匀速运动点电荷产生的电磁场
- 格式:ppt
- 大小:763.50 KB
- 文档页数:43
一、问题的提出电流是电荷的定向流动,而静止或运动都是相对于特定的参考系而言的;很自然地可以想到,若在一个参考系S 中静止的电荷,在S 系中观察只存在电场,在相对于S 系匀速运动的S'系中观察则同时存在电场和磁场;同样,在S 系中静止的两个电荷间只存在静电力,而在S'系中这两个电荷间不仅存在电的相互作用,还存在磁的相互作用;经典电磁学中感应电动势分为感生和动生两种,只具有相对意义;例如一个磁铁和一个线圈,当磁铁静止、线圈运动时,因线圈切割磁感应线而在其中产生动生电动势,此电动势是由磁场产生的洛伦兹力引起的;若线圈静止、磁铁运动时,线圈中因磁通量变化而产生感生电动势,此电动势是由涡旋电场引起的;上述两种情形是同一物理过程在两个不同参考系中观察的结果,得到不同的描述,这个问题也正是1905年爱因斯坦创立狭义相对论的那篇论文论动体的电动力学中一开始就提出的;物理现象不应随参考系而异;在不同参考系中,电磁规律的形式为何不同已建立的电磁规律是相对于哪个参考系的不同参考系中得到的电磁规律之间有什么相互关系电磁学中,无论速度多么低,伽利略变化都不再适用,解决这些问题要靠相对论;二、相对论力学的相关结论1、洛伦兹变换设有两个惯性系S 系和S'系,其对应的坐标轴互相平行,S'系相对S 系以速度V 沿x 轴正方向运动,在t=t'=0时刻两个参考系的原点重合;把时间写成虚变量w=ict,以x,y,z,w 为闵可夫斯基空间中的时空四矢量,洛伦兹变换为()()⎪⎪⎩⎪⎪⎨⎧-='='='+='x i w w z z y y w i x x βγβγ ()()⎪⎪⎩⎪⎪⎨⎧'+'='='=''-'=x i w w z z y y w i x x βγβγ 式中i 为虚数单位,c V =β,211βγ-=,c 为真空中的光速;若A x ,A y ,A z ,A t 与x,y,z,w 一样地服从洛伦兹变换,即()()⎪⎪⎩⎪⎪⎨⎧-='='='+='x t t z z yy t x xA i A A A A A A A i A A βγβγ ()()⎪⎪⎩⎪⎪⎨⎧'+'='='='-'=xt t zz yy t xx A i A A A A A A A i A A βγβγ 则它也是个时空四矢量;2、四维速度相对于粒子静止的时钟所显示的时间间隔d τ=γdt 称为它的固有时,固有时是洛伦兹变换中的不变量;四维速度u x ,u y ,u z ,u t 定义为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧============ττττττττττττd d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d t ic t t w w u t v t t z z u t v t t y y u t v t t x x u t zz y y x x 四维速度是时空四矢量,它仍服从洛伦兹变换()()⎪⎪⎩⎪⎪⎨⎧-='='='+='x t t z z yy t x x u i u u u u u u u i u u βγβγ ()()⎪⎪⎩⎪⎪⎨⎧'+'='='='-'=x t t z z yy t x x u i u u u u u u u i u u βγβγ3、四维动量四维动量是由三维动量()z y x p p p p ,,=和能量W 组成的四维矢量m0为静质量⎪⎪⎩⎪⎪⎨⎧=====tt zz y yx x u m c Wi p u m p um p u m p 0000 m 0为静质量;四维动量是时空四矢量,它仍服从洛伦兹变换()()⎪⎪⎩⎪⎪⎨⎧-='='='+='x t t z z yy t x x p i p p p p p p p i p p βγβγ ()()⎪⎪⎩⎪⎪⎨⎧'+'='='='-'=x t t zz yy t x x p i p p p p p p p i p p βγβγ三、电荷不变性与洛伦兹力公式的协变性在参考系变换时,物理量一般是变化的,规律的协变性要求规律中的物理量协同变换,而保持规律的形式不变;许多事实表明,一个物体中的总电荷量不因物体的运动而改变;例如实验测定速度为v 的带电粒子的荷质比满足22001cv m q m q -= 而质量随速度变化的相对论公式为2201c vm m -=比较这两个公式,暗示着带电体的电量q 不随运动速度而改变;又例如质子所带的正电量与电子所带的负电量精确相等;由于物体运动时,在其运动方向上长度将收缩,物体的体积也将收缩,故带电体的电荷密度不是不变量;若在某一参考系中观察到一个静止的带电体的电荷密度为ρ,在另一参考系中观察到带电体的运动速度为u,其电荷密度为ρ',则ρ'=γρ;相对性原理要求电磁学的基本方程在洛伦兹变换下要具有协变性;经典电磁学中的洛伦兹力公式B v q F⨯=只包含磁场力,不可能具有协变性,普遍的洛伦兹力公式应包含电场力,即()B v E q F ⨯+=这里的电场既包含库仑场,也包含涡旋场;四、电磁场的相对论变换公式在相对论力学中四维动量是时空四矢量,服从洛伦兹变化;但它对时间t 的导数⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧========P c itW c i t p f t u m tp f t um t p f t u m t p t zz z y y y x x xd d d d d d d d d d d d d d d d 000 即由力的三个分量f x ,f y ,f z 和功率P 的组合并不构成时空四矢量;若把dt 换成固有时间隔d τ,或者说在上述四个量上乘以τd d t⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧====ττττd d d d d d d d t P c i F t f F t f F t f F t zz y y x x就变成服从洛伦兹变换的时空四矢量()()⎪⎪⎩⎪⎪⎨⎧-='='='+='x t t z z yy t x x F i F F F F F F F i F F βγβγ ()()⎪⎪⎩⎪⎪⎨⎧'+'='='='-'=x t t zz yy t x x F i F F F F F F F i F F βγβγ 电磁学中电荷q 受到的洛伦兹力和功率为()()()()⎪⎪⎩⎪⎪⎨⎧++=-+=-+=-+=z z y y x x x y y x z z z x x z y yy z z y x x E v E v E v q c iP ci B v B v E q f B v B v E q f B v B v E q f 乘以τd d t,得 ()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++=⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛-+-=z z y y x x t x y y x z t z z x x z y t y y z z y x t xE u E u E u q c iF B u B u E u c i q F B u B u E u c i q F B u B u E u c i q F根据洛伦兹变换下的协变性要求,从惯性系S 变换到惯性系S',上式应该具有的形式为()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧''+''+''='⎪⎭⎫ ⎝⎛''-''+''-='⎪⎭⎫ ⎝⎛''-''+''-='⎪⎭⎫ ⎝⎛''-''+''-='z z y y x x t x y y x z t z z x x z y t y y z z y x t xE u E u E u q c iF B u B u E u c i q F B u B u E u c i q F B u B u E u c i q F利用S 系到S'系的洛伦兹变换,有()()⎥⎦⎤⎢⎣⎡+++⎪⎭⎫⎝⎛-+-=+='z z y y x x y z z y x t t x x E u E u E u q c i i B u B u E u c i q F i F F βγβγ把上式中的u x 、u y 、u z 、u t 作洛伦兹反变换,化简后得到()z z y y y z t x x u E c B q u E c B q u E c iq F '⎪⎭⎫ ⎝⎛+-'⎪⎭⎫ ⎝⎛-+'--='βγβγβγ221由于上式对任意速度都成立,令其中u't 、u'y 、u'z 的系数与⎪⎭⎫⎝⎛''-''+''-='y z z y x t x B u B u E u c i q F 中u't 、u'y 、u'z 的系数对应相等,得到⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛+='='y z zz y yx x E c B B E c B B E E βγβγ 同样的方法运用到其他分量,得到电磁场的洛伦兹变换公式为()()⎪⎩⎪⎨⎧⋅+='⋅-='='y z zz y y x xB V E E B V E E E E γγ ()()⎪⎩⎪⎨⎧'⋅-'='⋅+'='=y z zz y y xx B V E E B V E E E E γγ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎫ ⎝⎛-='⎪⎭⎫⎝⎛+='='y z z z y y x x E c V B B E c V B B B B 22γγ ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎫ ⎝⎛'+'=⎪⎭⎫ ⎝⎛'-'='=y z zz y y xx E c V B B E c V B B B B 22γγ五、运动的点电荷的电场考虑一个电量为q 的点电荷静止于S'系的原点,它在所产生的电场为()304r r qE ''=' πε其分量为()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧''='''='''='30330444r z q E r y q E r x q E z yxπεπεπε 式中()()()222z y x r '+'+'=';S'系中不存在磁场,即0='='='z y x B B B现设参考系S'系相对S 系以速度v 沿x 轴正方向运动,两个参考系对应的对比澳洲相互平行且在t=t'=0时刻两个参考系原点重合,则S 系中的电场E就是所求的运动的点电荷的电场;利用洛伦兹变换公式,得()()()[]()()[]()()[]⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++-⋅=''⋅='=++-⋅=''⋅='=++--=''='=232222030232222030232222030444444z y vt x z q r z q E E z y vt x yq r y q E E z y vt x vt x q r x q E E z z y y x x γγπεγπεγγγπεγπεγγγπεπε 考虑t=0时刻,有z y x E E E z y x ::::=也就是说,电场强度E 与坐标轴之间的夹角等于径矢与坐标轴之间的夹角,或者说电场强度E的方向沿着以点电荷的瞬时位置为起点的径矢方向;考虑电场强度大小的分布()()()()322222222222220322222222200222021144⎪⎪⎭⎫ ⎝⎛+++-++-⎪⎪⎭⎫ ⎝⎛=++++⎪⎪⎭⎫ ⎝⎛=++===z y x z y zy xq z y x z y x q E E E E t z y x t ββπεγγπε故()()23222202322222222220sin 114114θββπεββπε--=⎪⎪⎭⎫ ⎝⎛+++-++-==rq z y x z y z y x q E t此结果表明,运动的点电荷的电场强度的大小除了与r 2成反比外,还依赖于径矢与运动方向之间的夹角θ以及电荷的运动速率v,电场强度的大小不是各向均匀的;随着电荷的运动,电场强度的这种分布以同一速度向前运动;当点电荷速度v 较小,β<<1而可忽略时,电场近似为库仑场;电荷的速度越大,电场线在yOz 平面附近的密集越高,在β→1的极限情形下,极强的电场局限在yOz 平面内,运动电荷携带这样的电场高速运动;六、运动的点电荷的磁场根据电磁场的洛伦兹变换公式,可得点电荷匀速运动时空间的磁感应强度为⎪⎪⎪⎩⎪⎪⎪⎨⎧='=-='-=='=y y z z z y x x E c v E c v B E c v E c v B B B 22220γγ写成矢量表达式为E v cB ⨯=21该式表明,点电荷匀速运动时,空间的磁场也是随时间变化的,它总是垂直于速度矢量和电场矢量所决定的平面;磁感应线是一些以电荷运动轨迹为轴的同心圆;在t=0时刻点电荷恰好处于S 系原点时,磁感应强度的大小为()()232222200sin 1sin 14θβθβπε--==c v r q B t电场与磁场是相互联系的,真空介电常数ε0与真空磁导率μ0之间的关系为2001c=⋅με 于是()()23222200sin 1sin 14θβθβπμ--==r qv B t与电场线的分布对应,磁感应线也在yOz 平面附近较为密集;电荷的速度越大,磁感应线在yOz 平面附近的密集程度越高;随着电荷的运动,磁感应强度的这种分布以同一速度向前运动;当电荷运动速度较小,β<<1而可忽略时,磁感应强度的分布为200sin 4r qv B t θπμ==写成矢量表达式为24r r v q Bt⨯==πμ这就是低速情形下匀速运动的点电荷产生的磁场的公式;作l I v qd ⋅=⋅的代换,可过渡到电流元产生的磁场的公式20d 4d rr l I B⨯⋅=πμ⎰⨯⋅=L r r l I B 20d 4 πμ因此,毕奥-萨伐尔定律是低速下的近似公式;不过若求闭合回路的磁场,对整个回路积分后,所得结果与严格的公式一致;电荷的速度越大,磁感应线在yOz 平面附近的密集越高,在β→1的极限情形下,极强的磁场局限在yOz 平面内,运动电荷携带这样的电场高速运动;。
§8-4 毕奥—萨伐尔定律电场叠加原理点电荷电场+任意带电体的电场磁场叠加原理电流元的磁场+任意载流导体的磁场寻找磁场与场源的关系困难在于没有孤立的电流元毕奥、萨伐尔、安培等人对电流周围的磁场进行了大量研究,由拉普拉斯概括为毕奥萨伐尔定律.?IP *rlI d B d θlI d rBd 一、毕奥—萨伐尔定律电流元在空间任一P 点产生的磁场dB 与r 、⎝有关把闭合电流分成许多小段,元段dl 内电流密度与同向,乘积称为电流元.jdl dB 的大小2d sin d I l B k rθ=dB 的方向垂直于与组成的平面r2d d I l r B kr⨯= 毕—萨定律的数学表达式002d d 4I l r B rμπ⨯= 真空磁导率270AN 10π4--⋅⨯=μ在以Idl 为轴线的任一圆周上的各个点,由于距离r 一定,θ也一定,故dB 的大小都相同,方向处处沿圆周的切线方向.Bd PrlId πμ40=k任意载流导线在点P 处的磁感强度磁感强度叠加原理实验表明:磁感应强度B 遵从叠加原理.磁场叠加原理电流元的磁场+任意载流导体的磁场注意d B B=⎰ d B B =⎰与的区别θπμsin 42⎰⎰==lrdlI B d B例判断下列各点磁感强度的方向和大小.1、5 点:0d =B 3、7点:20π4d d RlI B μ=2045sin π4d d RlI B μ=2、4、6、8 点:02d d 4πI l r B rμ⨯= 毕奥—萨伐尔定律+++51234678lId RIPMNoa*1载流长直导线的磁场解方向均垂直于纸面向里Bd 二、毕——萨定律应用举例⎰⎰==MNrIdy dB B 20sin 4θπμ20sin 4rIdy dB θπμ=θθsin /,cot a r a y =-=rθdyy1θ2θB d θθ2sin /d d a y =⎰=21d sin π40θθθθμa IB )cos (cos π4210θθμ-=aI无限长载流长直导线的磁场aIB π20μ=PMNoI B+a1→θπθ→2I)cos (cos π4210θθμ-=aIB 1θ2θ半无限长载流长直导线的磁场aIB π40μ=21πθ→πθ→2)cos (cos π4210θθμ-=aIB PMNIB+a1θ2θ载流长直导线延长线上的磁场*pMNIr02d d 4I l r B rμπ⨯= 载流长直导线延长线上的磁场B =0真空中,半径为R 的载流导线,通有电流I ,称圆电流.求其轴线上一点p 的磁感强度的方向和大小. 2 圆形载流导线的磁场290sin d π4d rl I B μ=解根据对称性分析0=⊥BrBd p*IxRolId⎰==ϕsin d B B B x xRpϕϕoBd rlI d x*222xR r +=rR=ϕsin ⎰=Rl rIRB π203d π4μrRrl I B x2d π4d μ=2/32220)(2R x IR+=μ圆形载流导线的磁场分布RIB 20μ=2)圆电流中心的磁场1)若线圈有N 匝圆电流轴线上的磁场3)半个圆电流中心的磁场RIB 2210μ=2/32220)(2R x IRB +=μ2/32220)(2R x IR B +=μN 讨论例3oI2R 1R *1010200π444R IR IR IB μμμ--=Ro I例2RI B 2410μ=O 点的磁感应强度方向垂直纸面向里选垂直纸面向里为正方向例4 两根导线沿半径方向引到铁环上A、B两点,并在很远处与电源相连,求环心O 的磁感应强度.解: O点的磁感应强度为1、2、3、4、5段载流导线在O点产生的磁感应强度的矢量和:O点在3和4的延长线上, 5离O点可看作无限远,故:,设:1圆弧弧长l1====2圆弧弧长l,2====圆的周长为l故设 为导线电阻率, S为截面积R1、R2分别为1导线和2导线的电阻, R1= I2R2= V AB, 因此B0= 0显然I1R++++++++++++++p *3载流直螺线管的磁场一长为L , 半径为R 的载流密绕直螺线管,总匝数为N ,电流I . 求管内轴线上的磁感强度.2/322202)(R x IRB +=μ解由圆形电流磁场公式o xxd x距p 点x 处取长为dx 的元段,其上有ndx 匝线圈,相当于dI=nIdx 的圆电流。
习题1414-1.如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B 。
解:圆弧在O 点的磁感应强度:00146I IB R Rμθμπ==,方向:垂直纸面向外; 直导线在O点的磁感应强度:000020[cos30cos(150)]4cos602II B R Rμππ=-=,方向:⊗;∴总场强:01)23IB Rμπ=-,方向⊗。
14-2.如图所示,两个半径均为R 的线圈平行共轴放置,其圆心O 1、O 2相距为a ,在两线圈中通以电流强度均为I 的同方向电流。
(1)以O 1O 2连线的中点O 为原点,求轴线上坐标为x 的任意点的磁感应强度大小;(2)试证明:当a R =时,O 点处的磁场最为均匀。
解:见书中载流圆线圈轴线上的磁场,有公式:2032222()I R B R z μ=+。
(1)左线圈在x 处P 点产生的磁感应强度:20132222[()]2P I R B a R x μ=++,右线圈在x 处P 点产生的磁感应强度:20232222[()]2P I R B aR x μ=+-,1P B 和2P B 方向一致,均沿轴线水平向左,∴P 点磁感应强度:12P P P B B B =+=2330222222[()][()]222I R a a R x R x μ--⎧⎫++++-⎨⎬⎩⎭;(2)因为P B 随x 变化,变化率为d Bd x,若此变化率在0x =处的变化最缓慢,则O 点处的磁场最为均匀,下面讨论O 点附近磁感应强度随x 变化情况,即对P B 的各阶导数进行讨论。
对B 求一阶导数:d B d x 25502222223()[()]()[()]22222I R a a a a x R x x R x μ--⎧⎫=-++++-+-⎨⎬⎩⎭当0x =时,0d Bd x=,可见在O 点,磁感应强度B 有极值。
对B 求二阶导数:22()d d B d B d x d x d x==222057572222222222225()5()311222[()][()][()][()]2222a a x x I R a a a a R x R x R x R x μ⎧⎫+-⎪⎪⎪⎪--+-⎨⎬⎪⎪+++++-+-⎪⎪⎩⎭当0x =时,202x d B d x==222072223[()]2a R I R a R μ-+, 可见,当a R >时,2020x d Bd x =>,O 点的磁感应强度B 有极小值,当a R <时,2020x d Bd x =<,O 点的磁感应强度B 有极大值,当a R =时,2020x d Bd x ==,说明磁感应强度B 在O 点附近的磁场是相当均匀的,可看成匀强磁场。
各向同性介质中点电荷的电磁场山东省单县第一中学 紫韵(朱叶)运动电荷的电磁场,以前有人讨论过,但都是以定时场来表达的,虽然有人用过运动的变时场来表达过,如文献【1】1、【2】2、【3】3,但那也是直接用爱因斯坦的相对论理论来表达的,而使用传统时空观表达的还没有,本文拟对此作一尝试并对比、探讨。
本文假设所讨论的介质(真空)为各向同性介质,介质的介电常数为ε,磁导率为μ,介质中光的传播速率为εμ1=c ,并不考虑色散、吸收和散射等情况。
场电荷带电量为Q 。
一、相对介质静止时的电磁场介质与电荷都为静止或者同时在做匀速运动时,点电荷Q 的电场由库仑定律得到r q04πεφ=,r r r Q E241πε= 因电磁场(波)的传播速度只与介质有关,与场源(此处即点电荷)无关,故其等值面为球面,不同的等值面之间,是同心圆的关系,且在有限时间内无穷远处的地方不可能产生场强。
在实验室球坐标系下的电场表达式,若记⎩⎨⎧<≥=)0( 0)0( 1)(UnitStep x x x 则E 可表示为]-UnitStep[4102r t t c rr r Q πεE -=)(时间t 的计时,应该从点电荷产生时算起。
在大于ct 处的场强,因为电磁作用尚未传递过来,所以场强为零,测试电荷在此处就不可能受到电场力。
但随着时间的推移,t 的增大,ct 必将大于此一有限的具体值r ,而使其受到电场力。
若假设点电荷在0t 为负无穷大时即存在,则空间处处都存在电场,于是有412rr r Q E πε=图表 1 场强等值面图(使用mathematica 计算得到,本文所有程序在windows xp 平台mathematica7.0下运行通过)二、相对介质运动时的电磁场现在考察0=t 时刻产生的点电荷相对于介质以速度v 运动。
其中,这又有两种情况,一是介质静止于实验室坐标系,二是点电荷静止于实验室坐标系。
现在分别考虑。
(一)场源运动此时,场源点电荷的位置不再固定,其产生的电磁场的等值面也应该不再是同心的球面。