船过拱桥例题分析
- 格式:ppt
- 大小:296.50 KB
- 文档页数:1
中考数学总复习《拱桥问题(实际问题与二次函数)》专项提升训练题-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的AA的距离为8m.最高点C离地面1(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m,宽为4m,如果该隧道内设双向行车道,那么这辆货车能否安全通过?2.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水PO=),小孔水面宽位时,大孔水面宽度AB为30m,大孔顶点P距水面10m(即10mQD=),建立如图所示的平面直角坐标系.度BC为12m,小孔顶点Q距水面6m(即6m(1)求大孔抛物线的解析式;(2)现有一艘船高度是6m,宽度是18m,这艘船在正常水位时能否安全通过拱桥大孔?并说明理由.(3)当水位上涨4m时,求小孔的水面宽度EF.3.如图是一座拱桥,图2是以左侧桥墩与水面接触点为原点建立的平面直角坐标系,OB=,拱顶A到水面的距离为5m.其抛物线形桥拱的示意图,经测量得水面宽度20m(1)求这条抛物线的表达式;(2)为迎接新年,管理部门在桥下悬挂了3个长为0.4m的灯笼,中间的灯笼正好悬挂在A 处,两边灯笼与最中间灯笼的水平距离为8m,为了安全,要求灯笼的最低处到水面的距离不得小于1m.根据气象局预报,过年期间将会有一定量的降雨,桥下水面会上升0.3m,请通过计算说明,现在的悬挂方式是否安全.4.上杭县紫金中学校园内未名湖中央有一座石拱桥,桥体呈抛物线形状,桥孔呈圆弧型,共同组成一个漂亮的轴对称图形.为进一步了解桥体,小明和小张同学带着一把皮尺和一根一端系着铅块的绳子(铅锤绳)来到石拱桥.首先他们利用皮尺测量了石拱桥点水平宽度(12AB=米),然后来到石拱桥最顶端O处,把铅锤绳的一端放在O处,含铅的一端自然下垂,经过调整让铅块落在直线AB 上的C 点处(此时OC AB ⊥),做好标记测量得到 3.6OC =米,用同样的方法测得0.6OD =米.圆弧与AB 交于M 、N 两点,在N 点处测得2PN =米(此时PN 垂直AB ).根据以上数据,请你帮助他们处理下列问题:(1)根据图形,建立恰当的平面直角坐标系,求出抛物线解析式; (2)根据数据,请判断圆弧MDN 是否为半圆?说明理由; (3)请求出圆弧MDN 所在圆的半径.5.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为248m ,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了设计方案,现把这个方案中的拱门图形放入平面直角坐标系中,如图所示:抛物线型拱门的跨度12m ON =,拱高4m PE =,其中,点N 在x 轴上PE ON ⊥,OE EN =要在拱门中设置高为3m 的矩形框架,(框架的粗细忽略不计).矩形框架ABCD 的面积记为S ,点A 、D 在抛物线上,边BC 在ON 上,请你根据以上提供的相关信息,解答下列问题:(1)求抛物线的函数表达式;(2)当3mAB=时,求矩形框架ABCD的面积S.6.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直坐标系,y 轴也是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式..,宽为2.8m,它能从正中间通过该隧道吗?(2)现有一辆货运卡车,高为56mOA=米时,7.图1是一座拱桥,拱桥的拱形呈抛物线形状,在拱桥中,当水面宽度为12水面离桥洞最大距离为4米,如图2,以水平面为x轴,点O为原点建立平面直角坐标系.(1)求该拱桥抛物线的解析式;(2)当河水上涨,水面离桥洞的最大距离为2米时,求拱桥内水面的宽度.AB=,当水位上升8.如图,某市新建的一座抛物线型拱桥,在正常水位时水面宽20m3m时,水面宽10mCD=.(1)按如图所示的直角坐标系,此抛物线的函数表达式为.(2)有一条船以5km/h的速度向此桥径直驶来,当船距离此桥35km时,桥下水位正好在AB处,之后水位每小时上涨0.25m,当水位达到CD处时,将禁止船只通行.如果该船的速度不变继续向此桥行驶35km时,它能否安全通过此桥?9.有一座抛物线型拱桥,在正常水位时(AB所示),桥下水面宽度为20m,拱顶距水面4m.(1)在如图所示的直角坐标系中,求该抛物线的解析式;(2)突遇暴雨,当水面上涨1m时(CD所示),水面宽度减少了多少?(3)雨势还在继续,一满载防汛物资的货船欲通过此桥,已知该船满载货物时浮在水面部分的横截面可近似看成是宽6m,高2m的矩形.那么当水位又上涨了0.5m时,此船是否可以通过,说明理由.10.河上有一座桥孔为抛物线形的拱桥,水面宽为6米时,水面离桥孔顶部4米.如图1,桥孔与水面交于A、B两点,以点A为坐标原点,AB所在水平线为横轴,过原点的铅垂线为纵轴,建立如图所示的平面直角坐标系.(1)请求出此抛物线对应的二次函数表达式;(2)因降暴雨水位上升1.5米,一艘装满货物的小船,露出水面部分的高为0.5m,宽为4.5m(横截面如图2),暴雨后,这艘小船能从这座石拱桥下通过吗?请说明理由.11.某加工厂要加工一种抛物线型钢材构件,如图所示,该抛物线型构件的底部宽度12OM =米,顶点P 到底部OM 的距离为9米.将该抛物线放入平面直角坐标系中,点M 在x 轴上.其内部支架有两个符合要求的设计方案:方案一:“川”字形内部支架(由线段AB PN DC ,,构成),点B N C ,,在OM 上,且OB BN NC CM ===,点A D ,在抛物线上,AB PN DC ,,均垂直于OM ;方案二:“H ”形内部支架(由线段A B '',D C ''和EF 构成),点B ',C '在OM 上,且OB B C C M ''''==,点A ',D 在抛物线上,A B '',D C ''均垂直于OM E F ,,分别是A B '',D C ''的中点.(1)求该抛物线的函数表达式;(2)该加工厂要用某一规格的钢材来加工这种构件,那么哪一个方案的内部支架节省材料?请说明理由.12.如图,一座拱桥的轮廓呈抛物线型,拱高6m ,在高度为10m 的两支柱AC 和BD 之间,还安装了三根立柱,相邻两立柱间的距离均为5m ;(1)建立如图所示的平面直角坐标系,求拱桥抛物线的表达式; (2)求立柱EF 的长;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3.2m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.13.如图,有一条双向隧道,其横断面由抛物线和矩形ABCO 的三边组成,隧道的最大高度为4.9米;10AB =米, 2.4BC =米(1)在如图所示的坐标系中,求抛物线的解析式.(2)若有一辆高为4米,宽为2米装有集装箱的汽车要通过隧道,则汽车靠近隧道的一侧离开隧道壁m 米,才不会碰到隧道的顶部,又不违反交通规则,问m 的取值范围是多少?14.有一个抛物线形的拱形桥洞,当桥洞的拱顶(P 抛物线最高点)离水面的距离为4米时,水面的宽度OA 为12米.现将它的截面图形放在如图所示的直角坐标系中.(1)求这条抛物线的解析式.(2)当洪水泛滥,水面上升,水面的宽度小于5米时,则必须马上采取紧急措施.某日涨水后,观察员测得桥洞的拱顶P 到水面CD 的距离只有1.5米,问:是否要采取紧急措施?并说明理由.15.“卢沟晓月”是著名的北京八景之一,每当黎明斜月西沉,月色倒影水中,更显明媚饺洁.古时乾隆皇帝曾在秋日路过卢沟桥,赋诗“半钩留照三秋淡,一练分波平镜明”于此,并题“卢沟晓月”,立碑于桥头.卢沟桥主桥拱可以近似看作抛物线,桥拱在水面的跨度OB 约为20米,若按如图所示的方式建立平面直角坐标系,则主桥拱所在抛物线可以表示为()211016y x k =-++,求主桥拱最高点A 与其在水中倒影A '之间的距离.参考答案: 1.(1)21832y x =-+ (2)这辆货车能安全通过2.(1)221045y x =-+ (2)这艘船在正常水位时能安全通过拱桥大孔,(3)43m3.(1)2120y x x =-+ (2)安全4.(1)21 3.610y x =-+ (2)圆弧MDN 不是半圆(3)2565.(1)21493y x x =-+; (2)218m .6.(1)2164y x =-+ (2)这辆货运卡车不能从正中间通过该隧道.7.(1)该拱桥抛物线的解析式为()21y x 649=--+; (2)拱桥内水面的宽度62米.8.(1)2125y x =- (2)该船的速度不变继续向此桥行驶35km 时,它能安全通过此桥。
驳船怎样通过拱桥
月湖桥的桥拱呈抛物线形,水面上可测得它的跨度(桥墩两端点间的距离)
为30
米,拱高(抛物线的顶点到水面的距离)为4
9米,现以水平线为x 轴,以水面上桥墩的一端为坐标原点,建立如图所示的直角坐标系。
(1)求出拱桥所在抛物线的函数解析式。
(2)现有一只驳船水平载着一只长方形的箱子,船的甲板离水面高20厘米,箱子高2米,宽45米,问这只驳船及货物船能顺利通过这座拱桥吗?
解:(1)设抛物线的函数解析式为:c bx ax y ++=2依题意,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=++=494403090002a b ac c b a c
解得:0,103,1001==-
=c b a ∴所求抛物线的解析式为:x x y 10
310012+-= (2)∵船的甲板离水面有20cm ,合0.2米,箱子高2米。
令y =0.2米,则2.210310012=+-=x x y 整理得:0200302=+=x x ,则设1x 、2x 是这个方程的两个根,220,302121==+x x x x
则由坐标轴上两点之间的距离公式得:
52202204304)()(22122122121==⨯==--=-=-=x x x x x x x x MN 但箱子的宽为4.5米>52米,故这驳船不能倾利地通过这座拱桥。
思考题:
聪明的读者请您想一想,你有什么办法在不卸货物的前提下,让驳船顺利地通过拱桥?。
中考数学高频考点突破:实际问题与二次函数——拱桥问题一、选择题1.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行( )A.2.76米B.7米C.6米D.6.76米2.如图是拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=−0.01(x−20)2+4,桥拱与桥墩AC的交点C恰好位于水面,且AC⊥x轴,若OA=5米,则桥面离水面的高度AC为( )A.5米B.4米C.2.25米D.1.25米3.如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面 1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A.4√3米B.5√2米C.2√13米D.7米二、填空题4.如图所示是一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的髙度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.5.一个拱形桥架可以近似看做是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成的.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45∘,AC1=4米,点D2的坐标为(−13,−1.69),则桥架的拱高OH=米.6.闵行体育公园的圆形喷水池的水柱(如图1),如果曲线APB表示落点B离点O最远的一条水流(如图2),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式,那么圆形水池的半径至少为米时,才能使喷出的水流不落在为y=−x2+4x+94水池外.三、解答题7.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1) 求抛物线的解析式;(2) 一辆货运卡车高4.5m,宽2.4m,它能通过该隧道吗?8.如图是一个抛物线形拱桥示意图,已知河床宽度AB=40米,拱桥高度为10米.(1) 建立适当的坐标系,并求出抛物线的解析式;(2) 若测量得拱桥内水面宽度为28米,求拱桥内的水深.9.已知一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,且矩形的一条边长为2.5m.(1) 写出隧道截面的面积y(m2)与截面上部半圆的半径x(m)之间的函数表达式;(2) 当隧道截面上部半圆的半径为2m时,隧道截面的面积约是多少(精确到0.1m2)?10.桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A,C,B三点的抛物线,以桥面的水平线为x轴,经过抛物线的顶点C与x轴垂直的直线为y轴,建立平面直角坐标系,已知此桥垂直于桥面的相邻两柱之间的距离为2米(图中用线段AD,FG,CO,BE等表示桥柱),CO=1米,FG=2米.(1) 求经过A,B,C三点的抛物线的函数解析式;(2) 求桥柱AD的高度.11.有一个抛物线形蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数y=ax2+bx来表示,已知OA=8米,距离O点2米处的棚高BC为9米.4(1) 求该抛物线的解析式;(2) 若借助横梁DE(DE∥OA)建一个门,要求门的高度为1.5米,则横梁DE的长度是多少米?12.如图,在喷水池的中心A处竖直安装一个水管AB.水管的顶端安有一个喷水管,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m.水柱落地点D离池中心A处3m,建立适当的平面直角坐标系,解答下列问题.(1) 求水柱所在抛物线的函数解析式;(2) 求水管AB的长.13.如图为一座桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m时,桥洞顶部离水面4m.(1) 建立平面直角坐标系,并求该抛物线的函数表达式.(2) 若水面上升1m,水面宽度将减少多少?14.如图①,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,以AB的中点O为原点,按如图②所示建立平面直角坐标系.(1) 求该抛物线对应的函数关系式;(2) 通过计算说明该货车能安全通过的最大高度.15.秋风送爽,学校组织同学们去颐和园秋游,昆明湖西堤六桥中的玉带桥非常令人喜爱,如图所示,玉带桥的桥拱是抛物线形,水面宽度AB=10m,桥拱最高点C到水面的距离为6m.(1) 建立适当的平面直角坐标系,求抛物线的表达式;(2) 现有一艘游船高度是 4.5m,宽度是4m,为了保证安全,船顶距离桥拱顶部至少0.5m,通过计算说明这艘游船能否安全通过玉带桥.16.如图是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1) 经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填“方案一”“方案二”或“方案三”),则B点坐标是,求出你所选方案中的抛物线的表达式.(2) 因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.17.如图,隧道的截面由抛物线ADC和矩形AOBC构成,矩形的长OB是12m,宽OA是4m.拱顶D到地面OB的距离是10m.若以O原点,OB所在的直线为x轴,OA所在的直线为y轴,建立直角坐标系.(1) 画出直角坐标系xOy,并求出抛物线ADC的函数表达式;(2) 在抛物线型拱壁E,F处安装两盏灯,它们离地面OB的高度都是8m,则这两盏灯的水平距离EF是多少米?18.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起,据试验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1) 求足球开始飞出到第一次落地时,该抛物线的解析式.(2) 足球第一次落地点C距守门员多少米?(取4√3≈7)(3) 运动员乙要在第二个落地点D抢到足球,他应再向前跑多少米?(取2√6≈5)答案一、选择题1. 【答案】D【解析】设该抛物线的表达式为 y =ax 2,把 x =10,代入表达式得 −4=a ×102,解得 a =−125,故此抛物线的表达式为 y =−125x 2,∵ 桥下水面宽度不得小于 18m ,∴ 令 x =9 时,可得 y =−125×81=−3.24(m ), 此时水深 6+4−3.24=6.76(m ), 即桥下水深 6.76m 时正好通过, ∴ 超过 6.76m 时则不能通过.2. 【答案】C3. 【答案】B【解析】建立如图所示的平面直角坐标系,则 MN =4 米,EF =14 米,BC =10 米,DO =32 米,设大孔所在抛物线的解析式为 y =ax 2+32(a ≠0),∵BC =10 米, ∴ 点 B (−5,0),∴0=a ×(−5)2+32, ∴a =−350,∴ 大孔所在抛物线的解析式为 y =−350x 2+32,设点 A (b,0),则设顶点为 A 的小孔所在抛物线的解析式为 y =m (x −b )2, ∵EF =14 米,∴ 点 E 的横坐标为 −7, ∴ 点 E 的坐标为 (−7,−3625),当 m (x −b )2=−3625 时,解得 x 1=65√−1m +b ,x 2=−65√−1m +b , ∵MN =4 米, ∴∣∣∣∣65√−1m +b −(−65√−1m +b)∣∣∣∣=4, ∴m =−925,∴ 顶点为 A 的小孔所在抛物线的解析式为 y =−925(x −b )2,∵ 大孔水面宽度为 20 米,∴ 当 x =−10 时,y =−92, ∴−92=−925(x −b )2, ∴x 1=5√22+b ,x 2=−5√22+b ,∴ 当大孔水面宽度为 20 米时,单个小孔的水面宽度 =∣∣∣(5√22+b)−(−5√22+b)∣∣∣=5√2(米). 故选B .二、填空题4. 【答案】 36【解析】如图所示:设在 10 秒时到达 A 点,在 26 秒时到达 B , ∵10 秒时和 26 秒时拱梁的高度相同,∴A ,B 关于对称轴对称,则从 A 到 B 需要 16 秒,则从 A 到 D 需要 8 秒, ∴ 从 O 到 D 需要 10+8=18 秒, 从 O 到 C 需要 2×18=36 秒.5. 【答案】 7.24【解析】设抛物线 D 1OD 8 的解析式为 y =ax 2,将 x =−13,y =−1.69 代入,可得 a =−1100.因为横梁 D 1D 8=C 1C 8=AB −2AC 1=36 m ,所以点 D 1 的横坐标是 −18,代入 y =−1100x 2,得 y =−3.24. 因为 ∠A =45∘,所以 D 1C 1=AC 1=4 m ,所以 OH =3.24+4=7.24 m .6. 【答案】 92三、解答题7. 【答案】(1) 根据题意,A (−4,2),D (4,2),E (0,6),设抛物线的解析式为 y =ax 2+6(a ≠0),把 A (−4,2) 或 D (4,2) 代入得 16a +6=2,得 a =−14,抛物线的解析式为 y =−14x 2+6.(2) 根据题意,把 x =±1.2 代入解析式,得 y =5.64, ∵5.64>4.5,∴ 货运卡车能通过.【解析】(1) 方法二:设解析式为y=ax2+bx+c,代入A,D,E三点坐标得{16a−4b+c=216a+4b+c=2c=6,得{a=−14b=0c=6,抛物线的解析式为y=−14x2+6.8. 【答案】(1) 建立如图所示坐标系,设抛物线铁板式为y=ax2;由题意得,B(20,−10),∴−10=202a,解得a=−140,∴y=−140x2.(2) 由题意得,点D横坐标为28÷2=14,当x=14时,y=−140×142=−4.9,−4.9−(−10)=5.1.∴拱桥内的水深5.1米.9. 【答案】(1) y与x之间的函数表达式是y=12πx2+5x;(2) 当x=2时,y=12π×22+5×2=2π+10≈16.3(m2).所以隧道截面上部半圆的半径为2m时,隧道截面的面积约是16.3m2.10. 【答案】(1) 由题意可知:点C的坐标为(0,1),点F的坐标为(−4,2).设抛物线的函数解析式为y=ax2+c,所以{1=c,2=16a+c,解得{a=116,c=1.所以抛物线的函数解析式为y=116x2+1.(2) 点A的横坐标为−8,当x=−8时,y=5,所以桥柱AD的高度为5米.11. 【答案】(1) 由题意可得,抛物线经过(2,94),(8,0),故{64a+8b=0,4a+2b=94,解得{a=−316,b=32,故拋物线的解析式为y=−316x2+32x.(2) 由题意可得,当y=1.5时,1.5=−316x2+32x,解得x1=4+2√2,x2=4−2√2,故DE=x1−x2=4+2√2−(4−2√2)=4√2(米).12. 【答案】(1) 以池中心A为原点,竖直安装的水管为y轴,与水管垂直的方向为x轴建立平面直角坐标系.由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为y =a (x −1)2+3,代入 (3,0),求得 a =−34, 故所求的函数解析式为 y =−34(x −1)2+3(0≤x ≤3).(2) 令 x =0,则 y =94=2.25.故水管 AB 的长为 2.25 m .13. 【答案】(1) 以 C 为坐标原点建立坐标系,则 A (−6,−4),B (6,−4),C (0,0),设 y =ax 2,把 B (6,−4) 代入上式,36a +4=0,解得:a =−19,∴y =−19x 2.(2) 令 y =−3 得:−19x 2=−3,解得:x =±3√3, ∴ 若水面上升 1 m ,水面宽度将减少 12−6√3.14. 【答案】(1) 如图,A (−4,0),C (0,4),设抛物线的解析式为 y =ax 2+k (a ≠0),由题意,得 {16a +k =0,k =4,解得 {a =−14,k =4,∴ 抛物线的解析式为 y =−14x 2+4.(2) 2+0.42=2.2,当 ∣x ∣=2.2 时,y =−14×2.22+4=2.79,2.79−0.5=2.29(m ).答:该货车能够安全通行的最大高度为 2.29 m .15. 【答案】(1) 以 AB 的中点为原点,建立如下的坐标系, 则点 C (0,6),点 B (5,0).设函数的表达式为 y =ax 2+c =ax 2+6(a ≠0),将点 B 的坐标代入上式,得 0=25a +6,解得 a =−625,故抛物线的表达式为 y =−625x 2+6.(2) 设船从桥的中心进入,则其最右侧点的横坐标为 2,当 x =2 时,y =−625x 2+6=−625×4+6=12625=5.04,船的顶部高为 4.5,4.5+0.5=5<5.04,故顶部通过符合要求,故这艘游船能安全通过玉带桥.16. 【答案】(1) 方案二;(10,0);由题意知,抛物线的顶点坐标为 A (5,5),且经过点 O (0,0),B (10,0), 设抛物线的解析式为 y =a (x −5)2+5(a ≠0),把点 (0,0) 代入,得 0=a (0−5)2+5,解得a=−15.∴抛物线的解析式为y=−15(x−5)2+5.(2) 在方案二的前提下,由题意知,当x=5−3=2时,−15(x−5)2+5=165,所以水面上涨的高度为165米.17. 【答案】(1) 画出直角坐标系xOy,如图:由题意可知,抛物线ADC的顶点坐标为(6,10),A点坐标为(0,4),可设抛物线ADC的函数表达式为y=a(x−6)2+10,将x=0,y=4代入得:a=−16,∴抛物线ADC的函数表达式为y=−16(x−6)2+10.(2) 由y=8得:−16(x−6)2+10=8,解得:x1=6+2√3,x2=6−2√3,则EF=x1−x2=4√3,即两盏灯的水平距离EF是4√3米.18. 【答案】(1) 根据题意,可设足球开始飞出到第一次落地时,抛物线的解析式为y=a(x−6)2+4,将点A(0,1)代入,得36a+4=1,解得a=−112,∴足球开始飞出到第一次落地时,该抛物线的解析式为y=−112(x−6)2+4.(2) 令y=0,得−112(x−6)2+4=0,解得x1=4√3+6≈13,x2=−4√3+6<0(舍去),∴足球第一次落地点C距守门员13米.(3) 如图,足球第二次弹起后的水平距离为CD,根据题意知CD=EF(即相当于将抛物线AEMFC向下平移了2个单位),∴−112(x−6)2+4=2,解得x1=6−2√6,x2=6+2√6,∴CD=x2−x1=4√6≈10(米),∴BD=13−6+10=17(米).答:运动员乙要在第二个落地点D抢到足球,他应再向前跑17米.。
拱桥通船问题解决方案
拱桥通船问题是指在水下通船时,拱桥的形状会限制船只的通行。
这个问题可以通过一些方案来解决,以下是我提出的一种解决方案:
一、拓宽拱桥的桥洞
拱桥通船问题的根源在于桥洞的高度和宽度无法容纳大型船只的通行。
因此,解决问题的一个方案是拓宽拱桥的桥洞,使其能够容纳更大尺寸的船只。
这可以通过加固桥梁结构,增加桥洞的高度和宽度来实现。
二、改变拱桥的造型
另一种解决方案是改变拱桥的造型。
传统的拱桥通常具有一个高度逐渐增加的拱形,这种形状在一定程度上限制了船只的通行。
因此,可以考虑改变桥的造型,采用更平直的桥面设计,这样就能够减小桥洞的高度限制,方便船只的通行。
三、增加航道标志
船只通航过拱桥时,需要精确掌握桥洞的高度和宽度,以避免船舶与桥梁的碰撞。
因此,在桥洞的上方可以设置航道标志,标注桥洞的高度和宽度信息,以便船舶准确判断通行的可行性。
此外,可以增加航道导航系统,为船只提供实时的导航信息,确保船只安全通行。
四、加强船舶通航规范的宣传和监管
为了避免不必要的事故发生,还可以加强对船舶通航规范的宣传和监管。
通过加强船舶通航规范的宣传,使船舶经营者充分
了解拱桥通船问题,并严格按照规定的通航路径和时间通行。
同时,加强对船舶通航的监管,对违规船只进行处罚,以确保船舶通航安全,减少与拱桥的碰撞风险。
综上所述,拱桥通船问题可以通过拓宽桥洞、改变桥的造型、增加航道标志和加强船舶通航规范的宣传和监管等方案来解决。
这些解决方案既可以解决拱桥通船的实际问题,又可以提升船舶通行的安全性和效率,确保拱桥的功能得到充分发挥。
1.[2013·山西]如图13-3是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为多少?
图13-3
2.有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。
3.某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m,顶部C离地面高度为4.4m.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m,装货宽度为2.4m.请判断这辆汽车能否顺利通过大门.
4.(本题满分10分)如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
值;②求图中阴影部分的面积.
(2)若DF=3,DE=2.①求BE
AD
5. (本题满分10分)
如图,已知A B 是半圆O 的直径,C 是半圆O 上的一点,BD⊥CD于点D,且BC 平分∠DB A;
(1)判断CD 与半圆O 的位置关系,并说明理由;(5分)
(2)若半圆O的半径为4,BD=5,求BC 的长。
(5分)。
2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题09 二次函数的实际应用—拱桥问题考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021九上·虹口期末)如图所示,一座抛物线形的拱桥在正常水位时,水而AB 宽为20米,拱桥的最高点O 到水面AB 的距离为4米.如果此时水位上升3米就达到警戒水位CD ,那么CD 宽为( )A .45米B .10米C .46米D .12米【答案】B【解析】【解答】以O 点为坐标原点,AB 的垂直平分线为y 轴,过O 点作y 轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax 2,∵O 点到水面AB 的距离为4米, ∴A、B 点的纵坐标为-4, ∵水面AB 宽为20米, ∴A(-10,-4),B (10,-4), 将A 代入y=ax 2, -4=100a ,∴125a =-, ∴2125y x =-,∵水位上升3米就达到警戒水位CD , ∴C 点的纵坐标为-1, ∴21125x -=-∴x=±5, ∴CD=10, 故答案为:B .【思路引导】先建立平面直角坐标系,设抛物线的解析式为y=ax 2,再求出解析式,最后利用二次函数的性质求解即可。
2.(2分)(2021九上·安阳期中)有一拱桥洞呈抛物线形,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图)放在坐标系中,则抛物线的解析式为( )A .y =125 x 2+ 58x B .y =-125 x 2+ 85x C .y =- 58 x 2- 125x D .y =-125 x 2+ 85x +16 【答案】B【解析】【解答】解:由图可知,该抛物线开口向下,对称轴为x =20, 最高点坐标为(20,16),且经过原点,由此可设该抛物线解析式为 ()22016y a x =-+ , 将原点坐标代入可得 400160a += , 解得: 125a =-, 故该抛物线解析式为 ()22118201625255y x x x =--+=-+. 故答案为:B.【思路引导】由题意可设抛物线解析式为y=a(x-20)2+16,将(0,0)代入可得a 的值,据此可得抛物线的解析式.3.(2分)(2021九上·诸暨月考)如图是抛物线形拱桥,当拱顶离水面2m 时,水面宽4m ,则水面下降1m 时,水面宽度增加( )A .1mB .2mC .( ﹣4)mD .( ﹣2)m【答案】C【解析】【解答】解:如图,建立直角坐标系,设y=a (x-2)(x+2),∴2=a(0-2)(0+2),∴a=-12, ∴y=-12(x-2)(x+2),当水面下降1米时,y=-1, ∴-1=-12(x-2)(x+2), 解得x=±6,∴水平宽度增加:(26-4)m. 故答案为:C.【思路引导】根据题意建立直角坐标系,结合数据求出二次函数解析式,再把y=-1代入抛物线解析式,则可求出此时的水面宽度,即可得出答案.4.(2分)(2020九上·郁南期末)如图所示,赵州桥的桥拱用抛物线的部分表示,其函数的关系式为2125y x =-,当水面宽度 AB 为20m 时,此时水面与桥拱顶的高度 DO 是( )A .2mB .4mC .10mD .16m【答案】B【解析】【解答】解:根据题意得B 的横坐标为10, 把x=10代入 2125y x =- , 得y=-4, ∴OD=4m, 故答案为:B .【思路引导】将x=10代入函数解析式求出y=-4,再求解即可。
人教版九年级上册数学22.3实际问题与二次函数——拱桥问题同步训练一、单选题1.如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB 位置时,水面宽度为20m ,此时水面到桥拱的距离是16m ,则抛物线的函数关系式为( )A .2254y x =B .2254y x =C .2425y x =-D .2425y x = 2.如图,某拱形门建筑的形状时抛物线,拱形门地面上两点的跨度为192米,高度也为192米,若取拱形门地面上两点的连线作x 轴,可用函数2y ax bx c =++表示,则a 的值为( )A .1192B .148C .1192D .148- 3.如图所示,一座抛物线形的拱桥在正常水位时,水面AB 宽为20米,拱桥的最高点O 到水面AB 的距离为4米.如果此时水位上升3米就达到警戒水位CD ,那么CD 宽为( )A .B .10米C .米D .12米 4.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是( )A .12米B .13米C .14米D .15米5.如图,有一抛物线形拱桥,当拱顶离水面2m 时,水面宽4m ,当水面宽增加()4m 时,则水面应下降的高度是( )A .2mB .1mCD .)2m 6.如图为一座抛物线型的拱桥,AB 、CD 分别表示两个不同位置的水面宽度,O 为拱桥顶部,水面AB 宽为10米,AB 距桥顶O 的高度为12.5米,水面上升2.5米到达警戒水位CD 位置时,水面宽为( )米.A .5B .C .D .87.如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度20AB =米,顶点M 距水面6米(即6MO =米),小孔顶点N 距水面4.5米(即 4.5NC =米).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,则此时大孔的水面宽度EF 长为( )A .B .C .12米D .10米 8.如图,隧道的截面是抛物线,可以用y= 21416x -+表示,该隧道内设双行道,限高为3m ,那么每条行道宽是( )A .不大于4mB .恰好4mC .不小于4mD .大于4m ,小于8m二、填空题9.如图,某拱桥桥洞的形状是抛物线,若取水平方向为x 轴,拱桥的拱点O 为原点建立直角坐标系,它可以近似地用函数218y x =-表示(单位:m ).已知目前桥下水面宽4m ,若水位下降1.5m ,则水面宽为______m .10.如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB 间间隔0.2米的7根立柱)进行加固,若立柱EF 的长为0.28米,则拱高OC 为_____米11.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,当水面宽度为面下降了____.12.一个涵洞成抛物线形,它的截面如图,当水面宽AB =1.6米时,涵洞顶点与水面的距离为2.4m .涵洞所在抛物线的解析式是_____________.13.某抛物线型拱桥的示意图如图,桥长AB=48 米,拱桥最高处点C到水面AB的距离为12 米,在该抛物线上的点E、F处要安装两盏警示灯(点E、F关于y轴对称),警示灯F距水面AB的高度是9米,则这两盏灯的水平距离EF是___米.14.如图,一座悬索桥的桥面OA与主悬钢索MN之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM与AN相等.小强骑自行车从桥的一端0沿直线匀速穿过桥面到达另一端A,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA共需_____________秒.15.如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,拱桥最高点C到AB的距离为8m,24mAB ,D,E为拱桥底部的两点,且//DE AB,若DE的长为36m,则点E到直线AB的距离为______.16.如图,平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y=﹣13x2,桥下的水面宽AB为6m,当水位上涨2m时,水面宽CD为_____m(结果保留根号).三、解答题17.某公路有一个抛物线形状的隧道ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣110x2+c且过顶点C(0,5).(长度单位:m)(1)直接写出c=;(2)求该隧道截面的最大跨度(即AB的长度)是多少米?(3)该隧道为双向车道,现有一辆运货卡车高4米、宽3米,问这辆卡车能否顺利通过隧道?请说明理由.18.如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面134米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.19.一座隧道的截面由抛物线和长方形构成,长方形的长OC为8m,宽OA为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系:(1)求抛物线的解析式;(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,两辆同样的上述货车相对而行,是否可以同时在隧道内顺利通过,为什么?20.如图所示.三孔桥横截面的三个孔是都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB为10m,顶点M距水面6m(即6mMO=),小孔顶点N 距水面4m(即4mNC=),建立如图所示的平面直角坐标系.(1)求出大孔抛物线的解析式;(2)现有一艘船高度是4.5m,宽度是4m,为了保证安全,船顶距离桥拱顶部至少0.5m,则这艘船在正常水位时能否安全通过拱桥大孔?(3)当水位上涨到刚好淹没小孔时,求出此时大孔的水面宽度EF.答案第1页,共1页 参考答案:1.C2.D3.B4.D5.B6.C7.D8.A9.810.0.6411.4m12.2154y x =-13.2414.4615.10m16.17.(1)5;(3)能安全通过18.(1)2114y x =-+(2)(3)能通过19.(1)抛物线为:y =﹣21(4)4x -+6; (2)货车可以通过(3)货车可以通过 20.(1)26625y x =-+ (2)这艘船在正常水位时能安全通过拱桥大孔。
初三拱桥类型的数学题稿子一嗨,亲爱的小伙伴们!今天咱们来聊聊初三数学里那个有趣的拱桥类型的题。
你们想啊,那拱桥多美呀,弯弯的,可到了数学题里,它可就有点让人头疼啦。
就说那种让咱们求拱桥最高点到水面距离的题。
哎呀,一看到这,脑袋都大了几圈。
不过别慌,咱们慢慢分析。
先得搞清楚题目给的条件,比如桥的长度啊,桥拱的形状啊。
然后呢,就得想到咱们学的那些函数知识。
是不是经常会设个二次函数来表示桥拱的形状?这时候就得好好想想怎么找顶点坐标啦。
有时候算着算着,数字多得让人眼花缭乱,可别着急上火。
还有那种让求拱桥能通过多大船只的题。
这就得看船的高度和桥拱下面的空间够不够。
这可需要咱们细心比较,一个数字都不能马虎。
做这种题虽然有点难,但是当咱们算出来答案,那种成就感,简直爆棚!就好像自己真的建了一座漂亮的拱桥一样。
所以呀,别害怕这种拱桥题,多琢磨琢磨,咱们一定能把它拿下!稿子二嘿,朋友们!今天咱们来唠唠初三数学里的拱桥题。
一提到拱桥,是不是就想到那优美的弧线?可在数学题里,它可没那么温柔。
比如说,给你个拱桥的图,让你算它的方程。
这可咋办?别慌,咱们从顶点入手,设个合适的二次函数。
然后找几个关键点的坐标,代入函数里,一顿操作猛如虎,方程就出来啦。
还有那种问你在拱桥上某个位置离水面多高的题。
这就得把那个位置的横坐标代入方程里,算出纵坐标,这高度就知道啦。
有时候算错一点点,答案就差老远,可得仔细着。
另外,要是让你根据条件设计拱桥的形状,那可就更有意思啦。
要考虑美观,还要符合数学原理,真是考验咱们的脑子呢。
不过,做这些题也有好处哦。
能让咱们的思维更灵活,以后遇到啥难题都不怕。
而且,等以后咱们看到真正的拱桥,说不定还能跟别人显摆显摆咱会算呢!所以,别怕这些拱桥题,跟它死磕到底,咱们一定能赢!加油哦,小伙伴们!。
船过拱桥的数学题可以涉及以下几个方面:
1. 拱桥的几何形状和尺寸。
拱桥通常呈弧形,其半径、高度、长度等参数会影响船通过时的情况。
2. 水的流速和深度。
水流的速度和深度会影响船在通过拱桥时的浮力和阻力,从而影响船的行进速度和方向。
3. 船的重量和大小。
船的重量和大小也会影响船在通过拱桥时的浮力和阻力,从而影响船的行进速度和方向。
4. 引力和摩擦力。
在船通过拱桥的过程中,还可能会涉及到引力和摩擦力的影响,如地球引力、空气阻力等。
基于以上几个方面,可以设计以下数学问题:
1. 一艘重100吨、长10米的船从拱桥下通过,拱桥的半径为5米,高度为10米,水的流速为每秒2米,求船在通过拱桥时的浮力和阻力大小。
2. 一艘长10米、重200吨的船从拱桥下通过,拱桥的半径为3米,高度为6米,水的流速为每秒1米,求船在通过拱桥时的浮力和阻力大小。
3. 一艘长20米、重500吨的船从拱桥下通过,拱桥的半
径为8米,高度为12米,水的流速为每秒3米,求船在通过拱桥时的浮力和阻力大小。
这些问题可以通过求解拱桥的几何形状和尺寸、水的流速和深度、船的重量和大小等因素与引力、摩擦力等物理量之间的关系来解决。
24.1.2(3)垂径定理---圆弧型拱桥问题
一.【知识要点】
1.方法:“定宽比高”或“定高比宽”
二.【经典例题】
1.如图,某地有一座圆弧形拱桥,桥下水面宽度AB为7.2m,拱高CD为
2.4m.
(1)求拱桥的半径;
(2)现有一艘宽3m、船舱顶部为长方形并高出水面2m的货船要经过这里,问此货船能顺利通过拱桥吗?
2.有一石拱桥,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当水面到拱顶距离为
3.5米时需要采取紧急措施,当水面宽MN=32m时.
(1)石拱桥为圆弧形时,是否需要采取紧急措施?
(2)石拱桥为抛物线形时,是否需要采取紧急措施?
三.【题库】
【A】
1.如图,有一座石拱桥的桥拱是以O为圆心,OA为半径的一段圆弧。
若∠AOB=120°,OA=4米,请求出石拱桥的高度。
【B】【C】【D】
B
O
A。
(完整)二次函数应用(拱桥问题)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)二次函数应用(拱桥问题))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)二次函数应用(拱桥问题)的全部内容。
适用学科数学适用年级初中三年级适用区域全国课时时长(分60钟)知识点二次函数解析式的确定、二次函数的性质和应用教学目标1。
掌握二次函数解析式求法。
教学过程一、复习预习平时的时候我们能够看到小船可以从桥的下面通过,但是当夏天雨季到来,水平面上升,这时小船还能从桥的下面通过吗?对于这样的问题我们可以利用我们所学的二次函数来解决。
这节二、知识讲解考点/易错点1 :二次函数解析式的形式1、一般式:y=ax2+bx+c(a≠0)2、顶点式:y=a(x—h)2+k(a≠0)顶点坐标(h,k)直线x=h为对称轴,k为顶点坐标的纵坐标,也是二次函数的最值3、双根式:y=a(x —1x )(x-2x )(a ≠0) (1x ,2x 是抛物线与x 轴交点的横坐标) 并不是什么时候都能用双根式,当抛物线与x 轴有交点时才行4、 顶点在原点:)0(2≠=a ax y5、过原点:)0(2≠+=a bx ax y6、 顶点在y 轴:)0(2≠+=a c ax y考点/易错点2:建立平面直角坐标系1、在给定的直角坐标系,中会根据坐标描出点的位置2、能建立适当的直角坐标系,描述物体的位置。
三、例题精析【例题1】【题干】有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.2且过点(10,-4)∴-==-4101252a a×,故y x=-1252(2)设水位上升h m时,水面与抛物线交于点(dh24,-)则hd-=-412542×∴d h=-104(3)当d=18时,18104076=-=h h,.0762276..+=∴当水深超过2.76m时会影响过往船只在桥下顺利航行。
一、内容提要:圆的轴对称性:过圆心的任一条直线(直径所在的直线)都是它的对称轴。
垂径定理⎩⎨⎧平分弦所对的两条弧。
)的直径垂直于弦,且推论:平分弦(非直径对的两条弧;平分弦,并且平分弦所定理:垂直于弦的直径垂径定理包含两个条件和三个结论,即条件⇒⎩⎨⎧)直线和弦垂直,()直线过圆心,(21结论⎪⎩⎪⎨⎧弧。
)直线平分弦所对的优(弧,)直线平分弦所对的劣()直线平分弦,(543 符号语言:⎩⎨⎧⊥ AB CD O ,O ,的弦,为圆的直径是圆AB CD ⎪⎩⎪⎨⎧===⇒BDAD BC AC BEAE 推论1:在(1)、(2)、(3)、(4)、(5)中,任意两个成立,都可以推出另外三个都成立。
推论2:平行的两弦之间所夹的两弧相等。
相关概念:弦心距:圆心到弦的距离(垂线段OE )。
应用链接:垂径定理常和勾股定理联系在一起综合应用解题(利用弦心距、半径、半弦构造Rt △OAE )。
二、概念辨析题:1.下面四个命题中正确的一个是()A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧三、典型例题分析:例题1、在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是________cm.说明:本题主要考查垂径定理.易错点是忘记油面宽度AB 是DB 的2倍.CDA BO E例题2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm.说明:①此题的目的主要是培养学生的严密性思维和解题方法:确定图形——分析图形——数形结合——解决问题;②作辅助线的能力.例题3、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径.说明:作出弦)(AB 的弦心距)(OE ,构成垂径定理的基本图形是解决本题的关键.例题4、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:四边形OEHF 是正方形.(2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.例题5、如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长.说明:此题是利用垂径定理的计算问题,要充分利用条件∠BED=30°,构造出以弦心距、半径、半弦组成的一个直角三角形,通过解直角三角形求解。