出,甲种票每张25元,乙种票每张20元.如果40名学生购票恰好用去880元,甲乙两种票各买了多少张?18.(7分)已知:如图,OA⊥OB,点C在射线OB上,经过C点的直线DF∥OE,∠BCF=60°.求∠AOE的度数.19.(7分)完成下列推理结论及推理说明:如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知AB∥CD()∠B=()又∵∠B=∠D(已知)=(等量代换)∴AD∥BE()∠E=∠DFE()20.(8分)如图所示,△ABC在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,0),B(﹣5,﹣2),C(﹣3,﹣4),先将△ABC向右平移4个单位长度,再向上平移3个单位长度,得到△A1B1C1.(1)在图中画出△A1B1C1;(2)写出△A1B1C1的三个顶点的坐标;(3)求△A1B1C1的面积.21.(7分)如图所示,已知:DE∥BC,∠DEB=∠GFC.求证:BE∥FG.22.(9分)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表节目人数(名)百分比最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全条形统计图;(3)若该校共有学生1200名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名?23.(10分)某乡村在开展“美丽乡村”建设中,决定购买A,B两种树苗对村里的主干道进行绿化改造,已知购买A种树苗2棵,B种树苗3棵,共需要260元;购买A种树苗4棵,B种树苗5棵,共需要480元.(1)求购买A,B两种树苗每棵各需多少元?(2)该乡村现打算用不超过5000元的资金购买这两种树苗,问购买60棵B种树苗后,至多还能购买多少棵A 种树苗?2018-2019学年云南省玉溪市七年级(下)期末数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.2.【解答】解:故答案为:﹣33.【解答】解:因为点P在第四象限,所以其横、纵坐标分别为正数、负数,又因为点P到x轴的距离为1,到y轴的距离为2,所以点P的横坐标为2或﹣2,纵坐标为1或﹣1.所以点P的坐标为(2,﹣1).故答案为:(2,﹣1).4.【解答】解:把x=﹣1代入2x+a=2中,得﹣2+a=2,解得a=4.故答案为4.5.【解答】解:∵AB∥CD,∴∠ADC=180°﹣∠A=180°﹣56°=124°.∵AD⊥BD,∴∠ADB=90°,∴∠BDC=∠ADC﹣∠ADB=124°﹣90°=34°.故答案为:34°.6.【解答】解:设小明答对了x道题,则答错或不答(25﹣x)道题,依题意,得:5x﹣3(25﹣x)>100,解得:x>21.∵x为整数,∴x的最小值为22.故答案为:22.二、选择题(本大题共8个小题,每小题4分,满分32分)7.【解答】解:A、(﹣4,2),在第二象限,故A符合题意;B、(﹣2,0)在x轴上,故B不符合题意;C、(3,5)在第一象限,故C不符合题意;D、(2,﹣3)在第四象限,故D不符合题意;故选:A.8.【解答】解:1031 0000用科学记数法可表示为1.031×107.故选:C.9.【解答】解:∵a∥b,∠1=100°,∴∠3=100°,∴∠2=80°,故选:C.10.【解答】解:A、了解我县中学生每周使用手机所用的时间,适宜采用抽样调查方式,故本选项错误;B、了解一批手机电池的使用寿命,适宜采用抽样调查方式,故本选项错误;C、调查端午节期间市场上粽子质量情况,适宜采用抽样调查方式,故本选项错误;D、调查某校七年级(三)班45名学生视力情况,适宜采用全面调查方式,故本选项正确;故选:D.11.【解答】解:A、当a=0,5a=4a,故错误;B、当a=0,﹣a=﹣2a,故错误;C、a+2<a+3,正确;D、当a<0时,>,故错误.故选:C.12.【解答】解:移项得,﹣x≤5,系数化为1得,x≥﹣5,在数轴上表示为:故选:B.13.【解答】解:∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE﹣∠AOC=90°﹣35°=55°.故选:B.14.【解答】解:∵A(3,0),C(4,2),∴点A向右平移1个单位,再向上平移2个单位得到点C,∴点B(0,4)向右平移1个单位,再向上平移2个单位得到点D(1,6),故选:A.三、解答题(本大题共9个小题,满分70分)15.【解答】解:==.16.【解答】解:(1)①×4+③得,11x=22,解得x=2,把x=2代入①得,4﹣y=5,解得y=﹣1,所以,方程组的解是;(2),解不等式①,得x>﹣2解不等式②,得x≤1∴不等式组的解为﹣2<x≤1,∴x可取的整数值为﹣1,0,1.17.【解答】解:设甲种票买了x张,乙种票买了y张,依题意,得:,解得:.答:甲种票买了16张,乙种票买了24张.18.【解答】解:如图所示:∵OA⊥OB,∴∠1=90°.∵∠2=60°,∴∠3=∠2=60°.∵DF∥OE,∴∠3+∠4=180°.∴∠4=120°.∴∠AOE=360°﹣∠1﹣∠4=360°﹣90°﹣120°=150°.19.【解答】证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠B=∠DCE(两直线平行,同位角相等),∵∠B=∠D(已知),∴∠DCE=∠D(等量代换),∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为:同旁内角互补,两直线平行,∠DCE,两直线平行,同位角相等;∴∠DCE;∠D;内错角相等,两直线平行;两直线平行,内错角相等.20.【解答】解:(1)如图所示:(2)A1(2,3),B1(﹣1,1),C1(1,﹣1);(3)=5.21.【解答】证明:∵DE∥BC,∴∠DEB=∠EBC,∵∠DEB=∠GFC,∴∠EBC=∠GFC,∴BE∥FG.22.【解答】解:(1)x=5÷10%=50(人);a=50×40%=20;b%=×100%=30%,即b=30;故答案为50,20,30;(2)如图,( 3 )根据题意,得1200×40%=480(名),则估计该校最喜爱《中国诗词大会》节目的学生有480名.23.【解答】解:(1)设购买A,B两种树苗每棵分别需x元,y元,由题意得:,解得.答:购买A,B两种树苗每棵分别需70元,40元.(2)设还能购买A种树苗a棵,由题意得:70a+40×60≤5000,解得:a ≤.∵树苗的数量为正整数,∴a的最大值为37.∴至多还能购买37棵A种树苗.第11页(共11页)。
玉溪市七年级下册数学期末试卷(带答案)-百度文库一、选择题1.下列计算中正确的是( ) A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a =2.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2 D .14a 2 3.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( ) A .449x y y x y x -=+⎧⎨-=+⎩B .449x y y x y x -=+⎧⎨-=-⎩C .449x y y x y x -=-⎧⎨-=+⎩D .449x y y x y x -=-⎧⎨-=-⎩4.不等式3+2x>x+1的解集在数轴上表示正确的是( ) A . B .C .D .5.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( ) A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2)6.某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( )A .500(14%)(13%)500(1 3.4)x y x y +=⎧⎨+++=⨯+⎩B .5003%4% 3.4%x y x y +=⎧⎨+=⎩C .500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩D .5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩7.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .6 8.若(2x+3y)(mx-ny)=9y 2-4x 2,则m 、n 的值为 ( )A .m=2,n=3B .m=-2,n=-3C .m=2,n=-3D .m=-2,n=39.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .610.下列等式由左边到右边的变形中,因式分解正确的是( ) A .22816(4)m m m -+=- B .323346(46)x y x y x y y +=+ C .()22121x x x x ++=++D .22()()a b a b a b +-=-二、填空题11.多项式2412xy xyz +的公因式是______.12.已知5m a =,3n a =,则2m n a -的值是_________.13.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______. 14.233、418、810的大小关系是(用>号连接)_____. 15.()()3a 3b 13a 3b 1899+++-=,则a b += ______ . 16.若2a +b =﹣3,2a ﹣b =2,则4a 2﹣b 2=_____.17.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______18.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.19.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.20.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____.三、解答题21.若x ,y 为任意有理数,比较6xy 与229x y +的大小.22.化简与计算:(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭(2)(﹣2a 3)3+(﹣4a )2•a 7﹣2a 12÷a 323.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______.问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系. 24.因式分解:(1)2()4()a x y x y ---(2)2242x x -+- (3)2616a a --25.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只. (1)求A B 、两组工人各有多少人?(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩? 26.已知1502x x +-=,求值; (1)221x x+ (2)1x x-27.0=,|1|z -=,求x y z ++的平方根.28.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩它的解是正数.(1)求m 的取值范围;(2)化简:2|2|m --【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据同底数幂的加法和乘法法则进行计算判断即可. 【详解】解:A 、23a a +无法合并,故A 选项错误; B 、23a a +无法合并,故B 选项错误; C 、235a a a =,故C 选项正确; D 、235a a a =,故D 选项错误. 故选:C 【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.2.D解析:D 【分析】设长方形的宽为x cm ,则长为(x +a )cm ,可得正方形的边长为22x a+;求出两个图形面积然后做差即可. 【详解】解:设长方形的宽为x cm ,则长为(x +a )cm , 则正方形的边长为()2242x a x x a⨯+++=; 正方形的面积为222244224x a x a x ax a ++++=, 长方形的面积为()2x x a x ax +=+,二者面积之差为()222244144x ax a x ax a ++-+=,故选:D . 【点睛】本题考查了整式的混合运算,设出长方形的宽,然后表示出正方形和长方形的面积表达式是解题的关键.3.D解析:D 【分析】根据题设老师今年x 岁,小红今年y 岁,根据题意列出方程组解答即可. 【详解】解:老师今年x 岁,小红今年y 岁,可得:449x y y xyx,故选:D . 【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.4.A解析:A 【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可. 【详解】解:移项,得2x -x >1-3, 合并同类项,得x >﹣2, 不等式的解集在数轴上表示为:.故选:A . 【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.5.A解析:A 【分析】先根据到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可. 【详解】∵M 到x 轴的距离为5,到y 轴的距离为2,∴M 纵坐标可能为±5,横坐标可能为±2.∵点M 在第四象限,∴M 坐标为(2,﹣5). 故选:A . 【点睛】本题考查点的坐标的确定;用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.6.C解析:C 【分析】本题有两个相等关系:现有女生人数x +现有男生人数y =现有学生500;一年后女生在校生增加3%后的人数+男生在校生增加4%后的人数=现在校学生增加3.4%后的人数;据此即可列出方程组. 【详解】解:设该校现有女生人数x 和男生y ,则列方程组为()()()50013%14%5001 3.4%x y x y +=⎧⎨+++=⨯+⎩. 故选:C . 【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题关键.7.A解析:A 【解析】试题分析:∵点D ,E ,F ,G 分别是BC ,AD ,BE ,CE 的中点,∴AD 是△ABC 的中线,BE 是△ABD 的中线,CF 是△ACD 的中线,AF 是△ABE 的中线,AG 是△ACE 的中线, ∴△AEF 的面积=×△ABE 的面积=×△ABD 的面积=×△ABC 的面积=,同理可得△AEG 的面积=,△BCE 的面积=×△ABC 的面积=6,又∵FG 是△BCE 的中位线, ∴△EFG 的面积=×△BCE 的面积=,∴△AFG 的面积是×3=,故选A .考点:三角形中位线定理;三角形的面积.8.B解析:B【解析】【分析】先把等式左边利用多项式乘多项式的法则展开并整理,根据对应项系数相等列出等式,求解即可.【详解】解:将(2x+3y)(mx-ny)展开,得2mx2-2nxy+3mxy-3ny2,根据题意可得2mx2-2nxy+3mxy-3ny2=9y2-4x2,根据多项式相等,则对应项及其系数相等,可得2m=-4,-3n=9,解得m=-2,n=-3故选B.【点睛】本题是一道有关多项式乘法的题目,明确多项式的乘法法则是解题的关键.9.B解析:B【解析】分析:推出DF∥CE,推出∠FDB=∠ECB,∠EDF=∠CED,根据DE∥AC推出∠ACE=∠DEC,根据角平分线得出∠ACE=∠ECB,即可推出答案.详解:∵CE⊥AB,DF⊥AB,∴DF∥CE,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.10.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A、属于因式分解,故本选项正确;B 、因式分解不彻底,故B 选项不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、是整式的乘法,故D 不符合题意; 【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.二、填空题11.【分析】根据公因式的定义即可求解. 【详解】 ∵=(y+3z ), ∴多项式的公因式是, 故答案为:. 【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义. 解析:4xy【分析】根据公因式的定义即可求解. 【详解】∵2412xy xyz +=4xy (y+3z ), ∴多项式2412xy xyz +的公因式是4xy ,故答案为:4xy . 【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.12.【分析】根据同底数幂的乘除法计算法则进行计算即可. 【详解】 解:, ∵, ∴, ∴,故答案为:. 【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减.解析:253【分析】根据同底数幂的乘除法计算法则进行计算即可. 【详解】解:22m n m n a a a -=÷, ∵5m a =, ∴22525m a ==, ∴22252533m nm n aa a -=÷=÷=, 故答案为:253. 【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减.13.8 【解析】 【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可. 【详解】设这个多边形的边数是n , 则(n-2)•180°-360°=720°, 解得n=8. 故答案为解析:8 【解析】 【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可. 【详解】设这个多边形的边数是n , 则(n-2)•180°-360°=720°, 解得n=8. 故答案为8. 【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.14.418>233>810 【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】 解:∵,, ∴236>233>230, ∴418>233>810. 故答案为:418>233>81解析:418>233>810 【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案. 【详解】 解:∵()18182364=2=2,()10103308=2=2,∴236>233>230, ∴418>233>810. 故答案为:418>233>810 【点睛】比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.15.【解析】 【分析】原式利用平方差公式化简,整理即可求出a+b 的值. 【详解】已知等式整理得:9(a+b )2-1=899,即(a+b )2=100, 开方得:a+b=±10, 故答案为:±10 【 解析:10±【解析】 【分析】原式利用平方差公式化简,整理即可求出a+b 的值. 【详解】已知等式整理得:9(a+b )2-1=899,即(a+b )2=100, 开方得:a+b=±10, 故答案为:±10 【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.16.-6根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a﹣b=2,∴4a2﹣b2=(2a+b)(2a﹣b)=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】解析:-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a﹣b=2,∴4a2﹣b2=(2a+b)(2a﹣b)=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】此题考查的是根据平方差公式求值,掌握利用平方差公式因式分解是解决此题的关键.17.4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<解析:4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6,故答案为:4或6.【点睛】本题考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.18.8【解析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 19.a >﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b=﹣4①,3a+2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解析:a >﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b =﹣4①,3a +2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a ﹣b =﹣4①,3a +2b >1②,由①得,b =2a +4③,把③代入②,得3a +2(2a +4)>1,解得:a >﹣1.故答案为:a >﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.20.1【分析】根据题意可知该式是二元一次方程组,所以x 、y 的指数均为1,这样就可以分别求出a 、b 的值,代入计算即可.【详解】解:∵是关于x 、y 的二元一次方程,所以x 、y 的指数均为1∴2a=1,解析:1【分析】根据题意可知该式是二元一次方程组,所以x 、y 的指数均为1,这样就可以分别求出a 、b 的值,代入计算即可.【详解】解:∵2a b-1x +y =3是关于x 、y 的二元一次方程,所以x 、y 的指数均为1∴2a =1,b-1=1,解得a =12,b =2, 则ab =122⨯=1, 故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.三、解答题21.2296x y xy +≥【分析】根据题意直接利用作差法对两个代数式进行大小比较即可.【详解】解:∵x ,y 为任意有理数,22296(3)0x y xy x y +-=-≥,∴2296x y xy +≥.【点睛】本题考查整式加减,注意掌握利用作差法对两个代数式进行大小比较以及配方法的应用是解题的关键.22.(1)-11;(2)6a 9【分析】(1)根据负指数幂运算法则,零指数幂运算法则进行运算即可求解(2)根据幂的乘方运算法则,同底数幂乘方和除法运算法则,先算乘法,后算乘除即可求解.【详解】(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭=391--+=-11故答案为:-11(2)(﹣2a 3)3+(﹣4a )2•a 7﹣2a 12÷a 3=-8a 9+16a 2•a 7-2a 9=-8a 9+16a 9-2a 9=6a 9故答案为:6a 9【点睛】本题考查了整式的混合运算,有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.要熟练掌握负指数幂运算法则,零指数幂运算法,幂的乘方运算法则,同底数幂乘法和除法运算法等.23.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PE AB∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC则ADP DPQ ∠=∠,BCP CPQ ∠=∠所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)情况1:如图所示,当点P 在B 、O 两点之间时过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β情况2:如图所示,当点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.24.(1)()(2)(2)x y a a -+-;(2)22(1)x --;(3)(2)(8)a a +-【分析】(1)先提公因式再利用平方差因式分解;(2)先提公因式再利用完全平方公式因式分解;(3)直接利用2(x+p)(x+q)x +(p+q)x+pq =公式因式分解.【详解】解:(1)2()4()a x y x y ---()2()4x y a =--()(2)(2)x y a a =-+-(2)2242x x -+-()2221x x =--+22(1)x =--(3)2616a a --(2)(8)a a =+-【点睛】此题考查因式分解的几种常见的方法,主要考查运算能力.25.(1)A 组工人有90人、B 组工人有60人(2)A 组工人每人每小时至少加工100只口罩【分析】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意列方程健康得到结论; (2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意列不等式健康得到结论.【详解】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意得,70x +50(150−x )=9300,解得:x =90,150−x =60,答:A 组工人有90人、B 组工人有60人;(2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意得,90a +60(200−a )≥15000,解得:a ≥100,答:A 组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.26.(1)174;(2)32± 【分析】(1)利用完全平方公式(a +b)²=a ²+2ab +b ²解答;(2)利用(1)的结果和完全平方公式(a−b)²=a ²−2ab +b ²解答.【详解】解:(1)由题:152x x +=, 21254x x ⎛⎫∴+= ⎪⎝⎭ 即2212524x x ++=, 221174x x ∴+= (2)222111792244x x x x ⎛⎫-=+-=-= ⎪⎝⎭132x x ∴-=± 【点睛】此题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.27.【分析】根据题意得到三元一次方程组,解方程组,求出x y z ++,最后求平方根即可.【详解】=,|1|z -=,=|1|0z -=,∴2113024010y x x y z -+-=⎧⎪-+=⎨⎪-=⎩,解得231x y z =⎧⎪=⎨⎪=⎩,则6x y z ++=,∴x y z ++平方根为.【点睛】本题考查相反数的意义,非负数的表达,解三元一次方程组,求平方根等知识,综合性较强,解题关键是根据题意列出三元一次方程组.28.(1)213m -<< (2)m -【分析】(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m =+⎧⎨=-⎩因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.。
云南省玉溪地区2018-2019学年下学期期末模拟七年级数学试卷(全卷三个大题,共23个小题,共6页;满分120分,考试时间120分钟)注意事项:1.本卷为试题卷。
考试解题作答必须在答题卡上,将答案书写在答题卡相应位置上,答案书写在试题卷、草稿纸上无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、填空题(本大题共6个小题,每小题3分,满分18分) 1. 7的平方根是 .2.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC , ∠1=50°,则∠2的度数为 .3.每件a 元的上衣,降价25%后的售价是 元.4.若点P (1+a , 2-a )在x 轴上,则点P 的坐标为 .5.二元一次方程组⎩⎨⎧=-=-4-233y x y x 的解是 .6.在平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为点C (4,6),则点B (﹣4,﹣1)的对应点D 的坐标是 . 二、选择题(本大题共8个小题,每小题4分,满分32分) 7.在实数5,31-,0,2π,16,0.618,﹣1.414114111…中,无理数有( ). A .1个 B .2个C .3个D .4个8.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可表示为( ).A BC 1 2 abA .3.386×108B .0.3386×109C .33.86×107D .3.386×1099.下列调查中,调查方式选择合理的是( ).A .为了解我国中小学生喜欢上数学课的人数,选择全面调查B .为了解一批火柴的质量,选择全面调查C .为了审查某篇文章中的错别字,选择抽样调查D .为了解我市学生每天参加体育锻炼的时间,选择抽样调查 10.已知a <b ,下列不等式变形中正确的是( ). A .3-a >3-b B .2a >2b C .13+a >13+bD .a 2->b 2-11.下列计算结果正确的是( ).A. 12-4-3=)( B. 12=-a a C.283-=- D. 636±=12.不等式x 23-≤5的解集在数轴上表示正确的是( ).13.点P 在第四象限,点P 到x 轴的距离为6,到y 轴的距离为5,则点P 的坐标为( ).A .(5,6) B.(5,-6) C. (6,5) D .(6,-5) 14. 如图,下列条件中,不能判断直线a ∥b 的是( ). A .∠1=∠3 B .∠2=∠3 C .∠4=∠5 D .∠2+∠4=180°abcAB C D三、解答题(本大题共9个小题,满分70分) 15.(本题6分)计算: +⨯)()(32-3-2322-1-1-9++16.(本题6分)利用数轴,解不等式组:3(2)1522x x x x --⎧⎪⎨-⎪⎩≤8>17.(本题7分)完成下列推理,并填写理由.如图,已知: AD ⊥BC ,EF ⊥BC ,∠1=∠2.求证:∠DGC =∠BAC . 证明:∵AD ⊥BC ,EF ⊥BC , ∴∠EFB =∠ADB =90°. ∴ ∥AD .∴∠1= ( ). ∵∠1=∠2, ∴∠2= .∴ ∥ ( ). ∴∠DGC =∠BAC .( ).1 2 AEG FDCB18. (本题7分)七年级三班在召开期末总结表彰会前,班主任安排班长李波去商店买奖品,下面是李波与售货员的对话: 李 波:阿姨,您好!售货员:同学,你好,想买点什么?李 波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见. 根据这段对话,请你算出钢笔和笔记本的单价各是多少元?19.(本题7分)如图,AB ∥CD ,AE 平分∠BAD ,CD 与AE 相交于F ,∠CFE =∠E .求证:AD ∥BE .20.(本题8分)如图,直线AB 、CD 相交于O ,OE 平分∠AOD ,OF ⊥CD 于点O ,∠1=35°.求∠2和∠3的度数.B CA D21 FBE21.(本题8分)如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC 的顶点在格点上. 把△ABC 向上平移3个单位长度,再向右平移4个单位长度,得到△C B A '''. (1)写出△ABC 的三个顶点的坐标;(2)画出△C B A ''';(3)连接A A '、C C ',求四边形C AC A ''的面积.-1 -41 2 3 4 5 -2 -3 -4 -5 1-3 -20 2 3 4 -1 -1 xy6 5 -5-6 BAC22.(本题9分)某校为了了解七年级600名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均取整数,单位:kg )分成五组(A :35.5~41.5;B :41.5~47.5;C :47.5~53.5;D :53.5~59.5;E :59.5~65.5依据统计数据绘制了如下两幅尚不完整的统计图.根据统计图,解答下列问题:(1)这次抽样调查的样本容量是 ,并补全频数分布直方图; (2)E 组学生的频率为 ,在扇形统计图中D 组的圆心角是 度; (3)请你估计该校七年级学生体重低于48kg 的学生大约有多少名?23.(本题12分)“全名阅读”已深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1560元,20本文学名著比20本动漫书多360元(所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,总费用不超过2000元,最多可以购买多少本文学名著?35.5 41.5 47.5 53.5 59.5 65.5体重/kg频数七年级 数学参考答案一、填空题 (本大题共6个小题,每小题3分,满分18分) 1.7±2. 40°3.a 75.04.(3,0)5. ⎩⎨⎧==23y x 6.(1,1)二、 选择题(本大题共8个小题,每小题4分,满分32分) 7.C 8.A 9.D 10.D 11. C 12.C 13.B 14. B 三、解答题(本大题共9个小题,满分70分)15.(本题6分)解:解:原式=2)12(1-32+--+……5分 =27-……5分 16.(本题6分)解: ⎪⎩⎪⎨⎧---x x x 215)2(3 解①得:x ≥-1……2分解②得:x <2……4分不等式①和②的解集在数轴上表示为:∴不等式组的解集为:-1≤x <2……6分 17. (本题7分)完成下列推理,并填写理由已知:如图,AD ⊥BC ,EF ⊥BC ,∠1=∠2.求证:∠DGC=∠BAC . 证明:∵AD ⊥BC ,EF ⊥BC , ∴∠EFB=∠ADB=90°. ∴ EF ∥AD .∴∠1= ∠BAD ( 两直线平行,同位角相等 ).……3分 ∵∠1=∠2,∴∠2=∠BAD .……4分∴ DG ∥ AB ( 内错角相等,两直线平行 ).……6分 ∴∠DGC=∠BAC .( 两直线平行,同位角相等 )……7分≤8 >x 2 ① ② 1 2 AEG FDC B18.(本题7分)解:方法一:设钢笔每支为x 元,笔记本每本y 元,…1分 据题意,得⎩⎨⎧-=++=510015102y x y x .…………4分解方程组,得⎩⎨⎧==35y x 答:钢笔每支5元,笔记本每本3元.………7分 方法二:设笔记本每本x 元,则钢笔每支(2+x )元………1分 由题意得:15x +10(2+x )=100-5…………4分 解得:x =3 2+x =5答:钢笔每支5元,笔记本每本3元.…………7分19.(本题7分) 证明:∵AE 平分∠BAD , ∴∠1=∠2,……2分 ∵AB ∥CD ,∴∠CFE=∠1,…………4分 ∴∠2=∠CFE …………5分 又∵∠CFE=∠E ∴∠2=∠E ,∴AD ∥BC .…………7分20.(本题8分) 解:解:∵OF ⊥CD ∴∠FOC=90°. …………2分 ∵∠1=35°,AB 为直线, ∴∠3+∠FOC+∠1=180°,∴∠3=180°-90°-35°=55°.…………4分 ∵∠3与∠AOD 互补,B∴∠AOD=180°-∠3=125°,…………6分 ∵OE 平分∠AOD , ∴∠2=21∠AOD=62.5°…………8分(其它解法同理给分) 21.(本题8分)解:(1)A(-2,1);B(-3,-2);C(1,-2) …………2分 (2)画出△C B A '''如图…………5分(3)S 四边形A'ACC'=S △A′A C′+S △AC C′=×7×3+×7×3=+=21.…………8分22.(本题9分)解:(1)这次抽样的样本容量是4÷8%=50,……… 1分 B 组的频数是50﹣4﹣16﹣10﹣8=12.并补全直方图………3分;(2)E 组的频率是16.0508=;………5分 -1 -4 1 2 3 4 5 -2 -3 -4 -5 1-3-20 2 3 4 -1 -1 xy6 5 -5-6 ACA 'B 'C 'D 组的圆心角的度数是360°×5010=72°,………7分 (3)该校初三年级体重低于54kg 的学生大约有800×50412+=256(人),答:该校初三年级体重低于54kg 的学生大约256人.………9分23.(本题12分)解:设每本文学名著x 元、动漫书y 元由题意得:⎩⎨⎧=-=+360)(2015604020y x y x 解得:⎩⎨⎧==2038y x ∴每本文学名著和动漫书各38元、20元……6分(2)设可以购买a 本文学名著、面积可购买(20+a )本动漫书 由题意得:)20(2038++a a ≤2000 解得:a ≤29828∴最多可以购买28本文学名著……12分。
七年级下学期期末数学试题含答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是()A.=3 B.=±2 C.=﹣4 D.﹣=﹣32.下列运算中,正确的是()A.3+3=26B.2•3=6C.18÷3=6D.(2)3=63.在﹣、、、021、()0中无理数的个数是()A.1个B.2个C.3个D.4个4.若M=(﹣3)(﹣5),N=(﹣2)(﹣6),则M与N的关系为()A.M=N B.M>NC.M<N D.M与N的大小由的取值而定5.下列各式能用平方差公式计算的是()A.(2+y)(2y+) B.(+1)(﹣﹣1)C.(﹣﹣y)(﹣+y)D.(3﹣y)(﹣3+y)6.计算的结果是()A.﹣1 B.1 C.D.27.如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140 B.70 C.35 D.248.若<y,且(a+5)>(a+5)y,则a的取值范围()A.a>﹣5 B.a≥﹣5 C.a<﹣5 D.a<59.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的15倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为千米/时,可列方程为()A.+=2 B.﹣=2C.+=D.﹣=10.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带①的边线平行,纸带②的边线不平行B.纸带①的边线不平行,纸带②的边线平行C.纸带①、②的边线都平行D.纸带①、②的边线都不平行二、填空题(本大题共5小题,每题4分,共200分)11.若分式的值为零,则= .12.分解因式:5a2﹣10ab+5b2= .13.若+(﹣2)2=0,则y﹣的平方根.14.如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2= °.15.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式⊕4<0的解集为.三、计算题(本大题共2小题,共12分)16.解下列不等式组:17.化简:四、解答题(本大题共5小题,共580分)18.(1000分)某中学体育组因教学需要本学期购进篮球和排球共100个,共花费2600元,已知篮球的单价是20元/个,排球的单价是30元/个.(1)篮球和排球各购进了多少个(列方程组解答)?(2)因该中学秋季开学成立小学部,教学资源实现共享,体育组提出还需购进同样的篮球和排球共30个,但学校要求花费不能超过800元,那么排球最多能购进多少个(列不等式解答)?19.(1000分)如图,已知∠ABC=∠E,∠E+∠AME=180°,BA、EF相交于点M,试判断BC与EF是否平行,并说明理由.20.(1200分)欢欢与乐乐两人共同计算(2+a)(3+b),欢欢抄错为(2﹣a)(3+b),得到的结果为62﹣13+6;乐乐抄错为(2+a)(+b),得到的结果为22﹣﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.21.(1200分)有许多代数恒等式可以用图形的面积来表示,如图①,它表示了(2m+n)(m+n)=2m2+3mn+n2(1)图②是将一个长2m、宽2n的长方形,沿图中虚线平方为四块小长方形,然后再拼成一个正方形(图③),则图③中的阴影部分的正方形的边长等于(用含m、n的代数式表示)(2)请用两种不同的方法列代数式表示图③中阴影部分的面积.方法①方法②(3)请你观察图形③,写出三个代数式(m+n)2、(m﹣n)2、mn关系的等式:;(4)根据(3)题中的等量关系,解决如下问题:若已知+y=7,y=10,则(﹣y)2= ;(5)小明用8个一样大的长方形(长acm,宽bcm)拼图,拼出了如图甲、乙的两种图案,图案甲是一个正方形,图案乙是一个大的长方形,图案甲的中间留下了边长是2cm的正方形小洞.则(a+2b)2﹣8ab的值为.22.(1400分)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°:(1)①若∠DCE=45°,则∠ACB的度数为;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由),若不存在,请说明理由.七年级(下)期末数学试卷参考答案一、选择题(本大题共10小题,每题3分,共30分)1.A;2.D;3.B;4.B;5.C;6.A;7.B;8.C;9.B;10.B;二、填空题(本大题共5小题,每题4分,共200分)11.﹣1; 12.5(a﹣b)2; 13.±1; 14.50; 15.<﹣6;三、计算题(本大题共2小题,共12分)16.17.四、解答题(本大题共5小题,共580分)18.19.20.21.22.七年级下学期期末数学试题含答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题2分,共12分)1下列实数中,是无理数的为 ( )A .B .38-C .πD .31 2.点P (2018,﹣2018)在 ( )A .第一象限B .第二象限C .第三象限D .第四象限3.不等式组的解集在数轴上表示为 ( )A .B .C .D .4. a 、b 都是实数,且a <b ,则下列不等式的变形正确的是 ( )A .bc ac <B .x b x a +>+C .b a ->-D .cb c a < 5.下列命题是假命题的是 ( )A .同位角相等,两直线平行B .两直线平行,同旁内角相等C .若a=b ,则|a|=|b|D .若ab=0,则a=0或b=06.如图,将三角形纸板ABC 沿直线AB 向右平行移动,使点A 到达点B 的位置,若∠CAB=45°,∠ABC=100°,则∠CBE 的度数为 ( )A .25° B.30°C .35°D .40°二、填空题(每小题3分,共24分)7.实数16平方根是 .8.已知⎩⎨⎧-==32y x 是二元一次方程54=-my x 的一组解,则实数m 的值为 .9.若关于x 、y 的二元一次方程组⎩⎨⎧=+=+1322y x a y x 的解是一对相反数,则实数a = .10已知数据有100个,最大值为132,最小值为50,取组距为10,则可分成 组.11.已知关于x 的不等式组⎩⎨⎧+>+<+1135a x x x 的解集是x >2,则a 的取值范围是 .12 如图,已知AB ∥CD ∥EF ,∠1=80°,∠2=130°,则∠3= .(12题图) (14题图)13 如果点P 在第二象限内,点P 到轴的距离是4,到y 轴的距离是3,那么点P 的坐标为 .14.如图,在平面直角坐标系中,已知点A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),把一根长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A→B→C→D→A…的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是 .三、解答题(每小题5分,共20分)15 解方程组 ⎩⎨⎧=+=-1525203y x y x16 解不等式5215312<+--x x17 已知,如图,AB ∥CD ,∠ABE=80°,EF 平分∠BEC ,EF ⊥EG ,求∠DEG 的度数.322722)5(.18-----计算四、解答题(每小题7分,共28分)19 一个正数x 的平方根是3+a 和182-a ,求x 的立方根.,并在数轴上表示解集20 在如图所示的正方形格中,每个小正方形的边长为1,格点三角形(顶点是格线的交点的三角形)ABC 的顶点A 、C 的坐标分别为(﹣4,4),(﹣1,2).(1)请在如图所示的格平面内作出平面直角坐标系;(2)将△ABC 向右平移2个单位长度,然后再向下平移3个单位长度,得到△A′B′C′,画出平移后的△A′B′C′.(3)求S △A′B′C′的面积.216月10日上午7时30分,2018吉林市国际马拉松锦标赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.22如图所示,∠AGF=∠ABC,∠1+∠2=180°(1)试判断BF 与DE 的位置关系?并说明理由;[||](2)如果,DE ⊥AC,∠2=150°,求∠AFG 的度数五、解答题(每小题8分,共16分)23方程组 的解满足-y 3 ?(1) 求m 的取值范围; 3x+y=1+m x+3y=5-4m(2)化简 2-m24中华文明,源远流长;中华汉字,寓意深广为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:根据所给信息,解答下列问题:(1)m=__________,n=______________;(2)补全频数分布直方图;(3)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?六、解答题(每小题10分,共20分)25 根据如图所给信息,回答下列问题:(1)分别求出桌子和椅子的单价是多少?(2)学校根据实际情况,要求购买桌椅总费用不超过1000元,并且购买桌子的数量是椅子数量的52 ,求该校本次购买桌子和椅子共有哪几种方案?26如图,在平面直角坐标系中,已知A(0,a),B (b,0)满足︱a-2︱+2)3(-b =0(1)求a ,b 的值;(2)如果在第二象限内有一点 M (m ,1),请用含m 的式子表示四边形ABOM 的面积;(3)在(2)条件下,当23-=m 时,在坐标轴的负半轴上是否存在点N ,使得四边形ABOM 的面积与△ABN 的面积相等?若存在,求出点N 的坐标;若不存在,请说明理由.答案一、选择题1C 2D 3A 4C 5B 6C二、填空题72± 8-1 91 109 111≤a 1230° 13(-3,4) 14(1,-1)三、解答题15解法一:①⨯2得 4026=-y x ③ 1分③+②得 5511=x 2分5=x 把5=x 代入①中得 3分4分5分解法二:由①得203-=x y ③ 1分把③代入①中得5-=y 2053=-⨯y ⎩⎨⎧-==∴55y x 方程组的解为3分把5=x 代入③中得4分5分16解:去分母,得()()30153122<+--x x 1分去括号,得3031524<---x x 2分移项、合并同类项,得3511<-x 3分系数化为1,得 1135->x4分5分17解:∵AB ∥CD ,∠ABE=80°,∴∠BEC+∠ABE=180, 1分∴∠BEC=180°﹣∠ABE=100° , 2分∵EF 平分∠BEC ,∴∠CEF=∠BEC=50°, 3分∵EF ⊥EG ,∴∠FEG=90°, 4分∴∠DEG=180°﹣∠CEF ﹣∠FEG=40°. 5分18解:原式=()()3225---- 2分 5=x 15)203(25=-+x x 52053-=-⨯=y ⎩⎨⎧-==∴55y x 方程组的解为1135-0=3225++- 4分=26+5分四、解答题19解:由题意可知: 2分 3分 4分 6分7分20解:(1)如图,建立平面直角坐标系 3分(2)如图,作图形△A ′B ′C ′ 5分(3)S C B A '''∆=12-422112213221⨯⨯-⨯⨯-⨯⨯ =12-3-1-4=4 7分21解:设今年妹妹的年龄为岁,哥哥的年龄为y 岁……………………1分 46464)8(8182,835182332=∴=±=∴-=-=+∴=∴=-++的立方根,即x x a a a aa根据题意,得: ,……………………………… 4分解得:.。