几种典型带电体的场强和电势公式
- 格式:doc
- 大小:768.50 KB
- 文档页数:7
静电场公式集锦
1、元电荷: e =×10-19C (元电荷是个数值)
2、电场力:
1、定义式:F =qE
2、点电荷:2
21r q q k F = 3、电场强度: 1、定义式:E =F/q
2、点电荷:2r
Q k E = 3、匀强电场:d U E AB =
4、电势差: 1、定义:U AB =φA -φB
2、电势差与电场强度关系:U AB =Ed (d 为沿电场线方向的距离)
3、电场力做功与电势差关系:q W U AB
AB =
5、电场力做功:
1、电场力做功与电势能关系:W AB =Ep A -Ep B
2、电场力做功与电势差关系:W AB =qU AB (与路径无关)
6、电势能和电势: Ep A =q φA
7、电容
1、定义式:C =Q/U (C 与Q 、U 无关)
2、平行板电容器决定式:kd
S C r πε4=(C 与S 成正比、与d 成反比) 8、粒子在电场中加速: 动能定理:22
1mv qU =-0 9、粒子在电场中偏转: 1、时间:0
v L t = 2、加速度: md
Uq m Eq m F a === 3、竖直偏转位移:221at y =
4、偏转角度(速度与水平夹角):0
0tan v at v v y ==θ 电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
电场强度与电势均由电场本身决定,电场力与电势能还与带电体的电量多少和电荷正负有关; 处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,净电荷只分布于导体外表面。
几种典型带电体的场强和电势公式
本文介绍了几种电荷分布所产生的场强和电势。
首先是均匀分布的球面电荷,对于球面外的情况,电场强度矢量为
1/4πεr*q/r^2,对于球面内的情况,电场强度矢量为q/4πεR^3.电势分布方程为q/4πεr(球外)和q/4πεR(球内)。
其次是均匀分布的球体电荷,对于球体内的情况,电场强度矢量为1/4πεR*q/r^2,对于球体外的情况,电场强度矢量为1/4πεr*q/r^2.电势分布方程为q/8πεR(r R)。
第三种情况是均匀分布的无限大平面电荷,电场强度矢量为σ/2ε(±i),电势分布方程为σ(r-r0)/2ε。
如果以带电平面为零电势参考点,则电势表达式为-Ux(x≥0)和Ux(x≤0),其中Ux=σx/2ε。
第四种情况是均匀分布的无限长圆柱柱面电荷,对于柱面外的情况,电场强度矢量为λ/2πεr,对于柱面内的情况,电场强度矢量为λ/2πεR。
电势分布方程为ln(r/a)*λ/2πε(r>a)和
ln(R/a)*λ/2πε(r<a),其中a为零电势参考点。
最后一种情况是均匀分布的无限长带电圆柱体,对于圆柱体内的情况,电场强度矢量为ρr/2ε,对于圆柱体外的情况,电场强度矢量为ρR^2/r/2ε。
电势分布方程为-ρr^2/4ε(r≤R)和-ρR^2/2εln(r/R)(r>R)。
高中物理电场公式1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109Nm2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-QuAb (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ε:介电常数)14.带电粒子在电场中的加速(V0=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度V0进入匀强电场时的偏转(不考虑重力作用的情况下)类平抛运动;垂直电场方向:匀速直线运动L=V0t,平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m高中物理恒定电流公式1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)};5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)};6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)};7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R;8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成反比)电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+电流关系 I总=I1=I2=I3 I并=I1+I2+I3+电压关系 U总=U1+U2+U3+ U总=U1=U2=U3功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+10.欧姆表测电阻:(1)电路组成 (2)测量原理两表笔短接后,调节R0使电表指针满偏,得Ig=E/(r+Rg+R0);接入被测电阻Rx 后通过电表的电流为Ix=E/(r+Rg+R0+Rx)=E/(R中+Rx);由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
⾼中物理电学基本公式有哪些 对于⾼中物理电学知识的学习,应该以电学实验为基础,通过切实的实际操作从⽽更加直观的观察到相应的电学原理,下⾯是店铺给⼤家带来的⾼中物理电学基本公式,希望对你有帮助。
⾼中物理电学公式 ⾼中物理电场公式 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作⽤⼒(N),k:静电⼒常量k=9.0×109Nm2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),⽅向在它们的连线上,作⽤⼒与反作⽤⼒,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是⽮量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强⽅向的距离(m)} 6.电场⼒:F=qE {F:电场⼒(N),q:受到电场⼒的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场⼒做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场⼒所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场⼒做功与路径⽆关),E:匀强电场强度,d:两点沿场强⽅向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场⼒做功与电势能变化ΔEAB=-WAB=-QuAb (电势能的增量等于电场⼒做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平⾏板电容器的电容C=εS/4πkd(S:两极板正对⾯积,d:两极板间的垂直距离,ε:介电常数) 14.带电粒⼦在电场中的加速(V0=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒⼦沿垂直电场⽅向以速度V0进⼊匀强电场时的偏转(不考虑重⼒作⽤的情况下)类平抛运动;垂直电场⽅向:匀速直线运动L=V0t,平⾏电场⽅向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m ⾼中物理恒定电流公式 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载⾯的电量(C),t:时间(s)} 2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截⾯积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}; 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)};6.焦⽿定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)};7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R;8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联串联电路(P、U与R成正⽐) 并联电路(P、I与R成反⽐) 电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系 U总=U1+U2+U3+ U总=U1=U2=U3 功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+ 10.欧姆表测电阻:(1)电路组成 (2)测量原理 两表笔短接后,调节R0使电表指针满偏,得Ig=E/(r+Rg+R0);接⼊被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+R0+Rx)=E/(R中+Rx);由于Ix与Rx对应,因此可指⽰被测电阻⼤⼩ (3)使⽤⽅法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
匀强电场 等量异种点电荷的电场 等量同种点电荷的电场- - - - 点电荷与带电平+孤立点电荷周围的电场几种典型电场线分布示意图及场强电势特点表重点一、场强分布图二、列表比较 下面均以无穷远处为零电势点,场强为零。
孤立的 正点电荷电场线直线,起于正电荷,终止于无穷远。
场强离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。
电势离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。
等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。
孤立的 负点电荷电场线直线,起于无穷远,终止于负电荷。
场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。
电势离场源电荷越远,电势越高;与场源电荷等距的各点组成的球面是等势面,每点的电势为负。
等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。
等量同种负点电荷电场线大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是直线。
电势每点电势为负值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是背离中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先升高再降低,中点电势最高不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向中点;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
电势中点电势最低,由中点至无穷远处逐渐升高至零。
等量同种正点电荷电场线大部分是曲线,起于正电荷,终止于无穷远;有两条电场线是直线。
电势每点电势为正值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是指向中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先降低再升高,中点电势最低不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向无穷远处;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
匀强电场等量异种点电荷的电场等量同种点电荷的电场点电荷与带电平孤立点电荷周围的电场 几种典型电场线分布示意图及场强电势特点表重点一、场强分布图二、列表比较 下面均以无穷远处为零电势点,场强为零。
孤立的正点电荷 电场线直线,起于正电荷,终止于无穷远。
场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。
电势离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。
等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。
孤立的 负点电荷电场线直线,起于无穷远,终止于负电荷。
场强离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。
电势离场源电荷越远,电势越高;与场源电荷等距的各点组成的球面是等势面,每点的电势为负。
等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。
等量同种负点电荷电场线大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是直线。
电势每点电势为负值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是背离中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先升高再降低,中点电势最高不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向中点;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
电势中点电势最低,由中点至无穷远处逐渐升高至零。
等量电场大部分是曲线,起于正电荷,终止于无穷远;有两条同种正点电荷线电场线是直线。
电势每点电势为正值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是指向中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先降低再升高,中点电势最低不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向无穷远处;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
几种电荷分布所产生的场强和电势1、均匀分布的球面电荷(球面半径为R ,带电量为q )电场强度矢量:⎪⎩⎪⎨⎧<=>=)(球面内,即。
)(球面外,即R r r E R r rr q r E 0)( , 41)( 3επ电势分布为:()()⎪⎪⎩⎪⎪⎨⎧==(球内)。
(球外), 41 41 0 0R qr U r q r U επεπ2、均匀分布的球体电荷(球体的半径为R,带电量为q )电场强度矢量:⎪⎪⎩⎪⎪⎨⎧>=<=)(球体外,即。
)(球体内,即,R r rr q r E R r R r q r E 41)( 41)( 3030επεπ 电势分布为:()()()⎪⎪⎩⎪⎪⎨⎧<-=>=即球内)(。
即球外)(, 3 81 41 3220 0R r R r R q r U R r r q r U επεπ 3、均匀分布的无限大平面电荷(电荷面密度为σ)电场强度矢量:离无关。
)(平板两侧的场强与距 ) (2)(0i x E ±=εσ电势分布为:()()r r r U -=002εσ其中假设0r 处为零电势参考点。
若选取原点(即带电平面)为零电势参考点。
即00=U 。
那么其余处的电势表达式为:()()⎪⎪⎩⎪⎪⎨⎧≤=≥-=0 2 0 2 00x x x U x x x U εσεσ 4、均匀分布的无限长圆柱柱面电荷(圆柱面的半径为R ,单位长度的带电量为λ。
)电场强度矢量 ⎪⎩⎪⎨⎧<=>=,即在柱面内)(。
即在柱面外)(,R r r E R r r r r E 0)( , 2 )( 2επλ 电势分布为:()()⎪⎪⎩⎪⎪⎨⎧<=>=即柱体内)(。
即柱体外)( ln 2 , ln 2 00R r R r r U R r r r r U a a επλεπλ其中假设a r 处为零电势参考点。
且a r 处位于圆柱柱面外部。
(即a r >R )。
若选取带电圆柱柱面处为零电势参考点。
(即()0=R U )。
那么,其余各处的电势表达式为:()()()()⎪⎩⎪⎨⎧≥-=≤≤=即在圆柱面外即在圆柱面内 ln 2 0 0 0R r R r r U R r r U επλ 5、均匀分布的无限长带电圆柱体(体电荷密度为ρ、半径为R 。
)电场强度矢量: ()()()()⎪⎪⎩⎪⎪⎨⎧≥=≤≤=圆柱体外圆柱体内2 0 2 2020R r r r R r E R r r r Eερερ电势: ()()()()⎪⎪⎩⎪⎪⎨⎧≥+-=≤≤-=圆柱体外圆柱体内ln 2 4 0 4020202R r r R R R r U R r r r U ερερερ 其中假设圆柱体轴线处为零电势参考点。
即()00==r U 。
6、均匀分布的带电圆环(带电量为q ;圆环的半径为R 。
)在其轴线上x 处的电场强度和电势电场强度矢量: ()()0232241x Rxqxx E+=επ。
其中0x 为轴线方向的单位矢量。
讨论: (a )当 20 4 )( x iq x E x R x p επ ≅∞→>>时或。
此时带电圆环可视为点电荷进行处理。
(b )当0)0( 0 =→<<p E x R x 时或 。
即,带电圆环在其圆心处的电场强度为零。
电势: ()()21220 41R x qx U +=επ 。
其中电势的零参考点位于无穷远处。
带电圆环在其圆心处的电势为: Rq x U x 004)(πε== 。
7、均匀分布的带电直线(其中,线电荷密度λ,直线长为l ) (1)在直线的延长线上,与直线的端点距离为d 的P 点处:电场强度矢量: ()()i d l d i d l d l d E p ⎪⎭⎫ ⎝⎛+-=+=114 400επλεπλ 。
()ddl d U p +=ln 40επλ 。
(2)在直线的中垂线上,与直线的距离为d 的Q 点处:电场强度矢量为:()j d l d lj d l d l d E Q 2202242 42 4+=+⎪⎭⎫⎝⎛=επλεπλ。
电势:()222202222044ln 42222ln4dl l d l l d l l d l l d U Q ++-++=+⎪⎭⎫⎝⎛+-+⎪⎭⎫⎝⎛+=επλεπλ。
(3)在直线外的空间中任意点处:电场强度矢量: ()j E i E r E y x+= 。
其中:()()⎪⎪⎩⎪⎪⎨⎧-=-=210120 4 4 θθεπλθθεπλCos Cos E Sin Sin E y x 。
或者改写为另一种表示式:即: k E r E z r E z r p+=0),( 。
其中:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++--+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++++++--++-+-=22220222222220)2(1)2(1 4 )2()2()2(1)2()2()2(1 4 l z r l z r E l z r l z r l z l z r l z r l z r E z r επλεπλ电势: 22220)2(2)2(2ln 4lz r l z lz r l z U p -++-++++=επλ 。
(4)若带电直线为无限长时,那么,与无限长带电直线的距离为d 的P 点处: 电场强度矢量: ()()r rr E d d d E p p 2000 2 2επλεπλ==或 。
电势: ()()rr r U d d d U p p 0000ln 2 ln 2επλεπλ==或 。
其中假设d 0或(r 0)为电势的零参考点。
(5)半无限长带电直线在其端点处:(端点与带电直线的垂直距离为d )电场强度矢量:dE E j E i E E y x y x 0 4 επλ==+=其中。
8、电偶极子P的电场强度和电势(1)在电偶极子的延长线上x 处:其中(X >>l )电场强度矢量:()()30302 41 2 41r Pr E x P x Eεπεπ==或 。
电势: ()()2020 41r U 41r Px P x U επεπ==或 。
(2)在电偶极子的中垂线上y 处:其中(Y >>l )电场强度矢量: ()30 41yPy Eεπ-= 。
电势: ()0 410=⎪⎭⎫⎝⎛-+=r q r q y U επ 。
(3)在空间中任意点r 处:其中(r >>l )电场强度矢量:(采用平面极坐标系)()13 4 2 4122003030+=⎪⎭⎫ ⎝⎛+=θεπθθθεπCos r PE r PSin r r pCos r E 其大小为,方向为⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==--θϕθθtg tg E E tg E E arctgrr 2111。
其中ϕ为E 与0r 之间的夹角。
电势:()302 41 41rrP r Cos P r U o•==επθεπ 。
电场强度矢量的另一种表达式为:上式电场强度矢量的表达式就是将电场强度E 矢量分解在电偶极矩e P 和矢径r的方向上。
可以证明:该表达式与电场强度的平面极坐标表达式是相等的。
()[]r p r p rE e e ˆˆ3413⋅+-=επ方向的单位矢量。
为矢径式中:r r rˆ=若采用二维笛卡尔坐标系(平面直角坐标系):因为各物理量之间的关系为:。
, rxCos 22222yx x y x r +==+=θ 所以电势的表达式为: ()()23220 41y x Pxr U +=επ 。
而电场强度的表达式为: j E i E E y x+= 。
其中:()()()。
, 3 41 2 41252202522220y x Pxy y U E y x y x P x U E yx +=∂∂-=+-=∂∂-=επεπ其大小为:()222220224 41yx yx P E E E yx++=+=επ 。
若采用三维笛卡尔坐标系(即三维直角坐标系)则有如下关系式:。
, 2222222zy x z rzCos z y x r ++==++=θ 那么,电势的表达式为: ()()232220 41z y x zP r U ++=επ 。
而电场强度的表达式为: k E j E i E E z y x++= 。
其中:()(); z x 3 4 3 4252220252220++=∂∂-=++=∂∂-=y zy P y U E z y x z x P x U E y x επεπ; ()()。
2 4252222220z y x y x z P z U E z ++--=∂∂-=επ9、带电圆盘在其轴线上距离圆心为x 点处:电场强度矢量: i R x xx E p⎪⎪⎭⎫ ⎝⎛+-=22012)(εσ。
对上式结果进行讨论:(a )当 02020 4)( 4)( x r rq r E i x q x E R x p p επεπ≅≅∞→>>或时或 此时带电圆盘可视为点电荷进行处理。
(b )当。
则,时或 2)( 0 0i x E x R x pεσ≅→<<即此时带电圆盘可视为无限大带电平板进行处理。
电势: ()x x Rx U p -+=222)(εσ 。
带电圆盘在其圆心处附近处的电势为: 。
02)(εσR x U x == 10、均匀分布的带电半球面在其球心处:(球面的面电荷密度为σ,球面的半径为R 。
)电场强度矢量: i E004εσ= 。
电势: 。
42 )(00RQR x U p επεσ==此时电势并不是⎰∞•=0)(r d E x U o p ,因为04)()(εσ=≠x E x E o 。