解三角形复习课件-高三数学复习
- 格式:ppt
- 大小:1016.59 KB
- 文档页数:23
第七节解三角形应用举例一、教材概念·结论·性质重现1.仰角和俯角意义图示在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角.2.方位角意义图示从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α.3.方向角意义图示相对于某一正方向的水平角(1)北偏东α,即由指北方向顺时针旋转α到达目标方向;(2)北偏西α,即由指北方向逆时针旋转α到达目标方向;(3)南偏西等其他方向角类似.4.坡角与坡度意义图示(1)坡角:坡面与水平面所成的二面角的度数(如图,角θ为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图,i为坡度).坡度又称为坡比.解三角形应用问题的步骤1.判断下列说法的正误,对的打“√”,错的打“×”.(1)若从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α=β.(√) (2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.(×) (3)若点P 在点Q 的北偏东44°,则点Q 在点P 的东偏北46°. (×) (4)方位角大小的范围是[0,π),方向角大小的范围是⎣⎢⎡⎭⎪⎫0,π2.(×)2.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°D 解析:由条件及图可知,∠A =∠CBA =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 的南偏西80°. 3.如图,为测量一棵树OP 的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.30+303解析:在△PAB中,∠PAB=30°,∠APB=15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°·sin 30°=22×32-22×12=6-2 4.由正弦定理得PBsin 30°=ABsin 15°,所以PB=12×606-24=30(6+2),所以树的高度OP=PB sin 45°=30(6+2)×22=(30+303)(m).4.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________ km.64解析:因为∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,所以∠DAC=60°,所以AC=CD=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=CDsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=34+38-2×32×64×22=38.所以AB=64km.所以A,B两点间的距离为64km.5.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为________.40 m解析:设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,由余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=40或x=-20(舍去).故电视塔的高度为40 m.考点1解三角形的实际应用——应用性考向1测量距离问题如图,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1 km,AC=3 km.假设小王和小李徒步攀登的速度为每小时1 250m,请问:两位登山爱好者能否在2个小时内徒步登上山峰.(即从B点出发到达C点)解:在△ABD中,由题意知,∠ADB=∠BAD=30°,所以AB=BD=1.因为∠ABD=120°,由正弦定理ABsin∠ADB=ADsin∠ABD,解得AD=3(km).在△ACD中,由AC2=AD2+CD2-2AD·CD·cos 150°,得9=3+CD2+23×32×CD.即CD2+3CD-6=0,解得CD=33-32(km),BC=BD+CD=33-12(km).两个小时小王和小李可徒步攀登1 250×2=2 500(m),即2.5km , 而33-12<36-12=52=2.5,所以两位登山爱好者可以在两个小时内徒步登上山峰.1.若将本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,求这条索道AC 的长.解:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD , 所以200sin 30°=ADsin 120°. 所以AD =200×sin 120°sin 30°=200 3 (m). 在△ABC 中,DC =300 m ,∠ADC =150°,所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(2003)2+3002-2×2003×300×cos 150°=390 000,所以AC =10039 m.故这条索道AC 长为10039 m.2.若将本例条件“∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km ”变为“∠ADC =135°,∠CAD =15°,AD =100 m ,作CO ⊥AB ,垂足为O ,延长AD 交CO 于点E ,且CE =50 m ,如图”,求角θ的余弦值.解:在△ACD 中,∠ADC =135°, ∠CAD =15°,所以∠ACD =30°. 由正弦定理可得AC =100×sin 135°sin 30°=100 2.在△ACE 中,由正弦定理可得sin ∠CEA =AC ·sin ∠CAE CE=3-1,所以cos θ=cos ⎝ ⎛⎭⎪⎫∠CEA -π2=sin ∠CEA =3-1.距离问题的解题思路这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.提醒:①基线的选取要恰当准确;②选取的三角形及正弦、余弦定理要恰当. 考向2 测量高度问题如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC =135°.若山高AD =100 m ,汽车从B 点到C 点历时14 s ,则这辆汽车的速度约为________m/s(精确到0.1).参考数据:2≈1.414,5≈2.236.22.6 解析:因为小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°, 所以∠BAD =60°,∠CAD =45°. 设这辆汽车的速度为v m/s ,则BC =14v . 在Rt △ABD 中,AB =AD cos ∠BAD =100cos 60°=200. 在Rt △ACD 中,AC =AD cos ∠CAD =100cos 45°=100 2. 在△ABC 中,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC , 所以(14v )2=(1002)2+2002-2×1002×200×cos 135°,所以v =50107≈22.6,所以这辆汽车的速度约为22.6 m/s.解决高度问题的注意事项(1)在解决有关高度问题时,理解仰角、俯角是关键.(2)高度问题一般是把它转化成解三角形问题,要注意三角形中的边角关系的应用.若是空间的问题要注意空间图形向平面图形的转化.1.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表” )和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭” ).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即∠ABC)为26.5°,夏至正午太阳高度角(即∠ADC)为73.5°,圭面上冬至线与夏至线之间的距离(即BD的长)为a,则表高(即AC的长)为()A.a sin 53°2sin 47°B.2sin 47°a sin 53°C.a tan 26.5°tan 73.5°tan 47°D.a sin 26.5°sin 73.5°sin 47°D解析:由题意得,∠BAD=73.5°-26.5°=47°.在△ABD中,由正弦定理可得,BDsin∠BAD=ADsin∠ABD,即asin 47°=ADsin 26.5°,则AD=a sin 26.5°sin 47°.在△ACD中,ACAD=sin∠ADC=sin 73.5°,所以AC=a sin 26.5°·sin 73.5°sin 47°.故选D.2.如图是改革开放四十周年大型展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P 离地面的高度OP (点O 在柱楼底部).在地面上的A ,B 两点测得点P 的仰角分别为30°,45°,且∠ABO =60°,AB =50米,则OP 为( )A .15米B .25米C .35米D .45米B 解析:如图所示:由于∠OAP =30°,∠PBO =45°,∠ABO =60°,AB =50米,OP ⊥AO ,OP ⊥OB .设OP =x ,则OA =3x ,OB =x ,在△OAB 中,由余弦定理得OA 2=OB 2+AB 2-2OB ·AB ·cos ∠ABO , 即(3x )2=502+x 2-2×50x ×12,所以x 2+25x -1 250=0,解得x =25或x =-50(舍).3.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =80米,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则A ,B 两点间的距离为________米.805 解析:如图,在△ACD 中,∠DCA =15°,∠ADC =150°,所以∠DAC =15°.由正弦定理,得AC=80sin 150°sin 15°=406-24=40(6+2)(米).在△BCD中,∠BDC=15°,∠BCD=135°,所以∠CBD=30°.由正弦定理,得CDsin∠CBD=BCsin∠BDC,所以BC=CD·sin∠BDCsin∠CBD=80×sin 15°sin 30°=40(6-2)(米).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=1 600(8+43)+1 600(8-43)+2×1 600(6+2)×(6-2)×12=1 600×16+1 600×4=1 600×20,解得AB=805(米),则A,B两点间的距离为805米.考点2正余弦定理在平面几何中的应用(2020·青岛模拟)如图,在平面四边形ABCD中,AB⊥AD,AB=1,AD =3,BC= 2.(1)若CD=1+3,求四边形ABCD的面积;(2)若sin∠BCD=325,∠ADC∈⎝⎛⎭⎪⎫0,π2,求sin∠ADC.解:(1)如图,连接BD,在Rt△ABD中,由勾股定理可得,BD2=AB2+AD2=4,所以BD=2.在△BCD 中,由余弦定理可得,cos C =BC 2+CD 2-BD 22BC ·CD =2+(1+3)2-222×2×(1+3)=22. 因为C 为三角形的内角,故C =π4, 所以S △ABD =12AB ·AD =12×1×3=32, S △BCD =12BC ·CD sin C =12×2×(1+3)×22=1+32, 故四边形ABCD 的面积S =1+232.(2)在△BCD 中,由正弦定理可得BC sin ∠BDC =BDsin ∠BCD , 所以sin ∠BDC =BC ·sin ∠BCD BD=35. 因为∠ADC ∈⎝ ⎛⎭⎪⎫0,π2,所以∠BDC ∈⎝ ⎛⎭⎪⎫0,π2, 所以cos ∠BDC =45,在Rt △ABD 中,tan ∠ADB =AB AD =33, 故∠ADB =π6,所以sin ∠ADC =sin ⎝ ⎛⎭⎪⎫∠BDC +π6=35×32+45×12=4+3310.正余弦定理解平面几何问题的注意点(1)图形中几何性质的挖掘往往是解题的切入点,或是问题求解的转折点. (2)根据条件或图形,找出已知,未知及求解中需要的三角形,用好三角恒等变换公式,运用正弦定理,余弦定理解题.(3)养成应用方程思想解题的意识.1.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km),AB =5,BC =8,CD =3,AD =5,且∠B 与∠D 互补,则AC 的长为( )A .7 kmB .8 kmC .9 kmD .6 kmA 解析:在△ACD 中,由余弦定理得cos D =AD 2+CD 2-AC 22AD ·CD =34-AC 230. 在△ABC 中,由余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC=89-AC 280. 因为∠B +∠D =180°,所以cos B +cos D =0,即34-AC 230+89-AC 280=0,解得AC 2=49.所以AC =7.2.(2020·山师附中高三模拟)如图,在平面四边形ABCD 中,已知AB =26,AD =3,∠ADB =2∠ABD ,∠BCD =π3.(1)求BD ;(2)求△BCD 周长的最大值.解:在△ABD 中,设BD =x ,∠ABD =α,则∠ADB =2α, 因为AB sin 2α=AD sin α, 所以cos α=63.由余弦定理得cos α=x 2+24-946x =63. 整理得x 2-8x +15=0,解得x =5或x =3. 当x =3时,得∠ADB =2α=π2, 与AD 2+BD 2≠AB 2矛盾,故舍去, 所以BD =5.(2)在△BCD 中,设∠CBD =β, 所以BD sin π3=BC sin ⎝ ⎛⎭⎪⎫2π3-β=CD sin β,所以BC =1033sin ⎝ ⎛⎭⎪⎫2π3-β,CD =1033sin β,所以BC +CD =1033·⎝ ⎛⎭⎪⎫32sin β+32cos β=10sin ⎝ ⎛⎭⎪⎫β+π6≤10. 所以△BCD 周长的最大值为15.考点3 解三角形与三角函数的综合问题(2020·合肥模拟)已知函数f (x )=cos 2x +3sin(π-x )sin ⎝ ⎛⎭⎪⎫x -π2-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)锐角△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,已知f (A )=-1,a =2,求△ABC 的面积的最大值.解:(1)f (x )=1+cos 2x 2-3sin x cos x -12=12cos 2x -32sin 2x =-sin ⎝ ⎛⎭⎪⎫2x -π6. 令2k π-π2≤2x -π6≤2k π+π2, 得k π-π6≤x ≤k π+π3(k ∈Z ),所以函数f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π. (2)因为△ABC 为锐角三角形,所以0<A <π2,所以-π6<2A -π6<5π6. 又f (A )=-sin ⎝ ⎛⎭⎪⎫2A -π6=-1, 所以2A -π6=π2,即A =π3.因为a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ≥2bc -bc =bc ,当且仅当b =c =2时,等号成立.又a =2,所以bc ≤4, 所以S △ABC =12bc sin A ≤ 3. 即△ABC 的面积的最大值为 3.解三角形与三角函数综合问题的一般步骤已知函数f (x )=32sin 2x -cos 2x -12(x ∈R ),设△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,且c =3,f (C )=0.(1)求角C ;(2)若向量m =(1,sin A )与向量n =(2,sin B )共线,求△ABC 的周长. 解:(1)f (x )=32sin 2x -cos 2x -12=32sin 2x -12cos 2x -1=sin ⎝ ⎛⎭⎪⎫2x -π6-1. 因为f (C )=sin ⎝ ⎛⎭⎪⎫2C -π6-1=0且C 为三角形内角,所以C =π3. (2)若向量m =(1,sin A )与向量n =(2,sin B )共线, 则sin B -2sin A =0. 由正弦定理得b =2a ,由余弦定理得cos π3=a2+4a2-3 2·a·2a=12,解得a=1,b=2,故△ABC的周长为3+ 3.。