一元二次方程与图像
- 格式:doc
- 大小:190.00 KB
- 文档页数:2
一元二次方程有什么特点一元二次方程是数学中的一种重要方程,具有鲜明的特点。
它在各个领域中有着广泛的应用,如物理、化学、工程等领域。
接下来,我们将详细探讨一元二次方程的特点,以及它在实际问题中的应用。
一、一元二次方程的定义及形式一元二次方程是指只含有一个未知数,且该未知数的最高次数为2的方程。
它的一般形式为:ax²+bx+c=0其中,a、b、c为已知常数,且a≠0。
二、一元二次方程的特点1.二次项系数不为零:在一元二次方程中,二次项系数a不为零,这是它与一元一次方程的主要区别。
二次项系数a的正负性决定了方程的性质。
2.图像特征:一元二次方程的解可以表示为抛物线。
通过分析二次项系数a、一次项系数b和常数项c,可以确定抛物线的开口方向、对称轴和顶点坐标。
3.根的判别式:一元二次方程的根的判别式为Δ=b²-4ac。
根据判别式的值,可以判断方程的根的情况:-Δ>0:方程有两个不相等的实根;-Δ=0:方程有两个相等的实根,即两个相同的实根;-Δ<0:方程无实根,但有两个共轭复根。
4.解的求法:一元二次方程有三种求解方法,分别是直接开平方法、配方法和解根公式法。
求解过程中,需要根据方程的特点和根的判别式选择合适的方法。
三、一元二次方程在实际问题中的应用1.物理学:在一元二次方程中,引力定律、简谐振动等问题中涉及到物体运动轨迹的解析,可以通过一元二次方程来描述。
2.工程学:在建筑、机械等领域,一些构件的尺寸和形状可以通过一元二次方程来表示,如抛物线、椭圆等。
3.经济学:在经济学中,一元二次方程可以用来描述成本、收益等函数关系,如成本函数、收益函数等。
4.生物学:在生物学中,一元二次方程可以用来描述种群增长模型,如Logistic曲线。
总之,一元二次方程具有独特的特点,它在各个领域的应用十分广泛。
通过深入理解和掌握一元二次方程的性质,我们可以更好地解决实际问题。
1. 一元二次函数函数 2y ax bx c =++ (0)a ¹叫做一元二次函数,其中,,a b c 是常数 一般式2y ax bx c =++ ( 0a ¹)顶点式 ()2y a x h k =-+ (0a ¹),其中(),h k 为抛物线顶点坐标两点式()()12y a x x x x =-- ( 0a ¹), 其中12,x x 是抛物线与x 轴交点的横坐标。
1.1一元二次函数的基本性质1.1.1一元二次函数的定义域和值域 一元二次函数2y ax bx c =++ ,(0)a ¹的R一元二次函数2y ax bx c =++ ,(0)a ¹ 的值域是0a >时一元二次函数的值域是24,4ac ba 轹-÷ê÷+ ÷ê÷øë 0a <时一元二次函数的值域是24,4acb a 纟-çú- ççúèû1.1.2一元二次函数的单调性1. 2y ax bx c =++ , ()0a > 在区间,2ba 纟çú-?ççúèû上为单调减函数 ,在区间,2ba 轹÷ê-+ ÷÷êøë上为单调增函数 。
当2b x a=-时 2min 44ac b y a-=, m ax y =无2. 2y ax bx c =++ ()0a <在区间,2ba 纟çú-?ççúèû上为单调增加函数,在区间,2ba轹÷ê-+ ÷÷êøë上为单调减函数 。
一元二次函数一、一元二次函数的定义形如y=ax 2+bx+c(其中a ≠0)的函数称之为一元二次函数。
一般情况下,我们会把一元二次函数改写成:224()24b ac b y a x a a-=++写成这样的目的主要是:〔1〕可以看出对称轴方程及顶点坐标;抛物线的对称轴的方程为:x= -2b a 顶点坐标为〔-2b a ,244ac b a-)〔2〕可以得到最大、小值:当a >0,y 取最小值,y= 244ac b a-当a<0,y 取最大值,y= 244ac b a-由一元二次函数的对称轴,从而我们可以知道一元二次函数的单调性:当a>0时,〔-∞,-2b a ]为单调减区间;[-2b a ,+∞〕为单调增区间。
当a<0时,[-2b a ,+∞〕为单调减区间;〔-∞,-2ba]为单调增区间〔3〕解答平移问题方便。
平移的法那么遵循两条:左加右减,上加下减。
题型一:平移图像,求新的解析式 【例题1】:y=x 2-2x+3向左移动一个单位,向上移动两个单位,移动后的解析式是什么? 解答:y=(x-1)2+2根据“左加右减〞的原那么,向左移动一个单位,那么有:y=(x-1+1)2+2 根据“上加下减〞的原那么,向上移动两个单位,那么有y=(x-1+1)2+2+2 所以,最终的结果是:y=x 2+4题型二:三点求函数的解析式——方法:待定系数法【例题2】一元二次方程y=ax 2+bx+c 经过点A(1,3),B(2,4),C(3,11),求函数的解析式。
解答:根据题意有:a b c 34a 2b c 49a 3b c 11++=⎧⎪++=⎨⎪++=⎩解上面的方程组,得:388a b c =⎧⎪=-⎨⎪=⎩所以:y=3x 2-8x+8【例题3】函数y=ax 2+bx+c 与x 轴的交点为A(-3,0),B(1,0),并且经过点〔4,21〕,求函数的解析式。
一般情况下,如果告诉你一元二次方程的两个解x 1,x 2;这个时候我们设:y=a(x-x 1)(x-x 2)最为方便。
二次函数,一元二次不等式,一元二次方程的
联系和区别
二次函数、一元二次不等式、一元二次方程都是关于二次方的数
学概念。
它们在形式和性质上各有不同,但都具有密切联系。
二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为常数。
其图像为一个开口向上或向下的抛物线,与x轴交点为其根。
一元二次方程是指形如ax^2+bx+c=0的方程,其中a、b、c为常数,x为未知数。
其解为x=(-b±√(b^2-4ac))/(2a)。
这个方程的解
决了抛物线与x轴交点的问题。
一元二次不等式是指形如ax^2+bx+c>0或ax^2+bx+c<0的不等式,其中a、b、c为常数,x为未知数。
这个式子就是要解出抛物线的正负。
因此,从几何角度来看,二次函数和一元二次不等式都与抛物线
的开口方向和根相关。
一元二次方程和二次函数的解方程式中的x为
根有关。
而一元二次不等式则是解出某个范围内x的取值。
同时,这些概念还有着实际意义。
二次函数的图像在物理学中很
常见,比如抛物线运动。
而一元二次方程在物理学和工程学中也有广
泛的应用。
在学习过程中需要注意,这些概念虽然看似相似,但细节处的不同很重要。
需要分类讨论、注意符号、掌握解法等,才能真正理解这些概念并活用于实际问题中。
专题03 一元二次方程与二次函数的图象、性质【知识点梳理】 知识点1:根的判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b ac x a a-+=.① 因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有 (1)当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根 x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根. 知识点2:根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根1x =,2x =, 则有1222b bx x a a-+===-;221222(4)42244b b b b ac ac c x x a a a a a-+---=⋅===.所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知 x 1+x 2=-p ,x 1·x 2=q , 即p =-(x 1+x 2),q =x 1·x 2,所以,方程x 2+px +q =0可化为x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0. 知识点3:二次函数图像的伸缩变换问题 函数y =ax 2与y =x 2的图象之间存在怎样的关系? 为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系. 先画出函数y =x 2,y =2x 2的图象. 先列表:再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到. 同学们也可以用类似于上面的方法画出函数y =12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0) 知识点4:二次函数图像的平移变换函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”. 由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+bx a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a --,对称轴为直线x =-2b a;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a-.【题型归纳目录】 题型1:根的判别式题型2:根与系数的关系(韦达定理) 题型3:二次函数图像的伸缩变换 题型4:二次函数图像的平移变换【典型例题】 题型1:根的判别式例1.已知关于x 的一元二次方程(k -2)x 2-2kx +k +1=0,若该方程有两个不相等的实数根,求k 的取值范围. 【答案】2k ->且2k ≠ 【解析】 【分析】直接利用一元二次方程根的判别式大于0即可求解. 【详解】解:∵关于x 的一元二次方程22210()k x kx k --++=有两个不相等的实数根, ∴224(2)4(2)(1)480b ac k k k k ∆=-=---+=+>,且20k -≠; 解得,2k ->且2k ≠. 【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 例2.已知x 1,x 2是关于x 的一元二次方程x 2-4mx +4m 2-9=0的两实数根. (1)若这个方程有一个根为-1,求m 的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m 的取值范围;(3)已知Rt △ABC 的一边长为7,x 1,x 2恰好是此三角形的另外两边的边长,求m 的值.【答案】(1)m的值为1或-2 (2)-2<m<1(3)m m=49 24【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角△ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:∵x1,x2是一元二次方程x2-4mx+4m2-9=0的两实数根,这个方程有一个根为-1,∴将x=-1代入方程x2-4mx+4m2-9=0,得1+4m+4m2-9=0.解得m=1或m=-2.∴m的值为1或-2.(2)解:∵x2-4mx+4m2=9,∴(x-2m)2=9,即x-2m=±3.∴x1=2m+3,x2=2m-3.∵2m+3>2m-3,∴231 231 mm+-⎧⎨--⎩><解得-2<m<1.∴m的取值范围是-2<m<1.(3)解:由(2)可知方程x2-4mx+4m2-9=0的两根分别为2m+3,2m-3.若Rt△ABC的斜边长为7,则有49=(2m+3)2+(2m-3)2.解得m=∵边长必须是正数,∴m若斜边为2m+3,则(2m+3)2=(2m-3)2+72.解得m=49 24.综上所述,m m =4924.【点睛】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.例3.关于x 的一元二次方程x 2﹣3x +k =0有实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m ﹣1)x 2+x +m ﹣3=0与方程x 2﹣3x +k =0有一个相同的根,求此时m 的值. 【答案】(1)94k ≤ (2)32m =【解析】 【分析】(1)根据一元二次方程根的判别式求解即可;(2)根据(1)确定2k =,从而求出方程2320x x -+=的解为121=2x x =,,然后分相同的根为1x =时和2x =时,两种情况讨论求解即可. (1)解:∵关于x 的一元二次方程x 2﹣3x +k =0有实数根, ∴()22=4=340b ac k ∆---≥, ∴94k ≤; (2) 解:∵94k ≤, k 是符合条件的最大整数, ∴2k =,∴方程230x x k -+=即为2320x x -+=, 解方程2320x x -+=得:121=2x x =,,∵一元二次方程(m ﹣1)x 2+x +m ﹣3=0与方程x 2﹣3x +k =0有一个相同的根 当这个相同的根为1x =时, ∴1130m m -++-=, ∴32m =; 当这个相同的根为2x =时,∴()4123m m -++-, ∴1m =,∵当1m =时,方程(m ﹣1)x 2+x +m ﹣3=0即为20x -=不是一元二次方程, ∴32m =. 【点睛】本题主要考查了一元二次方程根的判别式,解一元二次方程,一元二次方程的解等等,熟知一元二次方程根的判别式是解题的关键.例4.已知关于x 的一元二次方程2(21)20mx m x m --+-=有两个不相等的实数根. (1)求m 的取值范围;(2)若方程有一个根是0,求方程的另一个根. 【答案】(1)14m > 且0m ≠ (2)另一个根为32【解析】 【分析】(1)由一元二次方程定义和根的判别式与根之间的关系,列不等式组求解即可. (2)将x =0代入原方程,求出m ,再解方程即可. (1)解:∵2(21)20mx m x m --+-=是一元二次方程, 0m ∴≠ ,∵一元二次方程2(21)20mx m x m --+-=有两个不相等的实数,240b ac > ,即:2(21)4(2)0m m m > ,整理得:410m > , 14m >, 综上所述:14m > 且0m ≠. (2)∵方程有一个根是0,将x =0代入方程得:20m -= ,2m ∴= ,则原方程为:2230x x -= ,解得:1230,2x x ==, ∴方程的另一个根为32.【点睛】本题考查了一元二次方程的定义以及一元二次方程根的判别式与根的关系:0>方程有两个不相等的实数根 , =0方程有两个相等的实数根,0<方程没有实数根,方程有实数根.熟练掌握根的判别式与根的关系是解题关键,一元二次方程的二次项系数不能为0是易错点. 例5.已知关于x 的一元二次方程2240x mx m -+-=. (1)求证:方程总有两个实数根;(2)2x =是方程的一个根吗?若方程有一个实数根为负数,求正整数m 的值. 【答案】(1)见解析(2)x =2是方程的一个根,1m = 【解析】 【分析】(1)证明Δ≥0即可;(2)先求出方程的解,再根据题意得出答案即可. (1)证明:∵Δ=(-m )2-4×(2m -4) =m 2-8m +16 =(m -4)2, ∵(m -4)2≥0,∴方程总有两个实数根. (2)解:把x =2代入方程左边,得左边=22-2m +2m -4=0=右边, ∴x =2是方程x 2-mx +2m -4=0的一个根; 用因式分解法解此方程x 2-mx +2m -4=0, 可得(x -2)(x -m +2)=0, 解得x 1=2,x 2=m -2,若方程有一个根为负数,则m -2<0, 故m <2, ∴正整数m =1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0根的判别式,用到的知识点:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.题型2:根与系数的关系(韦达定理)例6.已知关于x 的一元二次方程()22120mx m x m ++++=有两个不相等的实数根1x ,2x .(1)求m 的取值范围;(2)若120x x ⋅=,求方程的两个根. 【答案】(1)14m <且0m ≠ (2)10x =,232x =-【解析】 【分析】(1)根据一元二次方程的定义及方程有两个不相等的实数根,得到根的判别式大于0,从而到关于m 的不等式,求出m 的范围即可;(2)利用根与系数的关系可得122m x x m+⋅=,根据120x x ⋅=可得关于m 的方程,整理后即可解出m 的值,最后求出方程的根. (1)解:∵关于x 的一元二次方程()22120mx m x m ++++=有两个不相等的实数根,∴0>且0m ≠,即()()221420m m m +-⨯⨯+>且0m ≠, 解得:14m <且0m ≠. (2)∵关于x 的一元二次方程()22120mx m x m ++++=有两个不相等的实数根1x ,2x ,∴122m x x m+⋅=, ∵120x x ⋅=, ∴20m m+=, 解得:2m =-,经检验:2m =-是分式方程的解, ∴当2m =-时,方程为:2230x x --=, 解得:10x =,232x =-.【点睛】本题考查了根的判别式,根与系数的关系,一元二次方程以及分式方程等知识.关键是掌握一元二次方程根的情况与判别式的关系:⑴0>⇔方程有两个不相等的实数根;⑵0=⇔方程有两个相等的实数根;⑶0<⇔方程没有实数根.以及根与系数的关系:1x ,2x 是一元二次方程()200++=≠ax bx c a 的两根时,12b x x a +=-,12c x x a⋅=. 例7.已知关于x 的一元二次方程2(31)210ax a x a -+++=. (1)求证:无论a 为任何非零实数,此方程总有两个实数根; (2)若该方程的两个实数根分别为1x 、2x ,且212x x -=,求a 的值. 【答案】(1)见解析;(2)11a =,213a =-【解析】 【分析】(1)利用一元二次方程根的判别式判断即可;(2)利用一元二次方程根与系数的关系,结合完全平方公式的变形求值即可. (1)解:∵一元二次方程2(31)210ax a x a -+++=,2(31)4(21)a a a ∆=+-+,221a a =++2(1)0a =+≥∴无论a 为任何非零实数,此方程总有两个实数根; (2)解:依题意得,1231a a x x ++=,1221a ax x +=, ∵212x x -=,∴21212()44x x x x +-=,∴2314(21)()4a a a a++-=,即23210a a --=, (3a +1)(a -1)=0,解得11a =,213a =-;【点睛】本题考查了一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-及根与系数的关系12b x x a+=-,12c x x a=.例8.若α=20x x t -+=的根;(1)则方程的另外一个根β=______,t =______;(2)求()()323211ααββ-+-+的值.【答案】1- (2)1【解析】【分析】 (1)根据一元二次方程根与系数的关系求解即可;(2)根据,αβ是为一元二次方程210x x --=的根,可得3232αααβββ-=-=,,代入代数式化简,进而根据一元二次方程根与系数的关系代入求解即可.(1)解:∵α=20x x t -+=的根,设方程的另外一个根为β, ∴1βα+=1β∴==1t αβ∴=⋅==-1-; (2) ,αβ是为一元二次方程210x x --=的根210αα∴--=,210ββ--=21αα∴-=,21ββ-=,0α≠,0β≠,32ααα∴-=,32βββ-=,∴()()323211ααββ-+-+()()11αβ=++1αβαβ=+++1αβ+=,1αβ=-,∴原式1111=-+=【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的意义,掌握一元二次方程根与系数的关系是解题的关键.例9.已知关于x 的一元二次方程()22230x m x m --+=有两个不相等的实数根.(1)求m 的取值范围;(2)若此方程的两实数根12,x x 满足()()12117x x --=,求m 的值.【答案】(1)34m <(2)1m =-【解析】【分析】(1)一元二次方程有两个不相等的实数根,则0∆>,由此求得m 的取值范围;(2)由12(1)(1)7x x --=得1212()17x x x x -++=,利用一元二次方程根与系数的关系进行求解.(1) 解:关于x 的一元二次方程22(23)0x m x m --+=有两个不相等的实数根, ∴22(23)40m m ∆=-->, 解得34m <. (2)解:根据题意得,212x x m =,1223x x m +=-.12(1)(1)7x x --=,∴1212()17x x x x -++=,即2(23)17m m --+=,解得1m =-或3m =, 又34m <, ∴1m =-.【点睛】本题考查了一元二次方程的判别式,一元二次方程根与系数的关系,熟练掌握两根之和与两根之积的表达式是解决本题的关键.例10.已知关于x 的一元二次方程22430x kx k -+=.(1)求证:该方程总有两个实数根;(2)若0k >,且该方程的两个实数根的差为3,求k 的值.【答案】(1)见解析 (2)32【解析】【分析】(1)根据方程的系数结合根的判别式可得出24=b ac ∆-结合偶次方的非负性可得出Δ≥0,进而可证出:无论k 为何实数,方程总有两个实数根;(2)根据根与系数的关系可得出x 1+x 2=4k ,x 1x 2=3k 2,结合(x 1-x 2)2=9,即可得出关于k 的方程,解之即可得出结论.(1)∵222(4)4134k k k ∆=-⨯⨯=,且无论k 为何实数,240k ≥∴Δ≥0∴该方程总有两个实数根;(2)方法一:设该方程两个实数根分别为()1212,x x x x ≥,则有124x x k +=,1223x x k ⋅=123x x -=则()2129x x -= ()2121249x x x x ⋅+-= 2216129k k -=294k = 解得:32k =± ∵0k >. ∴32k 方法二:()()30x k x k --=解得:1x k =,23x k = 由题意得:123x x -=33k k -=,解得:32k =± ∵0k >.∴32k 【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是:(1)牢记“当Δ=0时,一元二次方程有两个实数根”;(2)利用根与系数的关系结合(x 1-x 2)2=1,找出关于k 的方程.题型3:二次函数图像的伸缩变换例11.已知二次函数y =ax 2+bx ﹣2(a ≠0)的图象与x 轴交于点A 、B ,与y 轴交于点C .(1)若点A 的坐标为(4,0)、点B 的坐标为(﹣1,0),求a +b 的值;(2)若y =ax 2+bx ﹣2的图象的顶点在第四象限,且点B 的坐标为(﹣1,0),当a +b 为整数时,求a 的值.【答案】(1)1a b +=- (2)13,1,22a = 【解析】【分析】(1)代入A 、B 坐标,求出a 、b 的值即可得解;(2)根据抛物线顶点在第四象限,又与x 轴有两个交点,得到抛物线的开口向上,即a >0,根据顶点在第四象限得出02b a->,求出a 的取值范围,进而得出a +b 的取值范围,即可求解. (1)代入A 、B 坐标,可得: 1642020a b a b +-=⎧⎨--=⎩, 解得1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, 则a +b =-1;(2)∵抛物线顶点在第四象限,又与x 轴有两个交点,∴抛物线的开口向上,即a >0,且抛物线对称轴02b xa>, ∵抛物线过B 点(-1,0),∴代入B 点坐标可得:a -b -2=0,则有b =a -2,∴2022b a a a --=->, 解得a <2,∴02a <<,∵a +b =a +a -2=2a -2,∴2222a --<<,∵a +b 是整数,∴a +b =a +a -2=2a -2为整数,∴2a -2可以为-1,0,1,∴a 可以为12,1,32. 【点睛】本题考查了求解抛物线与x 轴的交点、抛物线函数图象的坐标特征等知识,根据抛物线顶点在第四象限,又与x 轴有两个交点,得到抛物线的开口向上,即a >0,是解答本题的关键.例12.抛物线212y x bx c =-++交x 轴于A 、B 两点,交y 轴正半轴于点C ,对称轴为直线32x =-.(1)如图1,若点C 坐标为(0,2),则b =_______,c =_________;(2)若点P 为第二象限抛物线上一动点,在(1)的条件下,求四边形ABCP 面积最大时,点P 坐标和四边形ABCP 的最大面积;(3)如图2,点D 为抛物线的顶点,过点O 作MN CD ∥别交抛物线于点M ,N ,当3MN CD =时,求c 的值.【答案】(1)32-,2; (2)点P (-2,3),四边形ABCP 的最大面积为9; (3)94. 【解析】【分析】(1)根据解析式和对称轴可求出b ,根据C 点坐标即可求出c;(2)求出1:22AC l y x =+,过点P 作x 轴的垂线,交AC 于点Q ,设点213(,2)22P x x x --+,(0)x <,求出24(0)APC S x x x =--<△,进一步求出S 四边形ABCP 22=45(2)9APC ABC S S x x x +=--+=-++△△,即可求出结果;(3)求出直线CD 的解析式为:34y x c =-+,进一步可得直线MN 的解析式为:34y x =-,分别过C ,N 作x 轴的平行线,过D ,M 作y 轴的平行线交于点G ,H ,证明MHN DGC ∽△△,即可求出结果. (1)解:由题意可知:∵322b x a =-=-,∴32b =-, ∵点C 坐标为(0,2),∴2c =;(2) 解:令2130222y x x ==--+,整理得(1)(4)0x x -+=, 解得1x =或4x =-,∴(4,0)A -,(1,0)B ,∵(0,2)C ,∴5AB =,2OC =, ∴152ABC S AB OC =⨯=△, ∵(4,0)A -,(0,2)C , ∴1:22AC l y x =+, 过点P 作x 轴的垂线,交AC 于点Q ,设点213(,2)22P x x x --+,(0)x <则点1(,2)2Q x x +, 2213112(2)22222PQ x x x x x =--+-+=--,∴21()4(0)2APC APQ PCQ C A S S S PQ x x x x x =+=⨯-=--<△△△, ∴S 四边形ABCP 22=45(2)9APC ABC S S x x x +=--+=-++△△,∵10-<,函数图象开口向下,又0x <,∴当2x =-时,S 四边形ABCP 最大 = 9,此时点(2,3)P -,∴当点(2,3)P -时,四边形ABCP 的最大面积,最大面积为9;(3) 解:∵221313()222298y x x c x c =--+=-+++, ∴39,28D c ⎛⎫+ ⎪⎝⎭-, 又∵(0,)C c ,∴设直线CD 的解析式为1y kx b =+(k≠0) ,代入点D ,C 的坐标得119382c b c k b =⎧⎪⎨+=-+⎪⎩, 解得134k b c⎧=-⎪⎨⎪=⎩, ∴直线CD 的解析式为:34y x c =-+, ∵MN CD ∥,∴直线MN 的解析式为:34y x =-, 由题意,联立2132234y x x c y x ⎧=--+⎪⎪⎨⎪=-⎪⎩, 得:213024x x c +-=,解得:x =932c ⎛⎫≥- ⎪⎝⎭,由题意,N xM x ,M N x x -= 分别过C ,N 作x 轴的平行线,过D ,M 作y 轴的平行线交于点G ,H ,∴G H ∠=∠,DCG MOA MNH ∠=∠=∠,∴MHN DGC ∽△△, ∴CG CD NH MN=, ∵ MN =3CD , ∴13CG CD NH MN ==, ∵39(,)28D c -+,(0,)C c , ∴32CG = , ∴39322NH =⨯= ,又∵M N NH x x =- ∴94c =. 【点睛】本题考查二次函数综合,难度较大,解题的关键是熟练掌握二次函数图象及性质,一次函数,相似三角形的判定及性质知识点.例13.二次函数2y ax bx c =++(a ,b ,c 是常数,0ab ≠).当2b x a=-时,函数y 有最小值1-.(1)若该函数图象的对称轴为直线1x =,并且经过()0,0点,求该函数的表达式.(2)若一次函数y ax c =+的图象经过二次函数2y ax bx c =++图象的顶点.①求该二次函数图象的顶点坐标.②若()(),,,a p c q 是该二次函数图象上的两点,求证:p q >.【答案】(1)22y x x =-(2)①顶点坐标为(-1,-1);②证明见解析【解析】【分析】(1)先确定顶点坐标,再设出该函数的顶点式解析式,将点(0,0)的坐标代入解析式中求出a ,即可求解;(2)①将顶点1),2(b a --代入y ax c =+,再利用2414ac b a-=-,进行转化后,求出12b a -=-即可求解; ②设函数表达式为()211y a x =+-,代入两点坐标后得到p 和q 的表达式,利用作差法比较大小即可.(1)解:由题意,得函数图象的顶点坐标为()1,1-,所以可设函数表达式为()211y a x =--,把()0,0代入,解得1a =,所求函数的表达式为22y x x =-.(2) ①由题意,将顶点1),2(b a --代入y ax c =+, 化简,得12b c =+. 又因为2414ac b a-=-, 所以2b a =,1c a =-.所以12b a-=-, 所以顶点坐标为()1,1--. ②由①可知,函数顶点坐标为()1,1--,1c a =-,所以可设函数表达式为()211y a x =+-.所以()()22311,1111p a a q a a a =+-=-+-=-. ()()2321112p q a a a a a -=+---=+. 因为函数有最小值,所以0a >,所以0p q ->,所以p q >.本题考查了二次函数的图像与性质、一次函数及其图象、作差法比较大小等,解题的关键是牢记函数的顶点式解析式和顶点坐标公式等.例14.已知点P 是二次函数()22111y x m m m =--++--图像的顶点.(1)小明发现,对m 取不同的值时,点P 的位置也不同,但是这些点都在某一个函数的图像上,请协助小明完成对这个函数的表达式的探究:①将下表填写完整:②描出表格中的五个点,猜想这些点在哪个函数的图像上?求出这个图像对应的函数表达式,并加以验证,(2)若过点(0,2),且平行于x 轴的直线与()22111y x m m m =--++--的图像有两个交点A 和B ,与②中得到的函数的图像有两个交点C 和D ,当AB CD =时,直接写出m 的值等于________;(3)若2m ≥,点Q 在二次函数()22111y x m m m =--++--的图像上,横坐标为m ,点E 在②中得到的函数的图像上,当90EPQ ∠=︒时,求出E 点的横坐标(用含m 的代数式表示).【答案】(1)①(0,﹣1),(1,1),(2,5),表格见解析,②在二次函数图像上,二次函数表达式是21y x x =+-,验证见解析;; (3)2322m m -+【解析】(1)点P 是二次函数()22111y x m m m =--++--[]2(1)x m =---21m m +--图像的顶点,得到点P 的坐标表示为(m -1,21m m --),分别带入m 的值求解P 点的坐标,描出表格中的五个点,猜想这些点在一个二次函数图像上,设二次函数的表示为2y ax bx c =++,把(0,﹣1),(1,1),(2,5)分别代入,利用待定系数法求出函数表达式,把x =m -1代入函数表达式验证即可;(2)根据题意求出AB 和CD 的长度,利用AB =CD ,列出方程并解方程即可求得m 的值;(3)求出点Q 的坐标,设点E 的坐标为(t ,21t t +-),利用两点间距离公式表示出2PE 、2PQ 、2QE ,由勾股定理得到2PE +2PQ =2QE ,整理后即可表示出点E 的横坐标(1)解:∵点P 是二次函数()22111y x m m m =--++--[]2(1)x m =---21m m +--图像的顶点 ,∴点P 的坐标表示为(m -1,21m m --)当m =1时,m -1=0,21m m --=21111--=-,此时P 点坐标是(0,﹣1);当m =2时,m -1=1,21m m --=22211--=,此时P 点坐标是(1,1);当m =3时,m -1=2,21m m --=23315--=,此时P 点坐标是(2,5);填写表格如下:故答案为:(0,﹣1),(1,1),(2,5);②描出表格中的五个点,如图所示,猜想这些点在一个二次函数图像上,设二次函数的表示为2y ax bx c =++,把(0,﹣1),(1,1),(2,5)分别代入得11425c a b c a a c =-⎧⎪++=⎨⎪++=⎩解得111a b c =⎧⎪=⎨⎪=-⎩∴函数表达式为21y x x =+-当x =m -1时,2221(1)111y x x m m m m =+-=-+--=--,∴点P 在二次函数21y x x =+-的图像上,猜想成立.(2)解:∵过点(0,2),且平行于x 轴的直线与()22111y x m m m =--++--的图像有两个交点A 和B , ∴当y =2时,()22211x m m m =--++--,方程整理得()2213x m m m -+=--解得11x m =-21x m =-∴AB =|12x x -|=∵过点(0,2),且平行于x 轴的直线与抛物线21y x x =+-有两个交点C 和D ,∴当y =2时,221x x =+-,解得1x =,2x CD =|12x x -∵AB =CD∴整理得244250m m --=解得1m =2m =; (3)解:∵点Q 在二次函数()22111y x m m m =--++--的图像上,横坐标为m ,∴当x =m 时,y =()222112m m m m m m --++--=--,∴点Q 的坐标是(m ,22m m --),∵点E 在②中得到的函数的图像上,∴可设点E 的坐标为(t ,21t t +-)由(1)知点P 的坐标表示为(m -1,21m m --),则22222(1)[(1)(1)]PE m t m m t t =--+---+-,22222(1)[(1)(2)]2PQ m m m m m m =--+-----=,22222()[(2)(1)]QE m t m m t t =-+---+-,∵90EPQ ∠=︒∴△EPQ 是QE 为斜边的直角三角形,由勾股定理得2PE +2PQ =2QE ,∴2222(1)[(1)(1)]m t m m t t --+---+-+2=2222()[(2)(1)]m t m m t t -+---+-解得t =2322m m -+. ∴点E 的横坐标是2322m m -+. 【点睛】此题是二次函数综合题,主要考查了二次函数的顶点式、待定系数法求二次函数解析式、一元二次方程的解法、坐标系中两点间距离、勾股定理等知识,运算量较大,具备良好的计算能力是解答此题的关键. 题型4:二次函数图像的平移变换例15.已知关于x 的方程ax 2+(3a +1)x +3=0.(1)求证:无论a 取任何实数时,该方程总有实数根;(2)若抛物线y =ax 2+(3a +1)x +3的图象与x 轴两个交点的横坐标均为整数,且a 为正整数,求a 值以及此时抛物线的顶点H 的坐标;(3)在(2)的条件下,直线y =﹣x +5与y 轴交于点C ,与直线OH 交于点D .现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD (含端点C )只有一个公共点,请直接写出它的顶点横坐标h 的值或取值范围.【答案】(1)证明过程见详解.(2)a =1,(﹣2,﹣1)(3)h =72或﹣52≤h<2 【解析】【分析】(1)分别讨论当a =0和a ≠0的两种情况,分别对一元一次方程和一元二次方程的根进行判断; (2)令y =0,则 ax 2+(3a +1)x +3=0,求出两根,再根据抛物线y =ax 2+(3a +1)x +3的图象与x 轴两个交点的横坐标均为整数,且a 为正整数,求出a 的值,即可求顶点坐标;(3)分两种情况讨论,通过特殊位置可求h 的范围,由平移的抛物线与直线CD (含端点C )只有一个公共点,联立方程组可求h 的值,即可求解.(1)解:当a =0时,原方程化为x +3=0,此时方程有实数根 x =﹣3.当a ≠0时,原方程为一元二次方程.∵∆=(3a +1)2﹣12a =9a 2﹣6a +1=(3a ﹣1)2≥0.∴此时方程有两个实数根.综上,不论a 为任何实数时,方程 ax 2+(3a +1)x +3=0总有实数根.(2)∵令y =0,则 ax 2+(3a +1)x +3=0.解得 x 1=﹣3,x 2=﹣1a .∵抛物线y =ax 2+(3a +1)x +3的图象与x 轴两个交点的横坐标均为整数,且a 为正整数,∴a =1.∴抛物线的解析式为y =x 2+4x +3=(x +2)2﹣1.∴顶点H 坐标为(﹣2,﹣1);(3)∵点O (0,0),点H (﹣2,﹣1)∴直线OH 的解析式为:y =12x ,∵现将抛物线平移,保持顶点在直线OD 上.∴设平移后的抛物线顶点坐标为(h ,12h ),∴解析式为:y =(x ﹣h )2+12h ,∵直线y =﹣x +5与y 轴交于点C ,∴点C 坐标为(0,5)当抛物线经过点C 时,∴5=(0﹣h )2+12h ,∴h 1=﹣52,h 2=2, ∴当﹣52≤h<2时,平移的抛物线与射线CD (含端点C )只有一个公共点; 当平移的抛物线与直线CD (含端点C )只有一个公共点, 联立方程组可得251()2y x y x h h =-+⎧⎪⎨=-+⎪⎩,∴x 2+(1﹣2h )x +h 2+12h ﹣5=0,∴∆=(1﹣2h )2﹣4(h 2+12h ﹣5)=0, ∴h =72, ∴抛物线y =(x ﹣72)2+74与射线CD 的唯一交点为(3,2),符合题意; 综上所述:平移的抛物线与射线CD (含端点C )只有一个公共点,顶点横坐标h =72或﹣52≤h<2. 【点睛】此题考查了根的判别式、二次函数与x 轴的交点问题、二次函数与不等式的关系;解题的关键是第(3)题要根据CD 是射线,分情况讨论.例16.已知抛物线()2430y ax ax a =-+≠的图象经过点()2,0A -,过点A 作直线l 交抛物线于点()4,B m .(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移()0n n >个单位,使顶点落在直线l 上,求m ,n 的值.【答案】(1)2134y x x =-++;()2,4(2)3;2【解析】【分析】(1)把点()2,0A -代入()2430y ax ax a =-+≠,求出a 的值即可;再运用顶点坐标公式求出顶点坐标即可; (2)把C ()4,m 代入2134y x x =-++可求出m 的值;再运用待定系数法求出直线AB 的解析式,从而可求出平移后押物线的顶点坐标,进一步可得结论.(1)将()2,0A -代入243y ax ax =-+得:0483a a =++,解得14a =-, ∴抛物线的函数表达式为2134y x x =-++, ∵121224b a -=-=⎛⎫⨯- ⎪⎝⎭,2214314441444ac b a ⎛⎫⨯-⨯- ⎪-⎝⎭==⎛⎫⨯- ⎪⎝⎭, ∴顶点坐标为()2,4;(2)把C ()4,m 代入2134y x x =-++得, 4433m =-++=,设直线AB 的解析式为y kx b =+,将()2,0A -,()4,3B 代入y kx b =+得0234k b k b =-+⎧⎨=+⎩, 解得121k b ⎧=⎪⎨⎪=⎩, ∴直线AB 的解析式为112y x =+, ∵顶点的横坐标为2,∴把2x =代入112y x =+得:2y =, ∴422n =-=.【点睛】本题主要考查了运用待定系数法求函数关系式以及二次函数图象的平移,正确理解题意是解答本题的关键.例17.将抛物线2(0)y ax a =≠向左平移1个单位,再向上平移4个单位后,得到抛物线2:()H y a x h k =-+.抛物线H 与x 轴交于点A ,B ,与y 轴交于点C .已知(3,0)A -,点P 是抛物线H 上的一个动点.(1)求抛物线H 的表达式;(2)如图1,点P 在线段AC 上方的抛物线H 上运动(不与A ,C 重合),过点P 作PD AB ⊥,垂足为D ,PD 交AC 于点E .作PF AC ⊥,垂足为F ,求PEF 的面积的最大值;(3)如图,点M 是抛物线H 的对称轴L 上的一个动点,是否存在点M ,使得以点A ,M ,C 为顶点的三角形是直角三角形?若存在,求出所有符合条件的点M 的坐标;若不存在,说明理由.【答案】(1)2(1)4y x =-++ (2)8164(3)存在点1M ⎛- ⎝⎭,2M ⎛- ⎝⎭,3(1,2)M --,4(1,4)M - 【解析】【分析】(1)根据题意设抛物线2:(1)4H y a x =++,根据点A 的坐标,待定系数法求二次函数解析式即可; (2)根据题意求得直线AC 的解析式为3y x ,设()2,23P m m m --+,则(,3)E m m +,进而根据二次函数的性质求得PE 的最大值,进而根据21124PEF S PF EF PE =⋅=即可求解; (3)设(1,)M m -,(3,0)A -,(0,3)C ,则224MA m =+,221(3)MC m =+-,218AC =,分①当90AMC ∠=︒时,222MA MC AC +=,即2241(3)18m m +++-=,②当90MAC ∠=︒时,222MA AC MC +=,即224181(3)m m ++=+-,③当90MCA ∠=︒时,222MA MC AC =+即224181(3)m m +=++-,解方程求解即可.(1)解:由题意得抛物线的顶点坐标为(1,4)-,∴抛物线2:(1)4H y a x =++,将(3,0)A -代入,得:2(31)40a -++=,解得:1a =-,∴抛物线H 的表达式为2(1)4y x =-++;(2)如图1,由(1)知:223y x x =--+,令0x =,得3y =,∴(0,3)C ,设直线AC 的解析式为y mx n =+,∵(3,0),(0,3)A c -,∴303m n n -+=⎧⎨=⎩, 解得:13m n =⎧⎨=⎩, ∴直线AC 的解析式为3y x ,设()2,23P m m m --+,则(,3)E m m +, ∴2223923(3)324PE m m m m m m ⎛⎫=--+-+=--=-++ ⎪⎝⎭, ∵10-<, ∴当32m =-时,PE 有最大值94, ∵3,90OA OC AOC ==∠=︒,∴AOC △是等腰直角三角形,∴45ACO ∠=︒,∵PD AB ⊥,∴90ADP ∠=︒,∴ADP AOC ∠=∠,∴PD //OC ,∴45PEF ACO ∠=∠=︒,∵PF AC ⊥,∴PEF 是等腰直角三角形,∴PF EF ==, ∴21124PEF S PF EF PE =⋅=, ∴当32m =-时,219814464PEF S ⎛⎫=⨯= ⎪⎝⎭最大值; (3)∵2y x 2x 3=-++.∴设(1,)M m -,(3,0)A -,(0,3)C ∴224MA m =+,221(3)MC m =+-,218AC = ①当90AMC ∠=︒时,222MA MC AC += 即2241(3)18m m +++-=,解得m =∴1M ⎛- ⎝⎭,2M ⎛- ⎝⎭②当90MAC ∠=︒时,222MA AC MC +=,即224181(3)m m ++=+- 解得2m =-,即3(1,2)M --③当90MCA ∠=︒时,222MA MC AC =+即224181(3)m m +=++- 解得4m =,即4(1,4)M -综上所述:在抛物线的对称轴上存在点1M ⎛- ⎝⎭,2M ⎛- ⎝⎭,3(1,2)M --,4(1,4)M -,使以A 、M 、C 为顶点的三角形为直角三角形.【点睛】本题考查了二次函数综合,面积问题,直角三角形问题,勾股定理,解一元二次方程,掌握二次函数的性质,一次函数的性质,勾股定理,并能分类讨是解题的关键.例18.如图,已知抛物线2y x bx c =++与x 轴交于点A 和点B ,与y 轴交于点(0,3)C ,且3OC OA =.点E 是对称轴左侧的抛物线上一点,过点E 作EF x ∥轴,交抛物线于点F .(1)若3EF =,求抛物线的解析式以及点E 的坐标;(2)若点E 沿抛物线向下移动,使得对应的EF 的取值范围为1213EF ≤≤,求移动过程中点F 的纵坐标F y 的取值范围.【答案】(1)2y x 2x 3=-++;17,24E ⎛⎫- ⎪⎝⎭(2)153324F y -≤≤- 【解析】 【分析】(1)利用已知条件求出A 的坐标,用待定系数法即可求出抛物线解析式;设点()()12,,,E x n F x n ,利用E 是对称轴左侧的抛物线上一点,EF =3,得到213x x -=,利用抛物线的对称轴为直线x =1,得到1212x x +=,联立即可求得1x 的值,再代入抛物线即可求出答案;(2)设点()()12,,,F F E x y F x y ,利用E 是对称轴左侧的抛物线上一点,得到EF =21x x -,利用抛物线的对称轴为直线x =1,得到1212x x +=,则122x x =-,可得222EF x =-,利用已知条件求出2x 的取值范围,结合图象,再利用抛物线解析式即可得出结论. (1)解:点(0,3)C ,3OC ∴=,3OC OA =,1OA ∴=, ∴点(1,0)A -,抛物线2y x bx c =-++与x 轴交于点(1,0)A -,与y 轴交于点(0,3)C ,230(1)(1)c b c =⎧⎨=--+⨯-+⎩解得:23b c =⎧⎨=⎩ ∴抛物线的解析式为2y x 2x 3=-++, EF x ∥轴,∴设点()()12,,,E x n F x n ,点E 是对称轴左侧的抛物线上一点,3EF =, 213x x ∴-=,2223(1)4y x x x =-++=--+,∴抛物线的对称轴:直线1x =,1212x x +∴=, ∴2112312x x x x -=⎧⎪⎨+=⎪⎩ 解得:121252x x ⎧=-⎪⎪⎨⎪=⎪⎩当112x =-时,211723224n ⎛⎫⎛⎫=--+⨯-+= ⎪ ⎪⎝⎭⎝⎭∴点17,24E ⎛⎫- ⎪⎝⎭.(2)EF x ∥轴,∴设点()()12,,,F F E x y F x y ,2223(1)4y x x x =-++=--+,∴抛物线的对称轴:直线1x =, 1212x x +∴=, 122x x ∴=-,()21222222EF x x x x x ∴=-=--=-, 1213EF ≤≤,2122213x ∴≤-≤,21572x ∴≤,当7x =时,2F 727332y =-+⨯+=-,当152x =时,2F 151515323224y ⎛⎫=-+⨯+=- ⎪⎝⎭,∴移动过程中点F 的纵坐标F y 的取值范围:153324F y -≤≤-.【点睛】本题考查了二次函数的图象和性质,待定系数法确定二次函数的解析式,抛物线上点的坐标的特征,抛物线与x 轴的交点,配方法求得抛物线的对称轴,利用点的坐标表示相应线段的长度是解题的关键. 例19.已知抛物线2:=++l y x bx c 与x 轴交于A ,B 两点,点A 在点B 的左侧,其对称轴为直线26x AB ==,. (1)抛物线l 的函数表达式为__________.(2)设抛物线l 与y 轴交于点C ,直线2x =与BC 的交点为M .将抛物线l 向左平移(0)m m >个单位得到抛物线l ',l '与直线2x =交于点N .当点N 在点M 下方时,m 的取值范围是___________.【答案】(1)245y x x =--(2)0m << 【解析】 【分析】(1)由对称轴为直线2x =,6AB =,可得,A B 坐标,将,A B 坐标代入2y x bx c =++,求出,b c 的值,进而可得抛物线l 的函数表达式;(2)如图,将0x =代入245y x x =--,求出C 点坐标,设直线BC 的解析式为y kx b =+,待定系数法求解析式为5y x =-,将2x =代入求出M 的点坐标,平移后的l '的解析式为()229y x m =-+-,设()2,N a ,3a <-,。
初中数学一元二次方程的根与二次函数的图像有什么关系一元二次方程的根与二次函数的图像之间存在着密切的关系。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为实数,且a ≠ 0。
而二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为实数,且a ≠ 0。
下面我们将详细说明一元二次方程的根与二次函数的图像之间的关系:1. 根的性质与图像的交点:一元二次方程的根表示方程在x轴上的解,即方程的解与x轴的交点。
而二次函数的图像表示了函数在平面上的走势,其中与x轴的交点即为函数的零点。
因此,一元二次方程的根与二次函数的图像在x轴上的交点是相对应的。
例如,考虑一元二次方程x^2 - 4x + 3 = 0。
通过求解该方程,我们可以得到两个根x = 1 和x = 3。
与之对应的二次函数y = x^2 - 4x + 3的图像与x轴的交点也是1和3。
2. 根的数量与图像的形状:一元二次方程的根的数量与二次函数的图像的形状之间存在着关系。
具体而言,根的数量与二次函数的图像与x轴的交点的数量相对应。
a) 当一元二次方程有两个不相等的实数根时,对应的二次函数的图像与x轴有两个交点,即图像开口向上或向下,并且与x轴交点处的y值分别大于0和小于0。
b) 当一元二次方程有两个相等的实数根时,对应的二次函数的图像与x轴有一个交点,即图像开口向上或向下,并且与x轴交点处的y值等于0。
c) 当一元二次方程没有实数根时,对应的二次函数的图像与x轴没有交点,即图像开口向上或向下,并且与x轴永远不相交。
例如,考虑一元二次方程x^2 - 4x + 3 = 0。
根据判别式D = (-4)^2 - 4(1)(3) = 16 - 12 = 4大于0,我们可以判断该方程有两个不相等的实数根。
与之对应的二次函数y = x^2 - 4x + 3的图像开口向上,并且与x轴的交点处的y值分别大于0。
3. 根的位置与图像的顶点:一元二次方程的根的位置与二次函数的图像的顶点之间存在着关系。
一元二次方程判别式的三种情况一元二次方程的判别式有三种情况,分别是大于零、等于零和小于零。
当判别式大于零时,方程有两个不相等的实数根。
这种情况下,方程的图像是一个开口向上的抛物线,在$x$轴上有两个交点。
当判别式等于零时,方程有两个相等的实数根。
这种情况下,方程的图像是一个在$x$轴上只有一个交点的抛物线,该点也是其顶点。
当判别式小于零时,方程没有实数根。
这种情况下,方程的图像不与$x$轴相交,但在复数域内存在两个共轭复数根。
三种情况可以用判别式公式$Δ=b^2-4ac$来判断,其中$b$、
$a$、$c$分别是一元二次方程$ax^2+bx+c=0$的系数。
如果$Δ>0$,则有两个不相等的实数根;如果$Δ=0$,则有两个相等的实数根;如果$Δ<0$,则没有实数根。
5.9用图像法解一元二次方程(006)
设计人:初三备课组
一、学习目标:
1、 探索抛物线与x 轴的交点横坐标和一元二次方程的根的关系,体会方程与函数的密切关系。
2、 学会用图像法求一元二次方程近似根。
3、 学会运用二次函数2
y ax bx c =++的图像与x 轴交点的个数和一元二次方程
20ax bx c ++=的根的判别式之间的关系。
二、学习重点和难点:
应用一元二次方程根的判别式,及求根公式,来对二次函数及其图象进行进一步的理解.此点一定要结合二次函数的图象加以记忆.
三、学习过程:
(一)情景再现:
如图,以40m/s 的速度将小球沿与地面成30º角的方向击出时,球的飞行路线将是一条抛物线。
如果不考虑空气阻力,球的飞行高度h 与飞行时间之间的关系式为2
2050h t t =-。
回答下列问题:
① 球的飞行高度能否到达15m ?如果能,需飞行多长时间? ② 球的飞行高度能否到达20m ?如果能,需飞行多长时间? ③ 球的飞行高度能否达到20.5m ?为什么? ④ 球从飞出到落地需要多长时间?
(二)探求新知:
观察抛物线2
23y x x =--,回答问题:
① 抛物线与x 轴有几个公共点?交点的坐标分别是什么? ② 当x 取何止时,函数2
23y x x =--的值为0?
③ 一元二次方程2
230x x --=有没有根?如果有,求出根。
(三)议一议:
在同一坐标系中画出二次函数y=x 2+2x,y=x 2-2x+1,y=x 2-2x+2的图象并回答下列问题: (1).每个图象与x 轴有几个交点?
(2).一元二次方程? x 2+2x=0,x 2-2x+1=0有几个根?验证一下一元二次方程x 2-2x+2=0有根吗? (3).二次函数y=ax 2+bx+c 的图象和x 轴交点的坐标与一元二次方程ax 2+bx+c=0的根有什么关系?
(四)对应练习:
1、用图像法讨论一元二次方程2
230x x -+=的根。
2、用图像法讨论一元二次方程21
04
x x -+
=的根。
3 用图像法讨论一元二次方程y=2x 2-5x+3的根。
课堂小结:二次函数 y =ax 2+bx +c 的图象和x 轴交点的三种情况与一元二次方程根的关系:
二次函数y =ax 2+bx +c 的图象和x 轴交点 一元二次方程
ax 2+bx +c= 0的根
一元二次方程
ax 2+bx +c= 0根的判别式
Δ=b 2-4ac
(五)当堂训练:
1、二次函数2
y ax bx c =++的图像与x 轴的公共点的个数有三种情况: , , 。
当2
y ax bx c =++的图像与x 轴有公共点时,公共点的横坐标是一元二次方程2
0ax bx c ++=的 。
2.抛物线y=a (x -2)(x +5)与x 轴的交点坐标为 .
3.已知抛物线的对称轴是x=-1,它与x 轴交点的距离等于4,它在y 轴上的截距是-6,则它的表达式为
.
4.若a >0,b >0,c >0,△>0,那么抛物线y=ax 2
+bx +c 经过 象限.
5.抛物线y=2x 2
+8x +m 与x 轴只有一个交点,则m=
.
6.已知抛物线y=ax 2
+bx +c 的系数有a -b +c=0,则这条抛物线经过点 . 7.二次函数y=kx 2
+3x -4的图象与x 轴有两个交点,则k 的取值范围
.
8.抛物线y=3x 2
+5x 与两坐标轴交点的个数为( )
A .3个
B .2个
C .1个
D .无
9.如图1所示,函数y=ax 2
-bx +c 的图象过(-1,0),则b a c a c b c b a +++++的值是( )
A .-3
B .3
C .21
D .-21
10.已知二次函数y=ax 2
+bx +c 的图象如图2所示,则下列关系正确的是( )
A .0<-a b 2<1
B .0<-a b 2<2
C .1<-a b 2<2
D .-a
b
2=1
【挑战自我】
已知抛物线y=x 2
-(k +1)x +k .(1)试求k 为何值时,抛物线与x 轴只有一个公共点;(2)如
图,若抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴的负半轴交于点C ,试问:是否存在实数k ,使△AOC 与△COB 相似?若存在,求出相应的k 值;若不存在,请说明理由.。