面向智能网联汽车综合数据处理平台解决方案
- 格式:pdf
- 大小:1.76 MB
- 文档页数:26
新能源车联网解决方案;;A utonomous基于大数据的AI,实现自动驾驶感知、规划、决策、执行C onnected车、路、网、人、环境交互,降低车辆感知成本S hared影响所有权结构,车辆将成为社会化出行服务工具E lectric改变汽车结构、能源及驱动网联化电动化自动化共享化智能交通未来出行汽车逐步向“网联化、电动化、共享化、自动化”演进,将车、路、网及周边环境紧密结合,提高出行效率,提供更安全便利的出行服务。
技术引爆行业变革,汽车“四化”将成为趋势;;四部委发文要求对纯电动、插电混动汽车全部支持实时监控其技术运行状态车企需要收集大量运行时数据,用于整车及零部件优化政府要求实时监管产品优化数据收集智能充电客户需要在用电低谷进行远程预约充电,在不值守情况下查看进度新能源车须联网,以满足政府监管、产品优化、智能充电等需求;;行业趋势引发对新能源车联网平台战略定位的思考共享出行联网技术智能驾驶›按需出行›出行服务运营›信息/内容/服务的聚合›安全辅助驾驶›智能化体验基于车辆全生命周期扩展价值链联接“车” 联接“生活”个性化数字体验车主/消费者体验/服务设计车辆生命周期“产品”到“服务”的转型新能源监管›国家监管›“三电”分析与优化以遵从监管为基础,围绕整个生命周期,延伸个性化数字体验;;新能源车联网平台是数字化转型的关键使能器•以新能源车辆为底座,搭建一个通用使能平台,上层应用服务引入本土市场最佳服务生态伙伴•车企掌控数据,在车辆全生命周期内和用户保持密切联系新一代基础平台定位网联使能•统一管理各车型连接,降低成本•简化多种设备接入过程数据使能•增强与客户的直接联系•建立并储备核心数据资产架构使能•分层解耦•兼顾汽车开发的稳定性和互联网应用开发的灵活性•避免生态/供应商锁定演进使能•安全辅助驾驶•端网云协同•智能驾驶车联网基础平台车企主导T服务车企其他应用和服务第三方应用服务1234;;•链路1:按国标扩展协议,将新能源车以及充电桩等数据采集至华为云,在云平台侧提供发送服务,可与公共平台快速对接,满足国家抽查和安全监管要求;同时,企业可利用公有云各类服务为业务创新应用提供支撑;•链路2:直接按国标协议上报至地方/国家平台,用于车辆直连行驶提供真实运行数据,国家平台会基于运行出具《车辆符合性报告》●统一架构:从监管诉求切入,平台建设综合考虑新能源车监管与企业车联网平台统一规划,防止平台各自建设形成孤岛,有助于企业统一管理和业务创新;●数据接入:支持新能源国标协议,支持扩展协议解析插件开发,支持高并发数据接入,面向未来可提供亿级车辆长连接能力;●数据分析:从数据接入,数据处理,数据存储,数据分析与挖掘,到数据模型导出,可提供全栈的大数据服务,为新能源车应用提供支持;●平台对接:遵从国家政策法规监管要求,提供基于新能源国标协议的接口,方便与地方/国家平台对接,满足各级的监督抽查要求架构说明;;◆接入量大:新能源车联网监控平台,负责接入东风集团底下E70、E30等新能源汽车,接入量数十万台◆海量并发:政策规定新能源车平台需要接入国家监管系统,加上新能源车的爆发,车联网新服务上线等需求,系统需要承受未来海量并发连接◆网络覆盖:车辆分布于全国各地,传统单点网络接入方式很难保证接入的网络覆盖和稳定性◆华为云联合合作伙伴,提供支撑容器化,微服务化等云技术,彻底解决了业务发展对存储和计算资源的弹性需求◆平滑迁移,一期进行存量车的迁移切换,二期将由物联网卡接入华为云,提供更高的安全保障服务◆升级后的东风车联网平台可以支撑稳定可靠的亿级海量车连接华为云解决方案◆安全弹性的IT基础设施:T3+级别以上的机房,也为客户新能源监控平台无缝监控提供有力保障。
汽车行业智能网联汽车发展策略方案第一章智能网联汽车概述 (2)1.1 智能网联汽车定义及分类 (2)1.2 智能网联汽车发展历程 (2)1.3 智能网联汽车技术架构 (3)第二章国际智能网联汽车发展现状与趋势 (3)2.1 国外智能网联汽车市场规模与政策 (3)2.2 国外智能网联汽车技术进展 (4)2.3 国际合作与竞争格局 (4)第三章我国智能网联汽车发展现状与挑战 (4)3.1 我国智能网联汽车市场规模与政策 (4)3.1.1 市场规模 (5)3.1.2 政策支持 (5)3.2 我国智能网联汽车技术进展 (5)3.2.1 关键技术 (5)3.2.2 产品研发 (5)3.2.3 产业链建设 (5)3.3 我国智能网联汽车发展面临的挑战 (5)3.3.1 技术瓶颈 (5)3.3.2 市场竞争 (5)3.3.3 安全法规 (6)3.3.4 基础设施 (6)第四章智能网联汽车产业链分析 (6)4.1 核心技术环节 (6)4.2 关键零部件供应 (6)4.3 整车制造与销售 (6)第五章智能网联汽车发展策略 (7)5.1 技术创新与研发投入 (7)5.2 政策支持与产业协同 (7)5.3 人才培养与引进 (7)第六章智能网联汽车安全与隐私保护 (7)6.1 安全技术要求与标准 (7)6.2 隐私保护措施与法规 (8)6.3 安全与隐私保护技术发展趋势 (8)第七章智能网联汽车基础设施建设 (9)7.1 通信网络建设 (9)7.1.1 构建高速无线通信网络 (9)7.1.2 优化有线通信网络 (9)7.2 数据中心与云计算 (9)7.2.1 建设大规模数据中心 (10)7.2.2 推动云计算应用 (10)7.3 智能交通管理系统 (10)7.3.1 完善交通信息采集与处理 (10)7.3.2 优化交通信号控制系统 (10)7.3.3 建设智能交通管理平台 (10)第八章智能网联汽车商业模式创新 (11)8.1 新零售模式 (11)8.2 数据驱动的服务模式 (11)8.3 跨界合作与创新 (11)第九章智能网联汽车推广与应用 (12)9.1 城市示范项目 (12)9.1.1 选取示范城市 (12)9.1.2 构建示范区域 (12)9.1.3 实施示范项目 (12)9.2 公共交通领域应用 (12)9.2.1 公交车应用 (12)9.2.2 城际轨道交通应用 (13)9.2.3 出租车应用 (13)9.3 个人出行场景应用 (13)9.3.1 自动驾驶私家车 (13)9.3.3 车联网应用 (13)第十章智能网联汽车未来发展展望 (13)10.1 技术发展趋势 (13)10.2 市场规模预测 (14)10.3 社会影响与政策建议 (14)第一章智能网联汽车概述1.1 智能网联汽车定义及分类智能网联汽车是指通过先进的通信技术、人工智能、大数据、云计算等手段,实现车与车、车与路、车与人、车与云之间的信息交换和共享,从而提高汽车的安全、环保、节能、舒适等功能的汽车。
云计算在汽车智能网联领域的应用案例分享随着科技的不断发展,云计算作为一种新型的计算模式,正逐渐渗透到各个行业领域中,其中汽车智能网联领域更是受益匪浅。
云计算技术的应用,为汽车智能网联领域带来了诸多便利和创新,极大地提升了汽车的智能化水平和用户体验。
本文将结合实际案例,分享云计算在汽车智能网联领域的应用,探讨其带来的益处和发展前景。
一、车载云服务随着云计算技术的不断成熟,越来越多的汽车制造商开始将云计算服务引入到汽车智能网联系统中,为用户提供更加便捷、智能的服务体验。
例如,特斯拉汽车采用了车载云服务,通过云端实时更新软件系统,实现了远程诊断、远程升级等功能。
用户可以通过手机App随时随地监控车辆状态、远程控制车辆,极大地提升了用户的驾驶体验。
二、智能导航系统云计算技术的应用还使得汽车智能导航系统更加智能化和个性化。
通过云端的大数据分析和实时更新,智能导航系统可以为用户提供更加准确、实时的路况信息和导航建议。
例如,高德地图、百度地图等智能导航软件,通过云计算技术实现了实时路况监测、智能路径规划等功能,为驾驶者提供了更加便捷的导航服务。
三、车联网数据分析在汽车智能网联领域,云计算技术还被广泛应用于车联网数据分析领域。
通过云端的大数据分析平台,可以对车辆行驶数据、用户习惯等进行深度挖掘和分析,为汽车制造商提供产品改进和服务优化的参考依据。
例如,一汽大众利用云计算技术对车联网数据进行分析,实现了车辆故障预警、用户行为分析等功能,为用户提供更加个性化的服务体验。
四、智能驾驶辅助系统云计算技术的应用还推动了智能驾驶辅助系统的发展。
通过云端的实时数据传输和处理,智能驾驶辅助系统可以实现车辆之间的信息共享和协同驾驶,提升了驾驶安全性和舒适性。
例如,特斯拉的自动驾驶系统利用云计算技术实现了车辆之间的信息互通和智能驾驶决策,为驾驶者提供了更加智能化的驾驶体验。
五、用户个性化定制服务云计算技术的应用还为汽车智能网联领域带来了用户个性化定制服务的可能。
智能网联车辆系统解决方案随着信息技术的发展和汽车工业的进步,智能网联车辆系统已经成为汽车行业的一个热门话题。
智能网联车辆系统通过将车辆与网络连接起来,实现车辆之间、车辆与基础设施之间以及车辆与手机、电脑等其他设备之间的信息互通。
它不仅可以提高车辆的安全性能和行驶舒适度,还可以为车主提供更好的驾驶体验和车辆管理服务。
本文将介绍智能网联车辆系统的解决方案。
智能网联车辆系统的技术基础智能网联车辆系统主要基于以下几个核心技术:1. 无线通信技术智能网联车辆系统需要使用无线通信技术将车辆与基础设施以及其他车辆连接起来,实现信息的传输和交换。
常用的无线通信技术包括LTE、5G、Wi-Fi等。
2. 传感器技术传感器技术是智能网联车辆系统的重要技术基础,它可以实时获取车辆周围的环境信息,并将这些信息传输给车辆的控制系统,从而实现自动驾驶和自适应巡航等功能。
3. 大数据技术智能网联车辆系统需要收集和处理大量的数据,包括车辆状态数据、驾驶习惯数据、路况数据等,这些数据需要使用大数据技术进行分析和处理,从而帮助车主和车辆管理者做出更好的决策。
4. 人工智能技术人工智能技术是智能网联车辆系统实现自动驾驶等功能的核心技术,它可以根据车辆周围的环境信息和传感器数据,实现自主驾驶和自适应巡航等功能。
智能网联车辆系统的解决方案智能网联车辆系统的解决方案包括以下几个方面:1. 车联网平台车联网平台是实现智能网联车辆系统的核心环节,它将车辆、基础设施以及其他设备连接起来,实现数据的互通和交换。
常见的车联网平台包括阿里云车联网、百度车联网等。
2. 应用程序应用程序是智能网联车辆系统的用户界面,它可以帮助车主实现车辆远程控制、车辆位置追踪、车辆状态监测等功能。
常见的应用程序包括车载应用、手机应用和网页应用等。
3. 车辆控制系统车辆控制系统是智能网联车辆系统的核心组成部分,它可以根据车辆周围的环境信息和传感器数据,实现自动驾驶、自适应巡航、智能制动等功能。
智能网联汽车解决方案目录1. 总体概述 (3)1.1 项目背景 (4)1.2 解决方案目标 (4)1.3 解决方案架构 (5)2. 智能定义 (6)2.1 智能驾驶系统 (8)2.1.1 核心技术 (9)2.1.2 功能模块 (10)2.1.3 安全保障 (12)2.2 智能座舱 (13)2.2.1 信息娱乐系统 (14)2.2.2 人机交互系统 (16)2.2.3 驾驶员状态监测及预警系统 (18)3. 网联应用 (18)3.1 道路协同感知 (20)3.1.1 高精度地图 (22)3.1.2 V2X通讯技术 (24)3.1.3 数据处理与分析 (25)3.2 云端平台服务 (26)3.2.1 数据存储与管理 (28)3.2.2 基于云的预测服务 (29)3.2.3 远程诊断与更新 (31)3.3 用户体验 (32)3.3.1 移动终端应用 (34)3.3.2 智能助手服务 (35)3.3.3 个性化服务 (36)4. 安全与隐私 (37)4.1 系统安全 (39)4.1.1 硬件安全防护 (41)4.1.2 软件安全保证 (42)4.1.3 数据加密与安全传输 (43)4.2 用户隐私保护 (44)4.2.1 数据收集与使用规则 (45)4.2.2 访问控制与权限管理 (47)4.2.3 匿名化与脱敏技术 (49)5. 未来发展 (50)5.1 技术趋势 (52)5.2 市场展望 (53)5.3 解决方案升级之路 (55)1. 总体概述随着全球汽车工业的不断发展,智能网联汽车已经成为未来交通出行的核心驱动力。
本报告旨在提供一个全面的智能网联汽车解决方案,该解决方案将包括硬件、软件、通信技术、网络安全、车规级标准以及相应的服务和管理工具。
智能网联汽车,其核心功能包括高级驾驶辅助系统(ADAS)、自动驾驶、智能互联以及大数据分析等,能够极大提高道路安全、行车效率、环保水平和用户体验。
技术创新:采用最新的信息技术,包括物联网(IoT)、云计算、人工智能(AI)、机器学习、5G通信和车联网(V2X)技术,来优化车辆性能,提高驾驶体验。
智能网联汽车网络架构方案研究郭丽丽;菅少鹏;陈新;陈效华【摘要】对传统汽车网络总线类型及网络架构特点进行分析,结合智能网联汽车特点智能化和网联化、以及智能网联汽车对传统汽车网络架构的挑战,提出基于以太网的汽车网络架构解决方法、并阐述了应用以太网网络架构的应用推进过程、介绍了汽车以太网应用协议的分类,解决了汽车大数据传输问题.【期刊名称】《汽车科技》【年(卷),期】2017(000)003【总页数】5页(P34-38)【关键词】智能网联汽车;网络架构;以太网【作者】郭丽丽;菅少鹏;陈新;陈效华【作者单位】北汽集团新技术研究院,北京101300;北汽集团新技术研究院,北京101300;北汽集团新技术研究院,北京101300;北汽集团新技术研究院,北京101300【正文语种】中文【中图分类】U285;TN91郭丽丽毕业于北京理工大学大学车辆工程系,硕士学历,现任北汽集团新技术研究院汽车总线工程师,主要研究方向:汽车电子电气架构及车载网络,曾发表论文数篇。
汽车电子部件的增多、汽车智能网联化的发展、用户对汽车娱乐系统功能需求的提高,使得汽车上有大量的数据需要传输,采用传统的汽车网络架构方案已不能满足需求。
汽车网络,是指将汽车上的所有电子传感器、电子执行器、电子控制单元(ECU)连接在一起的通信形式。
汽车功能简单、每辆汽车上ECU数量少的情况下,可通过点对点通讯。
随着汽车功能的增多,汽车上传感器、执行器、ECU数量增多,点对点通信已不满足需求。
1991年,第一辆取代点对点通信,通过CAN总线传输的车载网络在奔驰S级汽车上诞生。
经过二十多年的发展,几乎每辆汽车上都装配有车载总线网络,车载总线网络以CAN、LIN总线网络为主,部分高端汽车搭载MOST、FlexRay总线等。
2.1 传统汽车网络总线类型车载总线按照传输类型不同分为CAN、LIN、MOST、FlexRay。
CAN(Controller Area Network),汽车最常用的车载总线类型,具有低成本、可靠的错误检测和处理机制、基于仲裁式发送方式、最大传输8Byte数据等特点,可应用于车身电子部件控制、发动机控制、底盘电子控制等。
汽车行业智能网联汽车技术实施方案第一章概述 (2)1.1 技术背景 (2)1.2 实施目标 (2)第二章智能网联汽车技术框架 (3)2.1 技术体系 (3)2.1.1 感知层 (3)2.1.2 网络层 (3)2.1.3 平台层 (3)2.1.4 应用层 (4)2.2 关键技术 (4)2.2.1 感知技术 (4)2.2.2 通信技术 (4)2.2.3 计算技术 (4)2.2.4 控制技术 (4)2.2.5 安全技术 (4)2.2.6 人工智能技术 (4)第三章车载感知系统 (5)3.1 感知技术概述 (5)3.2 感知硬件配置 (5)3.3 感知数据处理 (5)第四章车载通信系统 (6)4.1 通信技术概述 (6)4.2 通信协议与标准 (6)4.3 通信设备配置 (7)第五章车载计算平台 (7)5.1 计算平台架构 (7)5.2 硬件配置 (8)5.3 软件系统 (8)第六章智能决策与控制系统 (9)6.1 决策与控制技术概述 (9)6.2 控制算法 (9)6.2.1 预测控制算法 (9)6.2.2 优化控制算法 (9)6.2.3 适应控制算法 (9)6.2.4 智能控制算法 (9)6.3 系统集成 (10)6.3.1 硬件集成 (10)6.3.2 软件集成 (10)6.3.3 通信集成 (10)6.3.4 功能优化与调试 (10)第七章安全与隐私保护 (10)7.1 安全技术概述 (10)7.2 数据加密与认证 (11)7.3 隐私保护策略 (11)第八章测试与验证 (12)8.1 测试方法与标准 (12)8.1.1 测试方法 (12)8.1.2 测试标准 (12)8.2 测试场景设计 (12)8.2.1 常规场景 (12)8.2.2 复杂场景 (13)8.2.3 极限场景 (13)8.3 测试数据分析 (13)8.3.1 数据采集 (13)8.3.2 数据处理 (13)8.3.3 数据分析 (13)第九章产业化与推广 (13)9.1 产业化路径 (13)9.2 政策法规支持 (14)9.3 市场推广策略 (14)第十章持续优化与迭代 (15)10.1 技术跟踪与升级 (15)10.2 用户反馈与改进 (15)10.3 产业链协同发展 (15)第一章概述1.1 技术背景信息技术的飞速发展,智能网联汽车技术逐渐成为汽车行业发展的新趋势。