初中数学“面积法”解题分析
- 格式:doc
- 大小:212.50 KB
- 文档页数:5
初中数学“面积法”解题分析知识点说明面积法是中学数学的一种重要方法,所谓面积法就是利用图形的面积关系,建立一个或几个关于图形面积的等式或不等式,然后通过推理、演算,以达到证题目的的一种方法.三角形面积是一个数量,通过三角形面积公式把面积、边、角之间关系互相沟通,以恰当的转换求解.应用面积法解题简洁、明了,面积法是解几何题的常用方法.面积法的理论依据是面积公式,在△ABC中,约定三边长分别为a,b,c,h为边a上的高,r为内切圆半径,R为外接圆半径,则三角形的面积当问题涉及如下方面时,不妨用面积法尝试求解.(1)两个全等形面积相等;(2)一个图形的面积等于它的各部分面积之和;(3)等(同)底等(同)高的两个三角形面积相等;(4)等底(或等高)的两个三角形面积之比等于该底上的高(或对应底边)之比;(5)与平行四边形同底同高的三角形的面积是平行四边形面积的一半.面积法是中学数学中一种重要的证明方法.它在证明线段相等、角相等、不等关系、线段比例等方面都经常会用到.【典型例题1】已知,如图,在△ABC中,AB=AC,P为底边BC 上任意一点,PD⊥AB于点D,PE⊥AC于点E,求证:PD+PE是一个定值.【思路分析】本题的关键是看到垂线,就可看作三角形的高,于是连接AP,过点C 作CF⊥AB于点F,再通过面积法即可求证.【答案解析】【典型例题2】如图,以直角三角形ABC的两直角边AC,BC为一边各向外侧作正方形ACDE,BCGH,连接BE,AH 分别交AC,BC 于点P,Q.求证:CP=CQ.【思路分析】本题两次利用了借助面积的等积变换,通过等底(高)等积的三角形对应高(底)相等来证线段等,往往能起到很好的效果,本题发现△AGQ 和△BPD 底相同,而又要证明等高,即CP=CQ,很容易想到要证明两个三角形面积相等即可得证,面积相等需要用等积变换来实现,本题是借助△ABC的面积当桥梁,使△ACH 和△BCE的面积都等于△ABC的面积,又可知△ACH 和△AGQ的面积相等,△BCE和△BPD 的面积也相等,进而得证.【答案解析】【典型例题3】如图,D是Rt△ABC直角边AC上任意一点,AE∥BC,DE=2AB,求证:∠ABC=3∠EBC.【思路分析】【答案解析】《》,"。
∙∙∙∙初中数学二次函数中三角形面积问题解析一、命题意图二次函数中三角形面积相结合的题目是近年来中考数学中常见的问题,题型常考常新,体现了数形结合、化归转化、分类讨论数学思想等。
如果将三角形这一平面图形问题与二次函数相结合,就需要学生以逻辑思维和空间思维相结合的方式进行学习,以培养学生逻辑思维与空间思维能力相结合的基本数学思想,让学生学会自主思考问题的过程。
二、考点及对应的考纲要求初中数学课程教学中关于三角形面积问题的讨论一直是教学重点,这其中牵涉了二次函数与几何问题的融合,是初中数学课程中的一个难点。
求面积常用的方法:(1)直接法,若题已经给出或能由已知条件推出个边的长度并且通过坐标能找到对应的高,那么三角形的面积能直接用公式算出来。
(2)简单的组合,解决问题的途径常需要进行图形割补、等积变形等图形变换。
(3)面积不变同底等高或等底等高的转换,利用平行线得到三角形同底等高进行面积转化。
(4)如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”. 可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半。
三、试题讲解过程如图,在平面直角坐标系中,抛物线c bx ax y ++=2C (0,-4)三点.(1)求该抛物线的解析式; (2)若点D 是该抛物线上一动点,且在第四象限,当∆面积最大时,求点D 的坐标.解:(1)解法一: 由题意得,c=-4, ∴⎩⎨⎧=-+=--0441604b a b a ,解得:⎩⎨⎧-==31b a , ∴=x y 解法二: 由题意得,设y=a (x+1)(x-4), ∴∴y=(x+1)(x-4), ∴432--=x x y ,(2)解法一:由(1)可知,y=x 2-3x -4,设点D 为(x, x 2-3x -4),过点D 作DE ∥OC 交BC 设直线BC 的解析式为y=kx +b,则∙∙∙⎩⎨⎧=+-=044b k b ,∴⎩⎨⎧-==41b k ,∴y=x -4, ∴E (x, x -4)∴DE=(x -4)-(x 2-3x -4)= -x 2+4x,∵a=-1<0, ∴当x=2时, DE 取最大值,S △BCD 解法二:由(1)可知,y=x 2-3x -4, 设点D 为(x,y ),过点D 作DF ⊥OB 于点F,S △BCD =S 梯形OCDF +S △BDF -S △OBC=21x (4-y )+21(-y )(4-x )-8 =2x -2y -8=2x -2(x 2-3x -4)-8=-2x 2+8x,∵a=-2<0, ∴当x=2时, S △BCD 取最大值,∴D (2,-6解法三:由(1)可知,y=x 2-3x -4, 过点D 作DE ∥设直线BC 的解析式为y=kx +b, 则⎩⎨⎧=+-=044b k b ,∴⎩⎨⎧-==41b k ,∴y=x -4,∴设直线DE 的解析式为y=x +d,则x 2-3x -4=x +d, x 2∴当△=(-4)2-4(-4-d )=0, d=-8, S △BCD 取最大值, ∴x 2-4x +4=0, ∴(x-2)2=0, ∴x 1=x 2=2, ∴D (2,-6). 四、试题的拓展延伸及变式分析如图,在平面直角坐标系中,抛物线c bx ax y ++=2C (0,3)三点.(1)若点D 是抛物线的对称轴上一点,当ACD ∆求点D 的坐标;(2)在(1)的情况下,抛物线上是否存在除点A 得PCD ∆ 的面积与ACD ∆P 的坐标;若不存在,请说明理由.解:(1)∵抛物线c bx ax y ++=2经过A (1,0),B (3∴抛物线的对称轴l 是x=231+=2, ∵△ACD 的周长=AD+AC+CD, AC 是定值, ∴当AD+CD 最小时,△ACD 的周长最小,∵点A 、点B 关于对称轴l 对称,∴连接BC 交l 于点D ,即点D 为所求的点, 设直线BC 的解析式为n kx y +=,∴ ⎩⎨⎧=+=033n k n ,∴⎩⎨⎧=-=31n k ,∴直线BC 的解析式为3+-=x y ,∙∙当x=2时,y=-x+3=-2+3=1,∴点D 的坐标是(2,1).(2)解:由(1)可知,∵抛物线c bx ax y ++=2经过A (1,0),B (3,0),C (0,3)三点,∴c=3, ∴⎩⎨⎧=++=++033903b a b a ,解得:⎩⎨⎧-==41b a ,∴342+-=x x y ,解法一:如图,①过点A 作AP 1∥CD 交抛物线于点P 1,∴设直线AP 1的解析式为d x y +-=, ∴∴d=1,∴直线AP 1的解析式为1+-=x y , 解方程1+-x =342+-x x ,(x-1)(x-2)∴x 1=1, x 2=2,当x 1=1时,11+-=x y =0当x 2=2时,12+-=x y =-1,∴点P 1②设直线AP 1交y 轴于点E (0,1)把直线BC 向上平移2个单位交抛物线于P 2得直线P 2P 3的解析式为5+-=x y ,解方程5+-x =342+-x x , x 2-3x -2=0,∴x 3=2173+, x 4=2173-, 当x 3=2173+时,53+-=x y =2177-, 当x 4=2173-时,54+-=x y =2177+, ∴点P 2的坐标是(2173+,2177-),点P 3的坐标是(2173-,2177+), 综上所述, 抛物线上存在点P 1(2,-1),P 2(2173+,2177-), P 3(2173-,2177+), 使得△PCD 的面积与△ACD 的面积相等. 解法二:如图,过A 点作AE∥y 轴,交BC 于点E .则E 点的纵坐标为231=+-.∴ AE=2. 设点P 为(n ,342+-n n ),过P 点作PF∥y 轴,交BC 于点F ,则点F 为(n ,n -3),PF∥AE. 若PF =AE ,则△PCD 与△ACD 的面积相等.∙∙①若P 点在直线BC 的下方,则PF =(n -3)-(342+-n n )=n 2-∴n n 32+-=2.解得21=n ,12=n .当2=n 时,3-n-2∴P 1点坐标为(2,-1). 同理 当1=n 时,P 点坐标为(1,0)(不合题意,舍去).②若P 点在直线BC 的上方,则PF=(342+-n n )-(n -3)=n n 32-∴232=-n n .解得21733+=n ,4=n 当21733+=n 时,P 点的纵坐标为2177221733-=++-; 当21734-=n 时,P 点的纵坐标为2177221733+=+--. ∴点P 2的坐标是(2173+,2177-),点P 3的坐标是(2173-,2177+), 综上所述, 抛物线上存在点P 1(2,-1),P 2(2173+,2177-), P 3(2173-,2177+), 使得△PCD 的面积与△ACD 的面积相等. 在以上问题的分析中研究思路为:(1)分析图形的成因;(2)识别图形的形状;(3)找出图形的计算方法。
初中数学面积问题总结归纳
在初中数学中,面积问题主要涉及到平面图形的面积计算。
以下是在初中数学中常见的面积问题总结归纳:
1. 矩形的面积计算:矩形的面积可以通过长度和宽度的乘积来计算,即面积 = 长 ×宽。
2. 正方形的面积计算:正方形的边长相等,所以正方形的面积可以通过边长的平方来计算,即面积 = 边长 ×边长。
3. 三角形的面积计算:三角形的面积可以通过底边长和高的乘积再除以2来计算,即面积 = 底边长度 ×高 ÷ 2。
4. 平行四边形的面积计算:平行四边形的面积可以通过底边长和高的乘积来计算,即面积 = 底边长度 ×高。
5. 梯形的面积计算:梯形的面积可以通过上底与下底之和的一半再乘以高来计算,即面积 = (上底 + 下底) ×高 ÷ 2。
6. 圆的面积计算:圆的面积可以通过半径的平方再乘以π(pi)来计算,即面积 = 半径 ×半径× π。
在解决这些面积问题时,需要注意图形的参数,如边长、底边长、高、半径等,并且对于复杂图形,可能需要将其分解为多个基本图形来计算面积。
此外,也要注意单位的转换和精确计算的问题。
初中面积问题方法总结
初中面积问题通常涉及到平面几何中的基本图形,如三角形、四边形、圆等。
解决这类问题的方法主要包括以下几种:
1.公式法:对于常见的图形,如三角形、矩形、正方形、圆等,都有相应的面积计算公式。
熟练掌握这些公式,并能灵活应用,是解决面积问题的基本方法。
2. 分割法:对于复杂的图形,可以将其分割成几个简单的图形,然后分别计算这些图形的面积,最后求和。
这种方法需要准确判断图形的构成和分割方式。
3.补全法:有些图形可以通过补全成一个更简单的图形来方便计算面积。
例如,通过补全一个三角形为一个矩形或正方形,可以更容易地找到三角形的面积。
4.相似图形法:如果两个图形相似,那么它们的面积之比等于它们对应边长的平方之比。
利用这个性质,可以通过已知图形的面积来求解未知图形的面积。
5.坐标法:在平面直角坐标系中,可以通过计算图形各顶点的坐标,然后利用坐标来计算面积。
这种方法通常用于求解不规则图形的面积。
6.面积比法:在一些情况下,可以通过比较图形的面积来求解问题。
例如,在比例尺问题中,可以通过比较实际面积和图上面积的比例来求解。
7.代数法:对于一些涉及变量和方程的面积问题,可以通过代数方法来求解。
这通常涉及到建立方程或不等式,并解出未知数的值。
解决初中面积问题时,首先要仔细分析问题的条件,选择合适的方法。
同时,还需要注意计算过程中的准确性和规范性,避免因为计
算错误而导致结果不正确。
2020中考专题14——方法技巧之面积法班级姓名.【方法解读】有关面积的公理和定理1.面积公理(1)全等形的面积相等;(2)一个图形的面积等它各部分面积之和;2.相关定理(1)等底等高的两个三角形面积相等;夹在平行线间的两个共底的三角形面积相等;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD(2)等底等高的平行四边形、梯形(梯形等底应理解为两底的和相等)的面积相等;(3)等底的三角形、平行四边形面积之比等于其高之比;等高的三角形、平行四边形面积之比等于其底之比;(4)相似三角形的面积的比等于相似比的平方;(5)在两个三角形中,若两边对应相等,其夹角互补,则这两个三角形面积相等;(6)等底等高的平行四边形面积是三角形面积的2倍。
在解决几何问题时,通常可采用等积法来解决一些问题,即同一个图形采用不同的面积表示方法来建立等式.等积法也常在证明某些定理时被用到.【例题分析】例1.如图1,E 是边长为1的正方形ABCD 的对角线上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值为.图1图2例2.如图2,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B '、C '、D ',则B B '+C C '+D D '的最大值为,最小值为.例3.如图3,矩形ABCD 中,3AB cm =,6AD cm =,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S ∆=2cm .图3例4.如图4所示,在直角坐标系中,矩形ABCD的顶点A(1,0),对角线的交点5(2 P,1)(1)写出B、C、D三点的坐标;(2)若在线段AB上有一点(3,0)E,过E点的直线将矩形ABCD的面积分为相等的两部分,求直线的解析式;(3)若过C点的直线l将矩形ABCD的面积分为4:3两部分,并与y轴交于点M,求M点的坐标.图4【巩固训练】1.如图5,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PE⊥AC,E、F分别是垂足,则PE+PF的长为.图5图6图72.如图6,在平行四边形ABCD中,∠BAD=300,AB=5cm,AD=3cm,E为CD上的一个点,且BE=2cm,则点A到直线BE的距离为______。
初中数学有关求面积问题得解题技巧今天小编为大家精心整理了一篇有关数学的相关内容,以供大家阅读,更多信息请关注学习方法网!面积问题是近几年中考的热点之一,常结合一次函数、二次函数、四边形、相似形等知识而命题,具有一定的综合性.研究了近几年部分中考试题及解答,一般都通过分割,建立面积函数,用函数知识解决问题.这些分割方法通常比较麻烦,有时还回避不了分类讨论.进一步研究发现,这些问题通常可以分为两类,都可以用简单的平移法来解决.例如动点在直线上运动,利用天然的平行条件,通过等积变形,把三角形转化为有一边在坐标轴上的三角形,从而比较简洁地建立函数模型,应用函数知识解决问题.不必分割,不必分类.又或是就是利用平行线或构造平行线,实际是平移思想的具体运用.用平移的观点看待问题,会使问题显得简单、易理解,许多问题可以通过平移直线来解决。
我们先看下面这道中考题:为什么学生解决面积函数类问题,会感到很困难?近几年,一些中考试题要求学生建立面积函数再求最值,这些试题要求学生思考,要求学生充分发挥个人才智、展现独特个性、彰显创新成果的空间。
中考题是教学的指挥棒,是学生学和教师教的参照标准,中考怎么考,教师就怎么教,学生就怎么学,所以平常教学过程中,教学和学生应多注意这方面训练!教材中有平移等章节,教师和学生要转变观念、研究教材、领会教材的思想,培养学生平移等思想观念,这样才能让学生领悟教材,探索到更好的解题方法.研究各地每年的中考试题都会发现书本习题的影子,这启发我们在日常的教学活动中,要加强对课程的研究,重视书本习题的作用,对教材里的习题作适当的补充挖掘,把课本习题用足、用好、用到位,这样才能从教材简单的例、习题中获得解决问题的新方法、新思想,才能引导学生重视教材,同时培养学生探索的能力和创新的意识,达到事半功倍的效果.今天的内容就介绍到这里了。
八年级数学竞赛例题专题讲解:面积法阅读与思考平面几何学的产生源于人们测量土地面积的需要,面积关联着几何图形的重要元素边与角.所谓面积法是指借助面积有关的知识来解决一些直接或间接与面积问题有关的数学问题的一种方法.有许多数学问题,虽然题目中没有直接涉及面积,但由于面积联系着几何图形的重要元素,所以借助于有关面积的知识求解,常常简捷明快.用面积法解题的基本思路是:对某一平面图形面积,采用不同方法或从不同角度去计算,就可得到一个含边或角的关系式,化简这个面积关系式就可得到求解或求证的结果.下列情况可以考虑用面积法:(1)涉及三角形的高、垂线等问题;(2)涉及角平分线的问题.例题与求解【例1】如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的边长为______________.(全国初中数学联赛试题) 解题思路:从寻求三条垂线段与等边三角形的高的关系入手.等腰三角形底边上任一点到两腰距离之和等于一腰上的高,那么等边三角形呢?等腰梯形呢?【例2】如图,△AOB中,∠O=,OA=OB,正方形CDEF的顶点C在DA上,点D在OB上,点F在AB上,如果正方形CDEF的面积是△AOB的面积的,则OC:OD等于( )A.3:1 B.2:1C.3:2 D.5:3解题思路:由面积关系,可能想到边、角之间的关系,这时通过设元,即可把几何问题代数化来解决.【例3】如图,在□ABCD中,E为AD上一点,F为AB上一点,且BE=DF,BE与DF交于G,求证:∠BGC=∠DGC.(长春市竞赛试题)解题思路:要证∠BGC=∠DGC,即证CG为∠BGD的平分线,不妨用面积法寻找证题的突破口.【例4】如图,设P为△ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D、E、F.求证:(1);(2).(南京市竞赛试题)解题思路:过P点作平行线,产生比例线段.【例5】如图,在△ABC中,E,F,P分别在BC,CA,AB上,已知AE,BF,CP相交于一点D,且,求的值.解题思路:利用上例的结论,通过代数恒等变形求值.(黄冈市竞赛试题)【例6】如图,设点E,F,G,H分别在面积为1的四边形ABCD的边AB,BC,CD,DA上,且(是正数),求四边形EFGH的面积.(河北省竞赛试题)解题思路:连对角线,把四边形分割成三角形,将线段的比转化为三角形的面积比.线段比与面积比的相互转化,是解面积问题的常用技巧.转化的基本知识有:(1) 等高三角形面积比,等于它们的底之比;(2) 等底三角形面积比,等于它们的高之比;(3) 相似三角形面积比,等于它们相似比的平方.能力训练1.如图,正方形ABCD的边长为4cm,E是AD的中点,BM⊥EC,垂足为M,则BM=______.(福建省中考试题)2.如图,矩形ABCD中,P为AB上一点,AP=2BP,CE⊥DP于E,AD=,AB=,则CE=__________.(南宁市中考试题)第1题图第2题图第3题图3.如图,已知八边形ABCDEFGH中四个正方形的面积分别为25,48,121,114,PR=13,则该八边形的面积为____________.(江苏省竞赛试题) 4. 在△ABC中,三边长为,,,表示边上的高的长,,的意义类似,则(++)的值为____________. (上海市竞赛试题)5.如图,△ABC的边AB=2,AC=3,Ⅰ,Ⅱ,Ⅲ分别表示以AB,BC,CA为边的正方形,则图中三个阴影部分的面积之和的最大值是__________.(全国竞赛试题) 6.如图,过等边△ABC内一点P向三边作垂线,PQ=6,PR=8,PS=10,则△ABC的面积是 ( ).A. B.C.D.(湖北省黄冈市竞赛试题)第5题图第6题图第7题图7.如图,点D是△ABC的边BC上一点,若∠CAD=∠DAB=,AC=3,AB=6,则AD的长是( ).A.2 B. C.3 D.8.如图,在四边形ABCD中,M,N分别是AB,CD的中点,AN,BN,DM,CM划分四边形所成的7个区域的面积分别为,,,,,,,那么恒成立的关系式是( ).A.+=B.+=C.+= D.+=9.已知等边△ABC和点P,设点P到△ABC三边AB,AC,BC的距离分别为,,,△ABC的高为.若点P在一边BC上(如图1),此时,可得结论:++=.请直接用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立.请给予证明;若不成立,,,与之间又有怎样的关系?请写出你的猜想,不需证明.(黑龙江省中考试题)10.如图,已知D,E,F分别是锐角△ABC的三边BC,CA,AB上的点,且AD、BE、CF相交于P点,AP=BP=CP=6,设PD=,PE=,PF=,若,求的值.(“希望杯”邀请赛试题)11.如图,在凸五边形ABCDE中,已知AB∥CE,BC∥AD,BE∥CD,DE∥AC,求证:AE∥BD.(加拿大数学奥林匹克试题)12.如图,在锐角△ABC中,D,E,F分别是AB,BC,CA边上的三等分点. P,Q,R分别是△ADF,△BDE,△CEF的三条中线的交点.(1) 求△DEF与△ABC的面积比;(2) 求△PDF与△ADF的面积比;(3) 求多边形PDQERF与△ABC的面积比.13.如图,依次延长四边形ABCD的边AB,BC,CD,DA至E,F,G,H,使,若,求的值.(上海市竞赛试题)14.如图,一直线截△ABC的边AB,AC及BC的延长线分别交于F,E,D三点,求证:.(梅涅劳斯定理)15.如图,在△ABC中,已知,求的值.(“华罗庚金杯”少年数学邀请赛试题)。
数学方法篇三:面积法用面积法解几何问题是一种重要的数学方法,在初中数学中有着广泛的应用,这种方法有时显得特别简捷,有出奇制胜、事半功倍之效。
(一)怎样证明面积相等。
以下是常用的理论依据1.三角形的中线把三角形分成两个面积相等的部分。
2.同底同高或等底等高的两个三角形面积相等。
3.平行四边形的对角线把其分成两个面积相等的部分。
4.同底(等底)的两个三角形面积的比等于高的比。
同高(或等高)的两个三角形面积的比等于底的比。
5.三角形的面积等于等底等高的平行四边形的面积的一半。
6.三角形的中位线截三角形所得的三角形的面积等于原三角形面积的417.三角形三边中点的连线所成的三角形的面积等于原三角形面积的418.有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。
(二)用面积法解几何问题(常用的解题思路)1.分解法:通常把一个复杂的图形,分解成几个三角形。
2.作平行线法:通过平行线找出同高(或等高)的三角形。
3.利用有关性质法:比如利用中点、中位线等的性质。
4.还可以利用面积解决其它问题。
【范例讲析】一、怎样证明面积问题1. 分解法例1. 从△ABC的各顶点作三条平行线AD、BE、CF,各与对边或延长线交于D、E、F,求证:△DEF的面积=2△ABC的面积。
2. 作平行线法例2. 已知:在梯形ABCD中,DC//AB,M为腰BC上的中点,二、用面积法解几何问题1. 用面积法证线段相等例1. 已知:如图,AD是△ABC的中线,CF⊥AD于F,BE⊥AD交AD的延长线于E。
求证:CF=BE。
2. 用面积法证两角相等例2. 如图,C是线段AB上的一点,△ACD、△BCE都是等边三角形,AE、BD相交于O。
求证:∠AOC=∠BOC 。
3. 用面积法证线段不等例3. 如图,在△ABC中,已知AB>AC,∠A的平分线交BC于D。
求证:BD>CD。
4. 用面积法证线段的和差例4. 已知:如图,设等边△ABC一边上的高为h,P为等边△ABC内的任意一点,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F。
浅谈初中数学面积法在解题中的应用[论文摘要]随着新课程改革的不断深入,这几年我市初中数学教材也在不断更新与完善。
教材的变化带来的是中考题型的变化,但是这里解决数学问题的思想方法却是没有改变的。
笔者根据近几年的中考和日常的教学实际情况总结一下一种重要的数学方法—面积法。
一、直接运用公式法和割补法:对于三角形或者特殊四边形的面积,可以直接运用面积公式求解;对于不规则的几何图形的面积,可以运用割补法求解。
(一)规则图形面积有关的公式(二)不规则的图形可以通过割补法转化为规则图形二、运用转化法求解图形的面积:此法就是通过等积变换、平移、旋转等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。
(一)等积变换:同底等高,等底同高(二)通过平移变换求解面积(三)通过旋转变换求解面积随着新课程改革的不断深入,这几年我市初中数学教材也在不断更新与完善。
教材的变化带来的是中考题型的变化,但是这里解决数学问题的思想方法却是没有改变的。
笔者根据近几年的中考和日常的教学实际情况总结一下一种重要的数学方法—面积法。
所谓面积法,就是利用面积相等或者成比例,来证明其他的线段相等或成比例的方法。
它在初中数学中有着广泛的应用,这种方法有时显得特别简捷,有出奇制胜、事半功倍之效。
许多数学问题,表面上看来似与面积无关,但灵活运用面积法,往往能使问题顺利获解。
下面列举几个例子说说面积法在解题中的应用。
一、直接运用公式法和割补法 :对于三角形或者特殊四边形的 面积,可以直接运用面积公式求解;对于不规则的几何图形的面积,可以运用割补法求解。
(一)规则图形面积有关的公式1、三角形的面积公式:ah S 21=2、矩形的面积公式:S=长⨯宽3、平行四边形面积公式: S=底⨯高4、梯形面积公式: S=21⨯(上底+下底)⨯高 对于这些规则图形直接运用面积公式计算即可。
(二)不规则的图形可以通过割补法转化为规则图形1、 作对角线,化四边形为三角形例1. 如图1所示,凸四边形ABCD 的四边AB 、BC 、CD 和DA 的长分别是3、4、12和3,,求四边形ABCD 的面积。
师生园地2022年4月下半月㊀㊀㊀面积法在初中数学解题中的应用◉辽宁省大连市第五十一中学㊀穆永强1引言面积法解题的基本思想是以 面积 当作思维起点,将题目中的已知量与未知量通过面积公式联系起来,这样显得更为简洁与直观,有助于学生快速理清思路,使其充分体会到面积法的妙用与价值.2应用面积法证明线段相等问题证明线段相等是一类较为常见的平面几何类问题,虽然运用常规方法能够证明,但有时,过程较为繁琐㊁步骤较多,有时学生容易陷入到思维障碍当中,影响他们的解题自信.对此,教师可以指导学生应用面积法证明线段相等的问题,使其转变解题思路,帮助他们找到正确的证明流程与方法.图1例1㊀如图1,已知在等腰三角形A B C 中,A B 和A C 相等,点D 在B C 边上,其中D B 的长度与D C 相等,D E 垂直于A B ,垂点是E ,D F 垂直于A C ,垂点为F ,请尝试证明D E 与D F 相等.分析:学生通过初步审题与观察图形,发现虽然题设中给出的条件较多,也极具条理性,不过他们一时间难以想到用何种方法来证明这两条线段相等,以至于陷入到困境当中.教师可提示学生应用面积法进行证明.具体证明方法如下:因为B D =C D ,所以әA B D 的面积同әA C D 的面积相等,得出12A B D E =12A C D E ,又因为AB =AC ,所以DE =DF .虽然本题可以使用全等三角形的相关知识进行证明,不过采用面积法思路更为简洁,既可以培养学生一题多解的意识,还能够让他们感受到面积法的优势,扩充认知范围.3应用面积法准确求出线段长度求线段长度是数学解题训练中的惯设题目,贯穿于小学㊁初中㊁高中整个教学阶段,虽然这类题目大多数难度都不是特别大,不过部分题目中给出的隐藏条件难以发现,影响解题的正常进行.此时,教师在教学中,应指引学生尝试应用面积法来处理此类题目,使其通过面积的拆分准确求出线段长度,帮助他们建立解题自信.图2例2㊀如图2所示,在三角形A B C 中,B C =90c m ,A D 为高,A D =60c m ,正方形P Q MN 的顶点Q ,M 在BC 边上,顶点P ,N 分别在边A B ,A C 上,其中AD 垂直于B C ,垂点是D ,同正方形的边P N 相交于点E ,那么正方形P Q MN 的边长是多少?分析:学生读完题目后,发现题目中给出的具体数据仅限于三角形,似乎与正方形的关系不大,所以他们很难找准切入点,极易遇到解题障碍,所以教师可引导学生应用面积法,并结合方程相关知识求解.设正方形的边长是x c m ,因为12ˑB C ˑA D =12ˑP N ˑA E +12ˑB Q ˑP Q +12ˑC M ˑMN +P Q 2,代入相关数据可得,12ˑ90ˑ60=x 2ˑ(60-x )+12ˑP Q (B Q +C M )+P Q 2,由此得12ˑ90ˑ60=x2ˑ(60-x )+x 2ˑ(90-x )+x 2,将这个方程化简,解得的x 值即为正方形的边长.在本例中,常规解法是用相似三角形的相似比等于对应高线的比列出比例式求得结果,这里用面积的拆分求解有异曲同工之妙,可以有效活化学生的解题思路.4应用面积法求得线段长度的和不少平面几何类问题都与线段有一定的联系,除09Copyright ©博看网. All Rights Reserved.2022年4月下半月㊀师生园地㊀㊀㊀㊀求一条线段的长度以外,还会求几条线段的总长,这类题目难度通常较大,学生处理起来颇费周折.为此,教师在教学中,可以引导学生尝试应用面积法求几条线段长度的和,使其通过拆分面积及面积公式顺利求得正确答案.图3例3㊀如图3所示,已知梯形A B C D 中,A D ʊB C ,A B =D C ,对角线A C 与B D 相交于点O ,E 为B C 上的一个动点(E 不与B ,C 两点重合),在点E 运动过程中,如果点E 到A C ,B D 的垂线段分别是E Q ,E P ,而B C =8,B D =6,梯形的高DF 的长度是3,求E P +E Q 的和.分析:本题涉及的元素较多,线段较为复杂,还存在一个动点,结果要求两条线段之和,对学生来说难度相对较大,不易找到突破口.应用面积法的解答方法如下:因为四边形A B C D 是一个等腰梯形,对角线A C 与B D 相交于点O ,据此能证明әO B C 是一个等腰三角形,又因为点E 是梯形下底上的一个动点,点E 到A C ,B D 的垂线段分别是E Q ,E P ,作辅助线延长B D 至H ,与C H 垂直,再根据等腰三角形底边上一点到两腰的距离之和等于一腰上的高这一性质,得出E P +E Q =C H .因为S әD B C =12B C D F =12B DC H ,由已知条件,求得C H =4,E P +E Q 的和是4.本案例,由于点E 是动点学生觉得无从下手,只要证明定理 等腰三角形底边上一点到两腰的距离之和等于一腰上的高 ,再结合同一个三角形面积的不同表示问题就轻松解决.5应用面积法求证线段比例等式求证线段比例也是初中数学解题教学中的一类常见题型,由于涉及到比例难度相对较大,对学生的解题能力与思维水平要求较高,通常要用到代数方面的知识,他们很难轻松证明.教师可引领学生巧妙采用面积法证明线段的比例等式,主要通过构建面积这一载体 ,证明几何图形的线段比例等式关系,显得清晰又直观.例4㊀已知在әA B C 中,D 是B C 上的一点,设点E 是A D 的中点,连接B E ,并延长与A C 交于点F ,假设B D ʒC D =2ʒ1,求证A F ʒF C =2ʒ3.分析:首先,根据题意画出图形,如图4,把点C 与点E 连接起来.设әC E D 的面积是x ,因为A E =D E ,所以әA E C 的面积也是x .又因为B D ʒC D =2ʒ1,图4可得әB E D 的面积是2x ,又因A E =D E ,可得әA E B 的面积也是2x .设әE F C 的面积为y ,则A F F C =S әA B F S әB F C =3x -y3x +y①A F F C =S әA E F S әE F C =x -yy②由式①㊁②式联立,可得x =53y .所以A F F C =S әA E F S әE F C =x -y y =53y -y y =23yy=23,即A F ʒF C =2ʒ3成立.本题采用面积法证明线段的比例等式十分巧妙,借助面积这一纽带,清楚地证明几何图形中线段比例的等式关系,使学生的解题思路变得愈加开阔.6应用面积法有效解决函数问题在求解初中函数类试题时,除运用待定系数法之外,还经常用到数形结合法,而面积法就属于数形结合思想的一种.有时,借助面积法也可以有效解决函数问题.例5㊀如果一次函数y =4x +b 的图象与两个坐标轴之间围成一个面积为8的三角形,求该一次函数的解析式.图5分析:本题虽然是一道代数题,但其求解过程要利用三角形的面积.为此,利用函数式找出两直角边的长即可.如图5所示.列出算式12ˑ|b |ˑ|b |4=8,解之得b =8,或b =-8,所以该一次函数的解析式为y =4x +8,或y =4x -8.本例结合面积法处理代数中的一次函数类题目,其实是对数形结合思想的巧妙应用,以此增进数与形之间的关系,使其掌握更多解题方法,优化他们的解题思路.总的来说,在初中数学解题教学活动中,教师很有必要把面积法的思想融会贯通至解题实践中,引领学生学会转变解题思路,思维变得发散与开阔起来,使其通过面积法的有效应用,将一些比较抽象㊁难懂㊁复杂的数学试题变得直观㊁易懂与简单,这对培养学生的解题能力㊁数学思想等均有着相当积极的意义.Z 19Copyright ©博看网. All Rights Reserved.。
初中数学“面积法”解题分析
姓名:__________
指导:__________
日期:__________
面积法是中学数学的一种重要方法,所谓面积法就是利用图形的面积关系,建立一个或几个关于图形面积的等式或不等式,然后通过推理、演算,以达到证题目的的一种方法.三角形面积是一个数量,通过三角形面积公式把面积、边、角之间关系互相沟通,以恰当的转换求解.应用面积法解题简洁、明了,面积法是解几何题的常用方法.
面积法的理论依据是面积公式,在△ABC中,约定三边长分别为a,b,c,h为边a上的高,r为内切圆半径,R为外接圆半径,则三角形的面积当问题涉及如下方面时,不妨用面积法尝试求解.(1)两个全等形面积相等;(2)一个图形的面积等于它的各部分面积之和;(3)等(同)底等(同)高的两个三角形面积相等;(4)等底(或等高)的两个三角形面积之比等于该底上的高(或对应底边)之比;(5)与平行四边形同底同高的三角形的面积是平行四边形面积的一半.面积法是中学数学中一种重要的证明方法.它在证明线段相等、角相等、不等关系、线段比例等方面都经常会用到.【典型例题1】已知,如图,在△ABC中,AB=AC,P为底边BC 上任意一点,PD⊥AB于点
D,PE⊥AC于点E,求证:PD+PE是一个定值.
【思路分析】本题的关键是看到垂线,就可看作三角形的高,于是连接AP,过点C 作CF⊥AB于点F,再通过面积法即可求证.
【答案解析】
【典型例题2】如图,以直角三角形ABC的两直角边AC,BC为一边各向外侧作正方形ACDE,BCGH,连接BE,AH 分别交AC,BC于点P,Q.求证:CP=CQ.
【思路分析】本题两次利用了借助面积的等积变换,通过等底(高)等积的三角形对应高(底)相等来证线段等,往往能起到很好的效果,本题发现△AGQ 和△BPD 底相同,而又要证明等高,即CP=CQ,很容易想到要证明两个三角形面积相等即可得证,面积相等需要用等积变换来实现,本题是借助△ABC的面积当桥梁,使△ACH 和△BCE的面积都等于△ABC的面积,又可知△ACH 和△AGQ的面积相等,△BCE和△BPD 的面积也相等,进而得证.
【答案解析】
【典型例题3】如图,D是Rt△ABC直角边AC上任意一点,AE∥BC,DE=2AB,求证:∠ABC=3∠EBC.
【思路分析】
【答案解析】。