初中数学课件几何画板汇编
- 格式:doc
- 大小:28.00 KB
- 文档页数:5
中学数学全套课件制作实例(几何画板)1、《几何画板》:绘制三角形内接矩形的面积函数图像2、《几何画板》:求过两点的直线方程3、《几何画板》:验证两点间距离公式4、《几何画板》:绘制分段函数的图像5、《几何画板》:绘制某区间内的函数图像6、《几何画板》:运用椭圆工具制作圆柱7、《几何画板》:绘制四棱台8、《几何画板》:绘制三棱柱9、《几何画板》:绘制正方体10、《几何画板》:绘制三角形的内切圆11、《几何画板》:通过不在一条直线上的3点绘制圆12、《几何画板》:给定半径和圆心绘制圆13、《几何画板》:绘制棱形14、《几何画板》:绘制平行四边形15、《几何画板》:绘制等腰直角三角形16、《几何画板》:旋转体教学17、《几何画板》:画角度的箭头18、《几何画板》:“派生”关系进行轨迹教学板19、《几何画板》:制作“椭圆”工具20、《几何画板》:显示圆和直线的位置关系21、《几何画板》:研究圆切线的性质22、《几何画板》:“垂径定理”的教学23、《几何画板》:证明三角形的中线交于一点24、《几何画板》:验证分割高线长定理25、《几何画板》:证明三角形外心和重心的距离等于垂心与重心的距离的一半26、《几何画板》:证明三角形内角和等于180度27、《几何画板》:验证三角形面积公式28、《几何画板》:验证勾股定理29、《几何画板》:验证正弦定理30、《几何画板》:验证圆弧的三项比值相等31、《几何画板》:巧用Excel制作函数图像32、《几何画板》:绘制极坐标系中的曲线函数图像33、《几何画板》:绘制带参数的幂函数图像34、《几何画板》:绘制带参数的正弦函数图像35、《几何画板》:绘制带参数的抛物线函数图像36、《几何画板》:绘制带参数的圆函数图像37、《几何画板》绘制带参数直线函数图像《几何画板》:绘制三角形内接矩形的面积函数图像第1步,启动几何画板,依次单击“图表”→“定义坐标系”菜单命令,在操作区建立直角坐标系。
《几何画板教程》课件目录1. 几何画板简介 (2)1.1 什么是几何画板 (3)1.2 几何画板的界面介绍 (4)2. 基本绘图工具 (5)2.1 点、线、圆、弧等基本图形绘制 (7)2.2 图形的编辑与操作 (8)3. 基本变换 (9)3.1 平移、旋转、缩放等基本变换操作 (10)3.2 利用坐标系统进行变换 (11)4. 图形的度量与计算 (12)4.1 测量长度、面积、体积等 (13)4.2 图形的代数运算 (14)5. 几何图形的动画与动态效果 (16)5.1 动画制作基础 (17)5.2 制作动态几何模型 (18)6. 交互式教学功能 (20)6.1 创建交互式课件 (21)6.2 利用教学模板进行教学设计 (22)7. 几何图形的性质与证明 (24)7.1 探究图形的性质 (25)7.2 使用几何画板进行数学证明 (27)8. 几何画板在教学中的应用 (28)8.1 制作几何教学课件 (29)8.2 利用几何画板提高教学效果 (31)9. 几何画板教案设计 (33)9.1 如何设计几何画板教案 (33)9.2 教案示例分析 (35)10. 课程设计与资源整合 (37)10.1 如何整合教学资源 (38)10.2 设计综合性几何画板课程 (39)11. 几何画板常见导致问题及解决方法 (40)11.1 常见导致问题 (40)11.2 解决方法 (41)12. 如何提高学习效率与兴趣 (42)12.1 提高学习效率的技巧 (43)12.2 激发学习兴趣的方法 (44)1. 几何画板简介几何画板是一款强大的数学教学软件,它以直观、生动的方式呈现几何图形,帮助学生更好地理解几何概念。
通过几何画板,用户可以创建、编辑和分析各种几何图形,如点、线、圆、多边形等。
几何画板还支持丰富的几何变换和计算功能,为教师和学生提供了一个便捷的数学工具。
直观易用:几何画板采用图形化界面设计,用户无需编程知识即可轻松上手。
中学数学全套课件制作实例1、《几何画板》:绘制三角形内接矩形的面积函数图像2、《几何画板》:求过两点的直线方程3、《几何画板》:验证两点间距离公式4、《几何画板》:绘制分段函数的图像5、《几何画板》:绘制某区间内的函数图像6、《几何画板》:运用椭圆工具制作圆柱7、《几何画板》:绘制四棱台8、《几何画板》:绘制三棱柱9、《几何画板》:绘制正方体10、《几何画板》:绘制三角形的内切圆11、《几何画板》:通过不在一条直线上的3点绘制圆12、《几何画板》:给定半径和圆心绘制圆13、《几何画板》:绘制棱形14、《几何画板》:绘制平行四边形15、《几何画板》:绘制等腰直角三角形16、《几何画板》:旋转体教学17、《几何画板》:画角度的箭头18、《几何画板》:“派生”关系进行轨迹教学板19、《几何画板》:制作“椭圆”工具20、《几何画板》:显示圆和直线的位置关系21、《几何画板》:研究圆切线的性质22、《几何画板》:“垂径定理”的教学23、《几何画板》:证明三角形的中线交于一点24、《几何画板》:验证分割高线长定理25、《几何画板》:证明三角形外心和重心的距离等于垂心与重心的距离的一半26、《几何画板》:证明三角形内角和等于180度27、《几何画板》:验证三角形面积公式28、《几何画板》:验证勾股定理29、《几何画板》:验证正弦定理30、《几何画板》:验证圆弧的三项比值相等31、《几何画板》:巧用Excel制作函数图像32、《几何画板》:绘制极坐标系中的曲线函数图像33、《几何画板》:绘制带参数的幂函数图像34、《几何画板》:绘制带参数的正弦函数图像35、《几何画板》:绘制带参数的抛物线函数图像36、《几何画板》:绘制带参数的圆函数图像37、《几何画板》绘制带参数直线函数图像《几何画板》:绘制三角形内接矩形的面积函数图像第1步,启动几何画板,依次单击“图表”→“定义坐标系”菜单命令,在操作区建立直角坐标系。
单击工具箱上的“文本”工具,移动光标至圆点,当变成一只小黑手时,单击鼠标左键,然后再双击鼠标左键,将标签修改为“A”。
中学数学全套课件制作实例1、《几何画板》:绘制三角形内接矩形的面积函数图像2、《几何画板》:求过两点的直线方程3、《几何画板》:验证两点间距离公式4、《几何画板》:绘制分段函数的图像5、《几何画板》:绘制某区间内的函数图像6、《几何画板》:运用椭圆工具制作圆柱7、《几何画板》:绘制四棱台8、《几何画板》:绘制三棱柱9、《几何画板》:绘制正方体10、《几何画板》:绘制三角形的内切圆11、《几何画板》:通过不在一条直线上的3点绘制圆12、《几何画板》:给定半径和圆心绘制圆13、《几何画板》:绘制棱形14、《几何画板》:绘制平行四边形15、《几何画板》:绘制等腰直角三角形16、《几何画板》:旋转体教学17、《几何画板》:画角度的箭头18、《几何画板》:“派生”关系进行轨迹教学板19、《几何画板》:制作“椭圆”工具20、《几何画板》:显示圆和直线的位置关系21、《几何画板》:研究圆切线的性质22、《几何画板》:“垂径定理”的教学23、《几何画板》:证明三角形的中线交于一点24、《几何画板》:验证分割高线长定理25、《几何画板》:证明三角形外心和重心的距离等于垂心与重心的距离的一半26、《几何画板》:证明三角形内角和等于180度27、《几何画板》:验证三角形面积公式28、《几何画板》:验证勾股定理29、《几何画板》:验证正弦定理30、《几何画板》:验证圆弧的三项比值相等31、《几何画板》:巧用Excel制作函数图像32、《几何画板》:绘制极坐标系中的曲线函数图像33、《几何画板》:绘制带参数的幂函数图像34、《几何画板》:绘制带参数的正弦函数图像35、《几何画板》:绘制带参数的抛物线函数图像36、《几何画板》:绘制带参数的圆函数图像37、《几何画板》绘制带参数直线函数图像《几何画板》:绘制三角形内接矩形的面积函数图像第1步,启动几何画板,依次单击“图表”→“定义坐标系”菜单命令,在操作区建立直角坐标系。
单击工具箱上的“文本”工具,移动光标至圆点,当变成一只小黑手时,单击鼠标左键,然后再双击鼠标左键,将标签修改为“A”。
中学数学全套课件制作实例(几何画板)欧阳引擎(2021.01.01)1、《几何画板》:绘制三角形内接矩形的面积函数图像2、《几何画板》:求过两点的直线方程3、《几何画板》:验证两点间距离公式4、《几何画板》:绘制分段函数的图像5、《几何画板》:绘制某区间内的函数图像6、《几何画板》:运用椭圆工具制作圆柱7、《几何画板》:绘制四棱台8、《几何画板》:绘制三棱柱9、《几何画板》:绘制正方体10、《几何画板》:绘制三角形的内切圆11、《几何画板》:通过不在一条直线上的3点绘制圆12、《几何画板》:给定半径和圆心绘制圆13、《几何画板》:绘制棱形14、《几何画板》:绘制平行四边形15、《几何画板》:绘制等腰直角三角形16、《几何画板》:旋转体教学17、《几何画板》:画角度的箭头18、《几何画板》:“派生”关系进行轨迹教学板19、《几何画板》:制作“椭圆”工具20、《几何画板》:显示圆和直线的位置关系21、《几何画板》:研究圆切线的性质22、《几何画板》:“垂径定理”的教学23、《几何画板》:证明三角形的中线交于一点24、《几何画板》:验证分割高线长定理25、《几何画板》:证明三角形外心和重心的距离等于垂心与重心的距离的一半26、《几何画板》:证明三角形内角和等于180度27、《几何画板》:验证三角形面积公式28、《几何画板》:验证勾股定理29、《几何画板》:验证正弦定理30、《几何画板》:验证圆弧的三项比值相等31、《几何画板》:巧用Excel制作函数图像32、《几何画板》:绘制极坐标系中的曲线函数图像33、《几何画板》:绘制带参数的幂函数图像34、《几何画板》:绘制带参数的正弦函数图像35、《几何画板》:绘制带参数的抛物线函数图像36、《几何画板》:绘制带参数的圆函数图像37、《几何画板》绘制带参数直线函数图像《几何画板》:绘制三角形内接矩形的面积函数图像第1步,启动几何画板,依次单击“图表”→“定义坐标系”菜单命令,在操作区建立直角坐标系。
中学数学全套课件制作实例1、《几何画板》:绘制三角形内接矩形的面积函数图像2、《几何画板》:求过两点的直线方程3、《几何画板》:验证两点间距离公式4、《几何画板》:绘制分段函数的图像5、《几何画板》:绘制某区间内的函数图像6、《几何画板》:运用椭圆工具制作圆柱7、《几何画板》:绘制四棱台8、《几何画板》:绘制三棱柱9、《几何画板》:绘制正方体10、《几何画板》:绘制三角形的内切圆11、《几何画板》:通过不在一条直线上的3点绘制圆12、《几何画板》:给定半径和圆心绘制圆13、《几何画板》:绘制棱形14、《几何画板》:绘制平行四边形15、《几何画板》:绘制等腰直角三角形16、《几何画板》:旋转体教学17、《几何画板》:画角度的箭头18、《几何画板》:“派生”关系进行轨迹教学板19、《几何画板》:制作“椭圆”工具20、《几何画板》:显示圆和直线的位置关系21、《几何画板》:研究圆切线的性质22、《几何画板》:“垂径定理”的教学23、《几何画板》:证明三角形的中线交于一点24、《几何画板》:验证分割高线长定理25、《几何画板》:证明三角形外心和重心的距离等于垂心与重心的距离的一半26、《几何画板》:证明三角形内角和等于180度27、《几何画板》:验证三角形面积公式28、《几何画板》:验证勾股定理29、《几何画板》:验证正弦定理30、《几何画板》:验证圆弧的三项比值相等31、《几何画板》:巧用Excel制作函数图像32、《几何画板》:绘制极坐标系中的曲线函数图像33、《几何画板》:绘制带参数的幂函数图像34、《几何画板》:绘制带参数的正弦函数图像35、《几何画板》:绘制带参数的抛物线函数图像36、《几何画板》:绘制带参数的圆函数图像37、《几何画板》绘制带参数直线函数图像《几何画板》:绘制三角形内接矩形的面积函数图像第1步,启动几何画板,依次单击“图表”→“定义坐标系”菜单命令,在操作区建立直角坐标系。
单击工具箱上的“文本”工具,移动光标至圆点,当变成一只小黑手时,单击鼠标左键,然后再双击鼠标左键,将标签修改为“A”。
中学数学全套课件制作实例(几何画板)1、《几何画板》:绘制三角形内接矩形的面积函数图像2、《几何画板》:求过两点的直线方程3、《几何画板》:验证两点间距离公式4、《几何画板》:绘制分段函数的图像5、《几何画板》:绘制某区间内的函数图像6、《几何画板》:运用椭圆工具制作圆柱7、《几何画板》:绘制四棱台8、《几何画板》:绘制三棱柱9、《几何画板》:绘制正方体10、《几何画板》:绘制三角形的内切圆11、《几何画板》:通过不在一条直线上的3点绘制圆12、《几何画板》:给定半径和圆心绘制圆13、《几何画板》:绘制棱形14、《几何画板》:绘制平行四边形15、《几何画板》:绘制等腰直角三角形16、《几何画板》:旋转体教学17、《几何画板》:画角度的箭头18、《几何画板》:“派生”关系进行轨迹教学板19、《几何画板》:制作“椭圆”工具20、《几何画板》:显示圆和直线的位置关系21、《几何画板》:研究圆切线的性质22、《几何画板》:“垂径定理”的教学23、《几何画板》:证明三角形的中线交于一点24、《几何画板》:验证分割高线长定理25、《几何画板》:证明三角形外心和重心的距离等于垂心与重心的距离的一半26、《几何画板》:证明三角形内角和等于180度27、《几何画板》:验证三角形面积公式28、《几何画板》:验证勾股定理29、《几何画板》:验证正弦定理30、《几何画板》:验证圆弧的三项比值相等31、《几何画板》:巧用Excel制作函数图像32、《几何画板》:绘制极坐标系中的曲线函数图像33、《几何画板》:绘制带参数的幂函数图像34、《几何画板》:绘制带参数的正弦函数图像35、《几何画板》:绘制带参数的抛物线函数图像36、《几何画板》:绘制带参数的圆函数图像37、《几何画板》绘制带参数直线函数图像《几何画板》:绘制三角形内接矩形的面积函数图像第1步,启动几何画板,依次单击“图表”→“定义坐标系”菜单命令,在操作区建立直角坐标系。
几何画板200个经典课件(一)几何画板200个经典 - 课件教学内容•几何画板200个经典中的几何概念和图形•几何画板200个经典中的几何性质和定理教学准备•教材《几何画板200个经典》•讲义、笔记和练习册•黑板、白板或投影仪•几何工具箱,包括尺子、直尺、量角器等•计算器教学目标•理解几何画板200个经典中的几何概念和图形•掌握几何画板200个经典中的几何性质和定理的证明方法•能够运用所学的几何知识解决相关问题•培养学生的几何想象力和空间思维能力•本课程以《几何画板200个经典》为教材,通过理论与实践相结合的方式进行教学,以激发学生对几何的兴趣和学习的动力。
•通过展示几何画板200个经典中的图形和性质,引发学生对几何的思考和探索,帮助他们建立几何的概念框架。
•通过示范、讲解和实践练习等多种教学方法,让学生逐步掌握几何画板200个经典中的定理和证明方法,培养他们的逻辑思维和推理能力。
教学过程1.引入几何画板200个经典主题,并激发学生的兴趣。
2.展示几何画板200个经典中的一些图形和性质,让学生观察,并提出自己的观点和猜测。
3.教师讲解相关的几何概念和定理,并进行示范和证明。
4.学生进行个人或小组的实践练习,运用所学的几何知识解决问题。
5.教师进行讲解和指导,并鼓励学生分享答案和解题思路。
6.学生进行课堂作业,巩固所学的知识和技能。
7.教师进行课堂总结,并提出问题和展望下一步的学习内容。
8.学生进行课后复习和思考,准备下一节课的学习。
•本节课通过结合几何画板200个经典中的实例和理论进行教学,激发了学生的兴趣和思考能力。
•学生参与度较高,能够积极思考和运用几何知识解决问题。
•部分学生在证明几何性质和定理时存在一定困难,需要加强相关练习和示范。
•下次课应适当增加互动环节,提高学生的参与度和合作能力。
初中数学课件几何画板初中数学课件几何画板 1教学目标:1、使学生理解切割线定理及其推论;2、使学生初步学会运用切割线定理及其推论、3、通过对切割线定理及推论的证明,培养学生从几何图形归纳出几何性质的能力;4、通过对切割线定理及其推论的初步运用,培养学生的分析问题能力、在上节我们曾经学到相交弦定理及其推论,它反映了圆中两弦的数量关系;我们可以用同样的方法来研究圆的一条切线和一条割线的数量关系、教学重点:使学生理解切割线定理及其推论,它是以后学习中经常用到的重要定理、教学难点:学生不能准确叙述切割线定理及其推论,针对具体图形学生很容易得到数量关系,但把它用语言表达,学生感到困难、教学过程:一、新课引入:我们已经学过相交弦定理及其推论,现在我们用同样的数学思想方法来研究圆的另外的比例线段、二、新课讲解:现在请同学们在练习本上画O,在O外一点P引O的切线PT,切点为T,割线PBA,以点P、B、A、T为顶点作三角形,可以作几个三角形呢?它们中是否存在着相似三角形?如果存在,你得到了怎样的比例线段?可转化成怎样的积式?现在请同学们打开练习本,按要求作O的切线PT和割线PBA,后研究讨论一下、学生动手画图,完成证明,教师巡视,当所有学生都得到数量关系式时,教师打开计算机或幻灯机用动画演示、最终教师指导学生把数量关系转成语言叙述,完成切割线定理及其推论、1、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项、2关系式:PT=PA·PB2、切割线定理推论:从圆外一点引圆的两条割线、这一点到每条割线与圆的交点的两条线段长的积相等、数量关系式:PA·PB=PC·PB、切割线定理及其推论也是圆中的比例线段,在今后的学习中有着重要的意义,务必使学生清楚,真正弄懂切割线定理的数量关系后,再把握定理叙述中的“从”、“引”、“切线长”、“两条线段长”等关键字样,定理叙述并不困难、练习一,P、128中1、选择题:如图7-86,O的两条弦AB、CD相交于点E,AC和DB的.延长线交于点P,下列结论成立的是[]A、PC·CA=PB·BDB、CE·AE=BE·EDC、CE·CD=BE·BAD、PB·PD=PC·PA答案:(D),直接运用和圆有关的比例线段进行选择、练习二,P、128中2、如图7-87,已知:Rt△ABC的两条直角边AC、BC的长分别为3cm、4cm,以AC为直径作圆与斜边AB交于点D,求BD的长、此题已知Rt△ABC中的边AC、BC,则AB可知、容易证出BC切O于C,于是产生切割线定理,BD可求、练习三,P、128中3、如图7-88,线段AB和O交于C、D,AC=BD,AE、BF分别切O于E、F、求证:AE=BF、本题可直接运用切割线定理、例3P、127,如图7-89,已知:O的割线PAB交O于点A 和B,PA=6cm,AB=8cm,PO=、求O的半径、此题要通过计算得到O的半径,必须使半径进入一个数量关系式,观察图形,可知只要延长PO与圆交于另一点,则可产生切割线定理的推论,而其中一条割线恰好经过圆心,在线段中自然可以参与进半径,从而由等式中求出半径、必须使学生清楚这种数学思想方法,结合图形,正确使用和圆有关的比例线段,则关系式中必有两条线段是半径的代数式构成,只要解关于半径的一元二次方程即可、解:设O的半径为r,PO和它的长延长线交O于C、D、(+r)=6×14r=(取正数解)答:O的半径为、三、课堂小结:为培养学生阅读教材的习惯,让学生看教材P、127—P、128、总结出本课主要内容:1、切割线定理及其推论:它是圆的重要比例线段,它反映的是圆的切线和割线所产生的数量关系、需要指出的是,只有从圆外一点,才可能产生切割线定理或推论、切割线定理是指一条切线和一条割线;推论是指两条割线,只有使学生弄清前提,才能正确运用定理、2、通过对例3的分析,我们应该掌握这类问题的思想方法,掌握规律、运用规律、四、布置作业:1、教材P、132中10;2、P、132中11、初中数学课件几何画板 2【教学内容】教材第110页第3题,练习二十五第8~13题。
中学数学全套课件制作实例(几何1、《几何画板》:绘制三角形内接矩形的面积函数图像2、《几何画板》:求过两点的直线方程3、《几何画板》:验证两点间距离公式4、《几何画板》:绘制分段函数的图像5、《几何画板》:绘制某区间内的函数图像6、《几何画板》:运用椭圆工具制作圆柱7、《几何画板》:绘制四棱台8、《几何画板》:绘制三棱柱9、《几何画板》:绘制正方体10、《几何画板》:绘制三角形的内切圆11、《几何画板》:通过不在一条直线上的3点绘制圆12、《几何画板》:给定半径和圆心绘制圆13、《几何画板》:绘制棱形14、《几何画板》:绘制平行四边形15、《几何画板》:绘制等腰直角三角形16、《几何画板》:旋转体教学17、《几何画板》:画角度的箭头18、《几何画板》:“派生”关系进行轨迹教学板19、《几何画板》:制作“椭圆”工具20、《几何画板》:显示圆和直线的位置关系21、《几何画板》:研究圆切线的性质22、《几何画板》:“垂径定理”的教学23、《几何画板》:证明三角形的中线交于一点24、《几何画板》:验证分割高线长定理25、《几何画板》:证明三角形外心和重心的距离等于垂心与重心的距离的一半26、《几何画板》:证明三角形内角和等于180度27、《几何画板》:验证三角形面积公式28、《几何画板》:验证勾股定理29、《几何画板》:验证正弦定理30、《几何画板》:验证圆弧的三项比值相等31、《几何画板》:巧用Excel制作函数图像32、《几何画板》:绘制极坐标系中的曲线函数图像33、《几何画板》:绘制带参数的幂函数图像34、《几何画板》:绘制带参数的正弦函数图像35、《几何画板》:绘制带参数的抛物线函数图像36、《几何画板》:绘制带参数的圆函数图像37、《几何画板》绘制带参数直线函数图像《几何画板》:绘制三角形内接矩形的面积函数图像第1步,启动几何画板,依次单击“图表”→“定义坐标系”菜单命令,在操作区建立直角坐标系。
中学数学几何画板课件制作实例讲解汇编1、《几何画板》:绘制三角形内接矩形的面积函数图像2、《几何画板》:求过两点的直线方程3、《几何画板》:验证两点间距离公式4、《几何画板》:绘制分段函数的图像5、《几何画板》:绘制某区间内的函数图像6、《几何画板》:运用椭圆工具制作圆柱7、《几何画板》:绘制四棱台8、《几何画板》:绘制三棱柱9、《几何画板》:绘制正方体10、《几何画板》:绘制三角形的内切圆11、《几何画板》:通过不在一条直线上的3点绘制圆12、《几何画板》:给定半径和圆心绘制圆13、《几何画板》:绘制棱形14、《几何画板》:绘制平行四边形15、《几何画板》:绘制等腰直角三角形16、《几何画板》:旋转体教学17、《几何画板》:画角度的箭头18、《几何画板》:“派生”关系进行轨迹教学板19、《几何画板》:制作“椭圆”工具20、《几何画板》:显示圆和直线的位置关系21、《几何画板》:研究圆切线的性质22、《几何画板》:“垂径定理”的教学23、《几何画板》:证明三角形的中线交于一点24、《几何画板》:验证分割高线长定理25、《几何画板》:证明三角形外心和重心的距离等于垂心与重心的距离的一半26、《几何画板》:证明三角形内角和等于180度27、《几何画板》:验证三角形面积公式28、《几何画板》:验证勾股定理29、《几何画板》:验证正弦定理30、《几何画板》:验证圆弧的三项比值相等31、《几何画板》:巧用Excel制作函数图像32、《几何画板》:绘制极坐标系中的曲线函数图像33、《几何画板》:绘制带参数的幂函数图像34、《几何画板》:绘制带参数的正弦函数图像35、《几何画板》:绘制带参数的抛物线函数图像36、《几何画板》:绘制带参数的圆函数图像37、《几何画板》绘制带参数直线函数图像《几何画板》:绘制三角形内接矩形的面积函数图像第1步,启动几何画板,依次单击“图表”→“定义坐标系”菜单命令,在操作区建立直角坐标系。
中学数学全套课件制作实例(几何画板)欧阳家百(2021.03.07)1、《几何画板》:绘制三角形内接矩形的面积函数图像2、《几何画板》:求过两点的直线方程3、《几何画板》:验证两点间距离公式4、《几何画板》:绘制分段函数的图像5、《几何画板》:绘制某区间内的函数图像6、《几何画板》:运用椭圆工具制作圆柱7、《几何画板》:绘制四棱台8、《几何画板》:绘制三棱柱9、《几何画板》:绘制正方体10、《几何画板》:绘制三角形的内切圆11、《几何画板》:通过不在一条直线上的3点绘制圆12、《几何画板》:给定半径和圆心绘制圆13、《几何画板》:绘制棱形14、《几何画板》:绘制平行四边形15、《几何画板》:绘制等腰直角三角形16、《几何画板》:旋转体教学17、《几何画板》:画角度的箭头18、《几何画板》:“派生”关系进行轨迹教学板19、《几何画板》:制作“椭圆”工具20、《几何画板》:显示圆和直线的位置关系21、《几何画板》:研究圆切线的性质22、《几何画板》:“垂径定理”的教学23、《几何画板》:证明三角形的中线交于一点24、《几何画板》:验证分割高线长定理25、《几何画板》:证明三角形外心和重心的距离等于垂心与重心的距离的一半26、《几何画板》:证明三角形内角和等于180度27、《几何画板》:验证三角形面积公式28、《几何画板》:验证勾股定理29、《几何画板》:验证正弦定理30、《几何画板》:验证圆弧的三项比值相等31、《几何画板》:巧用Excel制作函数图像32、《几何画板》:绘制极坐标系中的曲线函数图像33、《几何画板》:绘制带参数的幂函数图像34、《几何画板》:绘制带参数的正弦函数图像35、《几何画板》:绘制带参数的抛物线函数图像36、《几何画板》:绘制带参数的圆函数图像37、《几何画板》绘制带参数直线函数图像《几何画板》:绘制三角形内接矩形的面积函数图像第1步,启动几何画板,依次单击“图表”→“定义坐标系”菜单命令,在操作区建立直角坐标系。
初中数学课件几何画板
几何画板提供的直角坐标系和极坐标系,便于制作各种立体几何,大家不妨来看看小编推送的初中数学课件几何画板,希望给大家带来帮助!
初中数学课件几何画板:
教案
课题:几何画板简介
教学目标:1)通过几何画板课件演示展示其魅力激起兴趣2)了解几何画板初步操作
教学重点:让学生了解几何画板的工作界面
教学难点:能用几何画板将三角形分成四等份,并用几何画板验证。
教学过程:
一、概述几何画板
几何画板是专门为数学学习与教学需要而设计的软件。
有人说它是电子圆规,有人说它是绘图仪,有人说它是数学实验室。
它号称二十一世纪的动态几何。
它可帮助我们理解数学,动态地表达数量关系,并可设计出许多有用或有趣的作品。
二、几何画板作品展示
三、几何画板简介
1)启动
开始|程序|几何画板|几何画板。
启动几何画板后将出现菜单、工具、画板。
工具(从上到下) 选择、画点、画圆、画线、文本、对象信息、脚本工具目录。
2)操作初步
1、文件
新画板打开一个新的空白画板。
新脚本打开一个新的空白脚本窗口。
用于录制画板的画图过程。
打开打开一个已存在的画板文件(.gsp)或脚本文件(.gss)。
保存 [保存当前画板窗口画板文件或脚本窗口脚本文件],路径+文件名,确认。
打印预览
打印
退出
2、选择几何画板的操作都是先选定,后操作。
选工具(选择画点画圆画线文本对象信息脚本工具目录) 单击:工具选项。
选选择方式移到选择按左键不放→平移/旋转/缩放;拖曳到平移/旋转/缩放;放→选定。
功能:移动选定的目标按平移/旋转/缩放方式移动。
选一个目标鼠标对准画板中的目标(点、线、圆等),指针变为横向箭头,单击。
选两个以上目标法一第二个及以后,Shift+单击。
选两个以上目标法二空白处拖曳→虚框;虚框中的目标被选。
选角选三点:第一、第三点:角两边上的点;第二点:顶点。
不选单击:空白处。
从多个选中的目标中不选一个 Shift+单击。
选目标的父母和子女选定,编辑|选择父母/或选择子女。
选所有编辑|选择所有。
选画点/画圆...,编辑|选择所有点/圆...。
3、删除
删除目标选目标;Del键(注:同时删除子女目标)。
复原一步 Ctrl+Z = 编辑|复原。
画板变成空白画板 Shift+Ctrl+Z = Shift+编辑|复原。
4、显示
线类型设置选定的线/轨迹为粗线/细线/虚线。
应用使对象更突出。
颜色设置选定的图形的颜色。
应用使对象更突出。
字号/字型设置选定的标注、符号、测算等文字的字号和字
型。
字体设置选定的标注、符号、测算等文字的字体。
显示/隐藏显示/隐藏选定的目标(Ctrl+H)。
显示所有隐藏显示所有的隐藏目标。
显示符号显示/隐藏选定目标的符号。
符号选项更改符号/符号序列。
轨迹跟踪设置/消除选定目标为轨迹跟踪状态。
动画根据选定的目标条件进行动画运动。
参数设置角度、弧度、精确度等的设置。
5、对象信息单击对象信息→?;单击对象→简单信息;双击对象→目标信息对话框。
6、快捷键隐藏Ctrl+H显示符号Ctrl+K轨迹跟踪Ctrl+T 当前目标可操作的内容右键。
(以上简略选讲1、2、3)
四、熟悉几何画板的界面,了解常用工具的用法,
五、把一个三角形分成四等份:
1)用画线工具画一个三形,
2)标注:选文本工具,单击画好的点,用文本工具双击显示的标签,可进行修改。
3)选择“构造”,---“画中点”
六、验证面积相等:
1)按住shift键,选取点。
2)“构造”---“多边形内部”。
3)“测算”---“面积”
七、等分线段:
1)画射线作辅助线。
2)选取一段做标记向量。
3)“变换”---“平移”。
4)“作图”---“平行线”。
用平行线的性质等分线段。
八、画基本图形
1、画点选画点,单击画板上一点。
(并显示标签)
2、画圆画圆的两种方法及区别。
(设置不同显示方式)
3、选线段/射线/直线选画线;按左键不放→线段/射线/直线
九、课后反思
在图中标注文本文字,用辅助线把一线段如何分为四等份。