线性变换的运算.
- 格式:ppt
- 大小:818.00 KB
- 文档页数:29
8.2 线性变换的运算V 是数域F 上的向量空间,用()L V 表示数域F 上向量空间V 的一切线性变换所成的集合.我们将在()L V 中引进加法、数乘和乘法.如何研究线性变换:注10第一个手段是对某空间V 的全体线性变换的集合()L V 引进运算:加法、数乘和乘法。
这样()L V 构成F 上的向量空间。
我们可以利用这些运算来研究线性变换。
20第二个手段。
在空间给定一个基,在该基下引入线性变换的矩阵,从而把空间的几何对象“线性变换”与数量对象“矩阵”进行了对应。
在解析几何中,点与坐标的对应称为“形”“数”转换,现在的线性变换与矩阵的对应是更广义的“形”“数”转换。
这种转换有两方面的好处:一方面可把向量空间与线性变换的一些问题转换为数字计算的问题;另一方面可把一些数量关系的问题联系上空间的性质(如线性变换的性质)而得到解决。
一、加法及其算律定义8.2.1 设()L V στ∈,,对于V 的每一向量ξ,令()()+στξξ与之对应,这样得到V 的一个变换,叫做σ与τ的和,记作+στ,即+στ:()()+στξξξ或()()()()+=+στστξξξ.求σ与τ的和的运算叫做σ与τ的加法.注10先定义和,再定义加法,()()+στξξ是V 中的向量。
+στ应看做一个整体,代表V 的一个新变换。
例8.2.1 设向量空间3F 的两个线性变换,对任意的()3123=x x x F ∈,,ξ,规定: ()()1231212=+x x x x x x x σ,,,,,()()123123312=+0x x x x x x x x x τ---,,,,,则()()()12312323=2x x x x x x x x στ+-,,+,,.命题1 V 的线性变换σ,τ的和+στ也是V 的一个线性变换.即()L V στ∀∈,,()+L V στ∈。
事实上,对任意的a b F ∈,,V ∈,ξη,()()()()()()()()()()()()()()()()()()()()+=.a b a b a b a b a b a b a b a b στστσσττστστστστστστ+=+=+⎡⎤⎡⎤⎣⎦⎣⎦=+⎡⎤⎡⎤⎣⎦⎣⎦=+⎡⎤⎡⎤⎣⎦⎣⎦+++++++++++ξηξηξηξηξηξξηηξξηηξη所以+στ是V 的一个线性变换.容易证明,线性变换的加法满足交换律和结合律.对任意的()L V ρστ∈,,,(1)+=+σττσ;(2)()()++=++ρστρστ;(3)令θ表示V 的零变换,对任意的()L V σ∈,有+=θσσ;(4)设()L V σ∈,σ的负变换σ-是指V 到自身的映射()σσ--:ξξ.σ-也是V 的线性变换,并且()+σσθ-=.命题2 σ-也是V 的线性变换。
第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。
2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++ΛΛ3)设向量组n ααα,,,21Λ线性相关,则向量组)(),(),(21n T T T αααΛ也线性相关。
线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。
线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσΛ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21Λ是V 的一个基,且n n a a a εεεεσ12211111)(+++=Λn n a a a εεεεα22221122)(+++=ΛΛΛΛΛn nn n n n a a a εεεεσΛ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσΛΛ=A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσΛΛΛ== 则称A 为线性变换σ在基n εεε,,,21Λ下的矩阵。
4. 设n εεε,,,21Λ是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。
第七章 线性变换学习单元2: 线性变换的运算_________________________________________________________● 导学学习目标:理解线性变换的加法、数乘、乘法运算的定义;了解线性变换关于加法、数乘、乘法的运算性质;理解线性变换的幂运算及线性变换的多项式。
学习建议:建议大家多看书,多看例题,一个一个的对运算进行理解掌握,可以自己对某个具体线性空间的某些线性变换进行加法、数乘、乘法运算,看看运算后的线性变换是怎样的。
重点难点:重点:深刻理解线性变换的加法、数乘、乘法运算的定义。
难点:理解可逆线性变换的概念及线性变换的多项式。
_________________________________________________________● 学习内容一、线性变换的加法、数乘、乘法的定义及性质定义 设V 为数域P 上线性空间,,,()k P A B L V ∈∈令:()kA V V kA αα→→; :()()A B V VA B ααα+→→+;:(())AB V V A B αα→→。
称kA 为k 与A 的数乘,A B +为A 与B 的和,AB 为A 与B 的积。
注:()()(())kA k A αα=(写成()kA α);()()()()A B A B ααα+=+;()()(())AB A B αα=。
定理 ,,()kA A B AB L V +∈。
性质(1)A B B A +=+;(2)()A B ++C (A B =++C );(3)A O A +=;(4)对()A L V ∈,存在()B L V ∈,使A B O +=;(5)1A A =;(6)()()kl A k lA =;(7)()k l A kA lA +=+;(8)()k A B kA kB +=+;(9)(A B C )=(AB ) C ;(10)A (B + C )=AB +AC ;(11)(A +B ) C =AC +BC ;(12)EA =A E =A ;(13)()()k AB kA B =;(14)(1)A A -=-。
第七章 线性变换(小结)本章的重点: 线性变换的矩阵以及它们对角化的条件和方法. 本章的难点: 不变子空间的概念和线性变换与矩阵的一一对应关系.线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内在联系起着重要作用.线性变换的概念是解析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是与之相适应的矩阵理论和方法)在解析几何、微分方程等许多其它应用学科,都有极为广泛的应用.本章的中心问题是研究线性变换的矩阵表示,在方法上则充分利用了线性变换与矩阵对应和相互转换. 一、线性变换及其运算1. 基本概念: 线性变换,可逆线性变换与逆变换; 线性变换的值域与核,秩与零度; 线性变换的和与差, 乘积和数量乘法, 幂及多项式.2. 基本结论(1) 线性变换保持零向量、线性组合与线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组(2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换.(3) 线性变换的基本运算规律(略).(4) 一个线性空间的全体线性变换关于线性变换的加法与数量乘法作成一个线性空间.(5) 线性空间V 的线性变换A 的象Im(A )= A V 与核ker A = A -1(0) (a) A 的象Im(A )= A V 与核ker A = A -1(0)是V 的(A -)子空间. (b)若dim(V )=n ,则Im(A )由V 的一组基的象生成: 即设V 的一组基n ααα,...,,21, Im(A )= A V =L(A α1, A α2,… ,A αn )={ A α|α∈V }.ker A = A -1(0)= { α∈V | A α=0}.(c)A 的秩(dim Im(A ))+A 的零度(dim ker A )=n .(d)A 是双射⇔A 是单射⇔ Ker(A )={0}⇔A 是满射.(e)像空间的一组基的原像与核空间的一组基合并就是线性空间V 的一组基:取Im A 的一组基r βββ ,,21,存在,,...,21r ααα使得A i i βα=,i=1,2,…,r. 再取ker A 的基,,...1n r αα+则,,...,21r ααα,,...1n r αα+就是V 的一组基. 二、线性变换与矩阵1.基本概念:(1)线性变换在基下的矩阵:设A ∈L(V),取定n 维线性空间V 的一组基n ααα,...,,21,则A α1, A α2,… ,A αn 可由α1,α2,…,αn 线性表示, 即(A α1, A α2,… ,A αn )=( n ααα,...,,21)A ,矩阵A 称为线性变换A 在此基下的矩阵.(2) 一个线性变换在不同基下的矩阵相似:设n ααα,...,,21,n βββ,...,,21是线性空间V 的两组基,(n βββ,...,,21)=(n ααα,...,,21)P, (A α1, A α2,… ,A αn )=( n ααα,...,,21)A ,则(A β1, A β2,… ,A β n )=(n βββ,...,,21)AP P 1-.2.基本结论(1) 若n ααα,,,21 是线性空间V 的一个基, V n ∈∀βββ,,,21 ,则存在唯一A )(V L ∈,使得A n i i i ,,2,1,)( ==βα.(2) 在取定n 维线性空间V 的一个基之后,将V 的每一线性变换与它在这个基下的矩阵相对应,则这个对应使得线性变换的和、乘积、数量乘积的矩阵分别对应于矩阵的和、乘积、数量乘积;可逆线性变换与可逆矩阵对应,且逆变换对应逆矩阵。
第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。
2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++3)设向量组n ααα,,,21 线性相关,则向量组)(),(),(21n T T T ααα 也线性相关。
线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。
线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21 是V 的一个基,且n n a a a εεεεσ12211111)(+++= n n a a a εεεεα22221122)(+++=n nn n n n a a a εεεεσ ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσ =A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσ ==则称A 为线性变换σ在基n εεε,,,21 下的矩阵。
4. 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。
第七章 线性变换§7.1 线性变换的定义与判别一、线性变换的定义:定义1 设V 为数域P 上线性空间,A 为V 的一个变换(即V ⟶V 的映射),若A 保持加法和数乘运算,即A (α+β)=A (α)+ A (β),∀α,β∈V ,A (kα)=k A (α),∀k ∈P ,则称A 为V 的一个线性变换.注记: 以后我们用花体拉丁字母A,B,C,...表示V 的线性变换,除了特别说明外,本章节中V 均指数域P 上有限维线性空间.例1.说明下列变换均为线性变换: (1)把V 中任一向量都映射为0(称为零变换,记作0); (2)把V 中任一向量α映射为本身(恒等变换,记作E ); (3)取定k ∈P ,把V 中的每一个向量α映射为kα(数乘变换,记作k ).例2.判定下列规则σ是否为指定线性空间的线性变换: (1)ℝ,x -:σ(f (x ))=f′(x );(2)C ,a,b -: σ(f (x ))=∫f (t )dt x0;(3)P n×n : σ(A )=A +A ′,σ2(A )=SAT ,S,T 为固定二个n ×n 矩阵. (4)ℝ,x -n : σ1(f (x ))=xf (x ),σ2(f (x ))=f (x )+1. 解:可验证(1)-(3)均为线性变换,下面证明(1): ∀ f (x )∈ℝ,x -,其导函数唯一确定,且f (x )∈ℝ,x -,因而σ为V ⟶V 的变换,即V 的一个变换,σ(f (x )+g (x ))=(f (x )+g (x ))′=f ′(x )+g ′(x )= σ(f (x ))+ σ(g (x )), ∀k ∈ℝ,σ(kf (x ))=(kf (x ))′=kf ′(x )=kσ(f (x )).(4): σ1与σ2均不是线性变换,取f (x )=x n−1+1=ℝ,x -n ,但σ1(f (x ))=xf (x )=x n +x ∉ℝ,x -n , 因而σ1不是ℝ,x -n 的一个变换, σ2是ℝ,x -n 的一个变换,但运算不保持,因而不是线性变换.习题:P320、1例3.设α为通常几何空间ℝ3中固定的向量,把空间中每个向量η映射为η在α上的内映射(正投影),即Πα: η⟶(α∙η)(α∙α)α是ℝ3的线性变换,这里(α∙η),(α∙α)表示通常向量的内积.证:如图,Πα(η)=OD ⃗⃗⃗⃗⃗ =ηcos (η∙α)α|α|=(α∙η)(α∙α)α,唯一确定, 从而Πα为ℝ3的一个变换,如图,AC ⊥W(垂足为C),OCD LA Wα1α2η因此L 与W 为ℝ3的子空间且ℝ3=W ⊕L ,令 η=α1+α2,α1=OD⃗⃗⃗⃗⃗ =Πα(η),α2∈W , δ=β1+β2,β1=Πα(δ)∈L,β2∈W ,则η+δ=(α1+β1)+(α2+β2),α1+β1∈L,α2+β2∈W , 从而Πα(η+δ)=α1+β1=Πα(η)+Πα(δ), 同理,Πα(kη)=kΠα(η).二、线性变换的性质: 设A 为V 的线性变换,则: (1) A (0)=0, A (−α)=−A (α),∀α∈V ; (2) A (k 1α1+k 2α2+⋯+k t αt )=k 1A (α1)+k 2A (α2)+⋯+k t A (αt ); (3) A 把线性相关的向量组映射为线性相关的向量组(反之不真).2011-04-02A : V ⟶V 线性变换性质: (3) A 为V 中线性相关的向量组,映为V 中线性相关的向量组,即α1,α2,…,αs 相关⟹A (α1), A (α2),…, A (αs )相关;但A (α1), A (α2),…, A (αs )线性相关⇒α1,α2,…,αs 相关. 如A =0,∀ α∈V,α≠0, A (α)=0.(4)设α1,α2,…,αn 为V 的一个基,∀ α∈V,α=x 1α1+x 2α2+⋯+x n αn ⟹A (α)=A (x 1α1+x 2α2+⋯+x n αn ) 线性变换A 由V 中一个基中的像唯一确定;(5)设α1,α2,…,αn 为V 的一个基,则对V 中任一向量组β1,β2,…,βn 必存在一个线性变换 A : V ⟶V ,使得:A (αi )=βi ,1≤i ≤n ;证:作V ⟶V 映射:A (α)= x 1β1+x 2β2+⋯+x n βn ,其中:α=x 1β1+x 2β2+⋯+x n βn ,则A (αi )=βi ,1≤i ≤n ; 下证:A 为V 的线性变换:∀ α=x 1α1+x 2α2+⋯+x n αn ∈V,β=y 1α1+y 2α2+⋯+y n αn ∈V,A (α+β)= A .(x 1+y 1)α1+(x 2+y 2)α2+⋯+(x n +y n )αn /=(x 1+y 1)β1+(x 2+y 2)β2+⋯+(x n +y n )βn=(x 1β1+x 2β2+⋯+x n βn )+(y 1β1+y 2β2+⋯+y n βn ) = A (x 1α1+x 2α2+⋯+x n αn )+ A (y 1α1+y 2α2+⋯+y n αn )= A (α)+A (β)同理,∀k ∈P ,A (kα)=k A (α).§7.2 线性变换的运算为方便,引入记号:Hom (V,V ),它表示数域P 上线性空间V 的所有线性变换的集合。
线性变换及其运算概述:线性变换是数学中重要的概念之一。
它是指将一个向量空间中的元素映射为另一个向量空间中的元素,同时保持线性关系的变换。
线性变换可以用矩阵来表示,并且有着丰富的运算规则。
定义:在向量空间V和W之间,如果存在一个映射T,对于任意的向量u和v以及任意的标量k,满足以下两个条件:1.T(u + v) = T(u) + T(v)2.T(ku) = kT(u)这样的映射T被称为线性变换。
线性变换保持向量的线性组合关系,即映射后的向量的线性组合等于原向量线性组合的映射。
线性变换可以将向量空间中的向量映射到另一个向量空间中。
属性:线性变换有许多重要的属性:1.线性变换保持零向量不变:T(0) = 02.线性变换保持向量的长度和角度:对于向量v和w,如果它们的夹角为θ,则经过线性变换后的向量T(v)和T(w)的夹角也为θ,且长度也相同。
3.线性变换保持向量的共线性:对于向量v和w,如果它们共线,则线性变换后的向量T(v)和T(w)依然共线。
4.线性变换在两个向量的和上的作用等于这个线性变换在每个向量上的作用之和:T(u + v) = T(u) + T(v)5.线性变换在一个向量上的作用乘以一个标量等于这个标量乘以这个线性变换在向量上的作用:T(ku) = kT(u)线性变换的运算:线性变换可以进行加法、数乘和复合运算,具体如下:1.加法运算:对于线性变换T1和T2,它们的加法运算是指将T1作用于一个向量v,然后将T2作用于T1作用后的向量T1(v)。
即 (T1 + T2)(v) = T2(T1(v)),其中v为向量。
2.数乘运算:对于线性变换T和标量k,它们的数乘运算是指将T作用于一个向量v,然后将k乘以T作用后的向量T(v)。
即(kT)(v) = k(T(v)),其中v为向量。
3.复合运算:对于线性变换T1和T2,它们的复合运算是指先将T2作用于向量v,然后再将T1作用于T2作用后的向量T2(v)。