刘泉《信号与系统》 第三章85068036剖析
- 格式:ppt
- 大小:3.14 MB
- 文档页数:152
文档《信号与系统》(第3版)习题解析高等教育出版社目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。
](a) 2 f ( t - 2 ) (b) f ( 2t )(c) f ( 2t)(d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
S RS LS C题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T == )()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
第三章连续信号的正交分解§3-1 引言线性系统分析方法,是将复杂信号分解为简单信号之和(或积分),通过系统对简单信号的响应求解系统对复杂信号的响应。
在上一章所述的时域中,近代时域法将信号分解为冲激信号的积分,根据系统的冲激响应通过卷积计算出系统对信号的响应。
然而,很多信号的特性与频率有着很重要的关系,因此研究信号在频域中的特性可以得到许多极具实用价值的结论,它在工程中也具有很重要的意义。
故此,从本章开始,我们就是研究这方面的问题。
在本章中,我们研究任何将信号分解成与频率有关的函数的叠加。
即在频域中,将信号分解为一系列与频率有关的正弦函数的和(或积分)。
然后,再研究如何通过系统对正弦信号的响应求解系统对原信号的响应。
类似上章所述,通过信号分解的方法求解响应要研究下面几个问题:1)如何将任意信号分解为一系列正弦信号之和(或积分)。
2) 求解系统对各个正弦子信号的响应(这个内容在电路分析课程中已经有详细介绍)。
3) 将各子信号的响应相叠加,从而合成系统对激励信号的响应。
本章将要研究的就是如何对信号进行分解和合成。
§3-2 信号在正交函数集中的分解信号的分解,在某种意义上与矢量的分解有相似之处。
为了形象地说明信号的分解,首先我们讨论矢量的分解。
一、矢量的分解1、矢量的定义:具有大小和方向的量叫做矢量。
2、矢量运算:加,矢量点乘(结果是标量),矢量叉乘。
3、矢量的分解:1) 矢量的单矢量基的分解:A 在1A 上的分量为A 在1A 上的投影:E +=11A A c其中,E 为误差矢量。
而A 在1A 上的垂直投影11c A 的模11A c :11111A A Acos θA Acos θA AA ∙===1c ,从几何或者解析角度,都可以得到使误差E 最小的系数为:1112111A A A AA A A ∙∙=∙=c其中的1c 称为矢量A 和1A 的相似系数。
其它投影情况下误差E 不为最小,见上图。