ABAQUS中Truss单元预应力的两种施加方法
- 格式:doc
- 大小:25.12 KB
- 文档页数:6
ABAQUS模拟预应力筋的方法1.降温法这是目前很多人采用的方法。
即在预应力筋施加温度荷载(降温),使预应力筋收缩,从而使混凝土获得预应力。
2.ABAQUS自带的初始应力法直接用*Initial conditions, type=stress可以直接模拟先张法,能获得预应力筋和混凝土的后期应力增量,但无法获得预应力筋的真实应力。
3.Rebar element single 法利用ABAQUS提供的rebar功能,模拟预应力束,给出rebar与相关实体单元的信息,通过在rebar上施加初始应力即可模拟先张法和后张法。
4. MPC法分别定义预应力筋(比如truss单元)和混凝土,采用MPC将预应力筋与混凝土联系起来,对预应力筋施加初始应力,即可模拟预应力效应。
5.Rebar Layer法利用ABAQUS提供的rebar layer功能,将rebar layer定义到surface,membrane或shell基上,通过对rebar施加初始应力,即可模拟先张法和后张法。
经过一段时间的使用和尝试,发现实体内施加预应力还存在不少缺陷:1.无法模拟早期的预应力损失,如摩擦损失,锚具回弹损失等;2.无法准确模拟后张法中在张拉阶段净截面参与计算的问题,这在截面高度较小,预应力筋较多时,对计算结果影响会比较大;3.无法模拟换算截面的问题,尽管帮助文件中多次提到rebarlayer的刚度被添加到surface section等中,由于surface section没有内在刚度,多次测试发现rebar layer的刚度无法添加到结构中。
后尝试用shell section的方式来实现。
帮助文件中没有直接提到用shell section带rebar layer埋于solid 单元的方式可以模拟预应力。
经多次测试发现是可以考虑shell 和rebar layer的附加刚度,但结算结果不稳定。
几个要点:1>.shell section能自动采用换算截面,其但换算系数为N而不是N-1。
应用"桁架单元" (truss element) 模拟钢缆"桁架单元" (truss element) 是1D element, 只能计算轴向(长度方向)的应力但是不能计算弯矩。
所有的结点均为"绞结点",不是"钢结点" (不能传递弯矩)。
所以用来模拟杆件之间用绞接(结构力学中的桁架). 在结构力学中, 假如桁架模型不是几何不变体系,则不能运算(无唯一确定解)。
几何自由度< = 0 是几何不变体系的必要条件,但非充分条件。
钢缆是一亇特例,它不是结构力学中的几何不变体系。
在工程上, 钢缆的细长比较大,故其弯,剪,扭力通常可以略去不计,只需考虑拉力。
所以可以用多亇"桁架单元" (truss element) 来模拟钢缆。
在数值计算中使用多亇"桁架单元"来模拟钢缆可能导致计算不收敛。
因为使用多亇"桁架单元"时其中的轴向力必须大于零,所以加载的苐一亇increment 就无法进行。
因为这亇收敛问题是数值计算问题而非物理问题,所以可以work around。
在此介绍两种常用的方法,希望大家能举一反三。
1. 沿truss element 加沿长度方向初始拉应力。
2. 使用STABILIZE parameter on the *STATIC.例题;100 m 长钢缆水平放置从x = 0到x = 100。
两端固定。
无初始拉力,计算重力下垂量。
截面; A = m2Density: =7800 kg/m3, g = m/s2, E = +11 N/m2Analytical solution of maximum displacement (u2) at x = 50m :U2_max = -((3**g*L^4)/(64*E))^(1/3) = m方法一. 沿truss element 加沿长度方向初始拉应力(see此文件中使用了initial condition, type = stress方法加初始拉应力。
问题:做了一个小模型,用降温模拟预应力,但是桁架在埋入砼后,我们开始计算分析时候报错,说没有给桁架赋予属性。
郁闷了。
不会了。
请教。
附上CAE
*************
今天回过头来看这个帖子,真的觉得好汗颜自己。
1 “说没有给桁架赋予属性”
lz在property步给part2赋予了truss的材料属性,然后在mesh步给划成beam单元,所以出此错误信息。
要么都用beam,要么都用truss。
改为truss单元即可收敛。
2 lz是采用降温法模拟钢筋预应力做得一个小例子。
经常有人求这个。
现贴出CAE文件和inp文件供大家讨论。
另外,我设置温度的时候是有一个公式可以换算的。
但是换算时候的压力值取什么值我还不是很明白,所以要请业内做桥梁的高人指点下。
其次,我发现在检测的时候有这个提示,说是没有赋予初始温度,我在预定义场里只定义了一个温度。
这个温度是末温度。
温度是从0度到这个预定义的值的。
也就是一个降温过程。
附图给大家看看。
这个不是错误。
若不定义初始温度,则缺省值取为0。
不过会有个warning提示你的。
当然你也可以在step之前设定初始温度。
ABAQUS建模如何施加预应力1.第一种方法是在模型建立阶段施加初始的预应力。
假设我们需要在一个弹性杆上施加预应力,可以选择一个适合的初始几何形状,然后在ABAQUS中建立一个非线性静力分析模型。
在模型中创建一个新的材料属性,并将该属性的引伸模量设置为预应力下的值。
然后,在加载步骤中施加适当的载荷以实现所需的预应力。
这种方法需要提前了解预应力的大小和方向。
2.第二种方法是使用一维元素(例如梁或弹簧元素)来模拟预应力的效果。
这种方法在模拟螺旋弹簧或拉索等情况下特别有用。
首先,在ABAQUS中创建一个线性静力分析模型,并将相应的材料属性分配给模型。
然后,在模型中创建一维梁或弹簧元素,并将其与表面节点相连。
在加载步骤中设置合适的载荷以利用这些元素施加预应力。
这种方法可以更加自由地控制预应力的大小和方向。
3.第三种方法是使用INITIALCONDITIONS卡来施加初始的预应力。
首先,在ABAQUS的输入文件中的合适位置添加一个INITIALCONDITIONS卡。
然后,在该卡中通过修改合适的变量和属性定义施加所需的预应力。
INITIALCONDITIONS卡的使用可以灵活地定义各种初始条件,但需要对ABAQUS的输入文件格式有一定的了解。
无论使用哪种方法,施加预应力时需要考虑一些因素。
首先,需要确定预应力的大小和方向,以便正确定义材料的属性和加载条件。
其次,需要注意预应力的影响范围,以便选择合适的单元类型和网格划分方式。
最后,需要进行适当的验证和调试,以确保模型的准确性和稳定性。
在使用ABAQUS进行建模时,建议先进行一些小规模的验证和参数敏感性分析,以确保所施加的预应力是可靠和合理的。
此外,在模拟中施加预应力时,需要根据具体情况和问题的要求选择合适的方法。
预应力的施加方法预应力是通过将钢筋在混凝土预应力构件内部施加拉力,从而产生压应力的一种施加方法。
预应力技术的应用可以有效地提高混凝土结构的承载能力、抗震性能和耐久性,广泛应用于桥梁、建筑物等工程领域。
预应力的施加方法主要有两种:预应力预制和动态施加预应力。
1. 预应力预制方法预应力预制是指在混凝土构件浇筑前,先施加预应力力量将钢筋拉紧,然后再将混凝土浇筑在预应力钢筋上。
预应力预制的主要步骤如下:(1)设计预应力构件根据工程需要,确定构件的尺寸、形状等参数,并结合受力分析和计算,确定预应力设计方案。
预应力设计需要考虑构件受力状态、荷载情况、混凝土性能等因素。
(2)制作预应力钢束根据设计要求,在工厂制作预应力钢束,一般采用高强度钢材,如普通高强度钢丝、螺旋肋钢筋等。
预应力钢束一般为直径为12mm~31.8mm的钢筋。
(3)固定预应力钢束将预应力钢束按设计要求布置在混凝土构件内,一般采用预留孔或放置金属套筒的方式将预应力钢束固定在构件中。
(4)拉紧预应力钢束在混凝土浇筑前,使用专用的拉紧设备对预应力钢束进行拉紧,施加预应力力量。
(5)浇筑混凝土在预应力钢束拉紧后,将混凝土浇筑在预应力钢束上,同时采取措施确保混凝土的均匀浇筑和充实。
(6)维持预应力力量在混凝土达到规定强度后,除去拉紧设备,让预应力钢束产生的压应力转移到混凝土中,并通过预应力钢束与混凝土之间的粘结力进行传递。
维持预应力力量的稳定,可以采取喷涂保护层、加固承台等措施。
2. 动态施加预应力方法动态施加预应力是指在混凝土构件已经施工完成后,通过施加动态荷载或其他外力作用的方式,使构件产生预应力。
(1)动载施加方法在结构施工完成后,在结构上施加动载荷,如车辆荷载、风荷载等。
通过动载荷施加,结构产生位移,从而使结构内的钢筋受到拉力作用,产生预应力效应。
(2)快速往复施加方法在结构施工完成后,通过快速往复施加外力的方式,使结构内的钢筋受到拉力作用,产生预应力效应。
abaqus 粱单元预紧力
答:Abaqus是一款广泛使用的工程仿真软件,可以模拟各种材料和结构的力学行为。
在Abaqus中,预紧力通常是通过在载荷步中施加力或位移来实现的。
对于梁单元,可以通过以下步骤施加预紧力:
1. 打开Abaqus软件,创建或导入模型。
2. 在模型中创建梁单元,并指定其材料属性、截面尺寸等。
3. 在载荷步中施加预紧力。
可以通过以下几种方式实现:
a. 在载荷步选项卡中选择“力”或“位移”选项,并在右侧的输入框中输入预紧力值。
b. 如果需要分段施加预紧力,可以在载荷步选项卡中选择“多个”选项,并添加多个载荷子步。
在每个子步中输入相应的预紧力值。
c. 如果需要施加的预紧力与时间有关(例如蠕变预紧力),可以在载荷步选项卡中选择“时间”选项,并指定预紧力随时间变化的函数。
4. 确认载荷步设置后,执行模拟计算。
需要注意的是,施加的预紧力应该根据实际情况进行合理设置。
如果施加的预紧力过大,可能会导致梁单元在模拟过程中发生断裂或其他非预期结果。
因此,建议在进行模拟前进行必要的验证和校核。
ABAQUS建模如何施加预应力残余应力在ABAQUS中,可以通过几种方法施加预应力残余应力。
下面将详细介绍两种常用的方法:二层法和热加载法。
1. 二层法(Two Layer Method):二层法是一种模拟材料加工过程中产生的预应力方法。
基本思路是在模拟之前的一部分载荷历史之后,在初始状态下施加一些预应力。
其步骤如下:(1)准备一个加载步(Apply Load Step),在此步骤中定义预应力载荷的初始状态。
(2)定义载荷历史。
(3)在载荷历史的一部分之后,将模型还原为初始状态,并在此状态下施加预应力。
(4)在预应力载荷下继续加载模型。
(5)根据需要将数据保存。
例如,在ABAQUS/Standard中,可以在步骤中使用命令`STATIC`定义预应力载荷以施加预应力。
以下是一个使用二层法施加预应力的示例代码:```python*Step, name=initial step, nlgeom=yes*Static*End Step*Step, name=loading step, nlgeom=yes*Static*End Step```上述代码中,第一个步骤定义了预应力载荷的初始状态,并保持模型为非线性几何模型。
第二个步骤中的载荷历史定义了加载模型时施加的载荷。
预应力在两个步骤之间施加。
2. 热加载法(Thermal Loading Method):热加载法是一种在模拟焊接过程等应用中施加预应力的方法。
基本思路是通过施加热载荷引起温度梯度,从而产生预应力。
其步骤如下:(1)定义一个温度场,可以使用定义节点温度或通过导入温度场施加。
(2)应用热加载,在模型中引入相应的热载荷。
(3)在热载荷下,施加机械载荷以保持平衡。
(4)根据需要将数据保存。
例如,在ABAQUS/Explicit中,可以使用`*Temperature`和`*Amplitude`命令定义温度场。
下面是一个使用热加载法施加预应力的示例代码:```python*Amplitude, name=temperature, definition=SMOOTH STEP, smooth=ON*Initial Conditions, type=TEMPERATUREAll NSET*Temperatureall, type=AMP, amplitude=temperature, fixed=OFF*Step, name=loading step, nlgeom=yes*Static*End Step```上述代码中,首先定义了一个温度场,并将其应用于所有节点。
abaqus在混凝土中加钢筋的两个办法1。
采用rebar layer 的办法,在part里面画一个面,然后在property里面定义一个surface为rebar layer,把这个surface的属性赋给前面的part里面的那个面。
然后在interation中embed中把钢筋层embed到混凝土实体中去。
2。
采用桁架单元的办法,在part里面建好纵筋和箍筋的钢筋骨架,在property中分别赋予截面和属性,在interation中的embed把钢筋骨架embed到混凝土的实体中去。
3。
如果是作构件的话,第二种办法建的比较精确,而且后处理比较方便,查看钢筋单元的应力比较直观,如果是作结构的话,第一种钢筋层的办法比较好,但是个人觉得钢筋层的办法纵筋和箍筋的位置定义的不是很明确。
用truss模拟钢筋,要在mesh的时候指定他是truss单元,过程如下: __________________________________| part 模块:用wire的方法画线||__________________________________|||\/__________________________________| property 模块:创建钢筋的section || property(在category里面选beam-> || truss ||__________________________________|||\/__________________________________| assembly 模块:建立instance, ||__________________________________|||\/__________________________________| Interaction 模块: 在constaint里面|| 选embedded ||__________________________________|||\/________________________________| mesh 模块:指定单元属性|| 钢筋单元必须为truss单元(T3D2等) ||__________________________________|附件是一个用REBAR在混凝土中加入钢筋的例子钢筋混凝土建模:混凝土模型+钢筋模型+混凝土和钢筋的相互作用●ABAQUS中分别定义混凝土本构和钢筋的本构关系。
小弟最近做了一个加固的模拟,对于预应力钢筋的建模稍有体会,因此分享一贴分为两个大类进行阐述:1.CAE流首先建立一个分析步,对truss单元施加bolt那啥的力(忘记具体名字了,在寝室的电脑,没有装abaqus,抱歉),然后进行后续的分析布分析。
需要注意的是truss单元必须在中间分割,以便有一个中间点来施加这个力。
由于我不是采用这种方法,仅仅做了一个小东西验证下面的方法的正确性,因此也不好意思多说,具体参见分析手册29-5-1" p2 I2 L- F/ W- V; g 2.INP流(直接修改INP文件); O5 _' }# v/ y: ]: _7 |2 ~& ?首先强调:模型中应该有需要施加预应力的单元信息,无论是B31或者是T3D2,后面自行处理9 u# X( U! u- w/ k在*element章节与*node章节之间,加入*node1000XX,0,0,0(XX是编号,因为我一共有16个点需要施加预应力,因此XX就是1~16,而前面的1000是为了避免与已有node号码重复)+ S7 Q9 b/ u9 R8 c*PRE-TENSION SECTION, ELEMENT=XX, NODE=1000XX1 Z: Z2 p: x0 O8 {& C: c9 {; U' b4 @& e 1 z 然后在 \% X" g" p6 C- I" D# _*element章节把需要施加预应力的杆系单元改为T3D2单元,这个应该都会改吧$ f1 [$ S0 a: x/ G& i' w; R另外,如果模型中没有truss单元的截面信息,需要自行加入,如下6 j$ Z1 R5 A R7 y% z, _*SOLID SECTION, ELSET=EL-pretension, MATERIAL=rebar6 `9 O* L6 a/ z5 }5 o! I1 D0.002965然后加入预应力的分析工况,用*CLOAD写入即可。
ABAQUS中预应力Truss单元的两种实现方法例题:100 m 长钢缆水平放置从 x = 0到 x = 100。
两端固定。
无初始拉力,计算下垂量。
截面; A = 0.01539 m2,Density: r =7800 kg/m3, g = 9.8 m/s2,E=2.1e+11 N/m2 Analytical solution of maximum displacement (u2) at x = 50m :U2_max = -((3*r*g*L^4)/(64*E))^(1/3) = -1.194944005 m方法一. 沿 truss element 加沿长度方向初始拉应力 (see job-1.inp)此文件中使用了initial condition, type = stress方法加初始拉应力。
因工程上无此初应力, 更好的方法是使用降温法。
算完后再升温。
用降温法。
算完后再升温。
NOTE: 降温法施加预应力(激活钢绞线)。
温度=-力/(膨胀系数*弹模*钢绞线面积)1、第一步,在truss单元中施加一个初始应力,让计算处于初始平衡状态;初始应力设置过小,可能不收敛,应多次试算,找到一个合理的应力值。
一般情况下,这个初始值对最终值的影响不大,可以忽略。
2、第二步,施加truss单元的自重荷载,打开非线性开关(nlgeom=YES )考虑几何非线性问题;3、本例中初始值采用0.1Mpa。
自重作用下缆索的拉应力约为80Mpa。
最大位移为 -1.195 m,与理论计算值吻合得很好。
*HeadingCable appling gravity load with initail stressThe maximum Analytical displacement without initail stress (at x = 50 m) U2 = -1.194944005 meter**** Method 1. Using * initial condition,type = stress method***Preprint, echo=NO, model=NO, history=NO, contact=NO*Node1, 0., 0.101, 100., 0.*NGEN, NSET = NALL1, 101, 1*Element, type=T2D21, 1, 2*ELGEN, elset = ELALL1, 100, 1*ELSET,ELSET=EL_OUT1, 51, 100*Solid Section, elset=ELALL, material=steel0.01539,***Nset, nset=Left1,*Nset, nset=right101,*Nset, nset=mid51,**** MATERIALS***Material, name=steel*Density7800.,*Elastic2.1e+11, 0.3*initial condition, type = stress** Note: the solution will not converge as the initial stress < 100,000 N/m^2 ELALL, 100000*BoundaryLeft, 1, 2Right, 1,2*Step, name=Step-0, inc=1000Initial stress equilibrium*Static1, 1., 1e-05, 1.*Output, field, variable=PRESELECT*Output, history, variable=PRESELECT*Node print, nset = mid, freq = 1000U,*EL PRINT, ELSET=EL_OUT, freq = 1000S*END STEP** ---------------------------------------------------------------- **** STEP: Step-1***Step, name=Step-1, nlgeom=YES, inc=1000Apply gravity load*Static0.01, 1., 1e-05, 1.** Name: GRAVITY-1 Type: Gravity*DloadELALL, GRAV, 9.8, 0., -1.**** OUTPUT REQUESTS***Restart, write, number interval=1, time marks=NO*Output, field, variable=PRESELECT*Output, history, variable=PRESELECT*Node print, nset = mid, freq = 1000U,*EL PRINT, ELSET=EL_OUT, freq = 1000S*End Step方法二. 使用 STABILIZE parameter on the *STATIC.(see job-2.inp)“stabilization”在结构上附加artificial viscous damping(粘滞阻尼),使得计算结果to go beyond the instability point。
但计算结果必须验证,并必须保证 ALLSD 比内能ALLIE 小很多。
NOTE:1.第一步用*Static, stabilize=2E-10。
笫二步不用stabilize (相当于*Static, stabilize=0)。
2.使用nlgeom=YES in the step to apply the gravity load.3.最终拉应力 = 8E7 N/m2与方法一相等。
4.The maximum displacement (at node 51) equals the analytical result.5.Check the ALLSD and ALLIE. The ALLIE is greater than ALLSD. (See figure 1)6.The deformation shape of the cable can be examined by CAE. It may need to set the deformation scale factor to a large number (10 – 1000).7.使用此法必须极端谨慎。
稍微不慎,结果会完全不对。
For example, 用*Static, stabilize=2E-4 (default value of the stabilize parameter)重算此题。
其结果如下;. Check the ALLSD and ALLIE. The ALLIE is less than ALLSD. (See figure 2)The deformation shape with deformation scale factor 1000 is shown in figure 3. In the figure, only the first and last elements are deformed. The maximum deformation value is not correct.使用 stabilize parameter 学问很多,一般是越小越好。
因为stabilizeparameter 是 artificial value, 无法确定理论上的最佳值。
我是用试错法。
从开始 default value (2.0e-4) 往下减 (2.E-6, 2.0E-8,..),直到不收敛 (2.0E-12). 经过验证结果 (see the note 4, 5, and 6),我决定在计算中使用 2.0E-10。
*HeadingCable apply gravity load using stabilize parameterThe maximum Analytical displacement without initail stress (at x = 50 m) U2 = 1.194944005 meter**** Method 2. Using *Static, stabilize method***Preprint, echo=NO, model=NO, history=NO, contact=NO*Node1, 0., 0.101, 100., 0.*NGEN, NSET = NALL1, 101, 1*Element, type=T2D21, 1, 2*ELGEN, elset = ELALL1, 100, 1*ELSET,ELSET=EL_OUT1, 51, 100*Solid Section, elset=ELALL, material=steel 0.01539,***Nset, nset=Left1,*Nset, nset=right101,*Nset, nset=mid51,**** MATERIALS***Material, name=Steel*Density7800.,*Elastic2.1e+11, 0.3*BoundaryLeft, 1, 2Right, 1,2**** STEP: Step-1***Step, name=Step-1, nlgeom=YES, inc=1000 Apply gravity load** the default value of stabilize value is 2.0E-4**Static, stabilize=2E-4*Static, stabilize=2E-100.01, 1., 1e-05, 1.** Name: GRAVITY-1 Type: Gravity*DloadELALL, GRAV, 9.8, 0., -1.**** OUTPUT REQUESTS***Restart, write, number interval=1, time marks=NO *Output, field, variable=PRESELECT*Output, history, variable=PRESELECTALLSD , ALLIE*Node print, nset = mid, freq = 1000U,*EL PRINT, ELSET=EL_OUT, freq = 1000S*End Step***Step, name=Step-2, nlgeom=YES, inc=1000 Recovery*Static0.01, 1., 1e-05, 1.*End Step。