1集合与元素教案
- 格式:doc
- 大小:96.50 KB
- 文档页数:6
高一数学第一章《集合》教案高一数学第一章《集合》教案(通用6篇)作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。
那么什么样的教案才是好的呢?以下是店铺收集整理的高一数学第一章《集合》教案,欢迎大家分享。
高一数学第一章《集合》教案篇1教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。
(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。
(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。
教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。
(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。
教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。
【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。
[设计意图]探讨并形成集合的含义。
【问题3】请同学们举出认为是集合的例子。
[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。
【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。
理解集合与元素的关系。
【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。
1.1.1集合中元素的个数的教案【教学目标】:1.知识与技能:使学生初步理解集合的基本概念,常用数集的记法和集合中元素的特性. 了解有限集、无限集、空集概念。
2.过程与方法:通过让学生从一些集合的事例中概况集合的定义,了解集合与元素的关系。
3.情感态度与价值观:学生感受数学与生活之间的密切联系,提高学习数学的积极性,知道集合的重要性。
【教学重点】:集合概念、性质,元素的相关概念;【教学难点】:集合概念的理解;【教学用具】:多媒体,黑板【教学过程】:一、引入课题“物以类聚,人以群分”数学中也有类似的分类。
比如初中学习的整数集,有理数集,以及不等式的解集等。
军训前学教学难点校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。
集合理论创始者是由德国数学家康托尔,他创造)。
的集合论是近代许多数学分支的基础。
(参看阅教材中读材料P17下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。
二、新课教学1、集合的定义:一般地,指定的某些对象的全体称为集合,用字母A,B,C,D等表示。
2、集合的元素的概念和特征:(1)集合中的每个研究对象叫做这个集合的元素,用字母a,b,c,d等表示。
(2) 集合的中元素的三个特性:①元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
②元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
集合与元素一.引入:2005级的全体新同学与2004级的全体同学、一个家庭、一个代表团、由04、05级的同学分成的班级体等,集合论的创始人——康托尔(德国数学家)。
结论:“物以类聚”,“人以群分”;请同学举例,分组讨论说明,具备什么样的性质的整体是集合。
二.新课讲解集合的有关概念:1.集合的概念(1)集合:某些指定的对象集在一起就形成一个集合。
(2)元素:集合中每个对象叫做这个集合的元素。
2.判断下列句子是否表示一个集合:(1)04-2班的全体个子高的同学(2)04-3班数学好的同学(3)比5小的自然数(4)今天天气真好!(5)1,2,3,5,5,6,63.集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
(2)互异性:集合中的元素没有重复。
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)注:a、集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……b、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈Aa (2)不属于:如果a不是集合A的元素,就说a不属于A,记作A用“∈”的开口方向表示,不能把a∈A颠倒过来写。
4.加强练习:教材上的练习题(1)所有很大的实数。
(不确定)(2)好心的人。
(不确定)(3)1,2,2,3,4,5.(有重复)5.常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合。
记作N(2)正整数集:非负整数集内排除0的集。
记作N*或N+(3)整数集:全体整数的集合。
记作Z(4)有理数集:全体有理数的集合。
记作Q(5)实数集:全体实数的集合。
记作R注:a.自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
b.非负整数集内排除0的集。
记作N*或N+。
Q、Z、R等其他数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*6.同学们分组讨论由大于2并且小于3的自然数组成的集合是什么?把不含任何元素的集合称为空集,记作φ.7.练习集合与元素的关系用“∈”或∉填空:0φ;a φ; 1 φ三.小结:本节课学习了以下内容:集合的有关概念(集合、元素、属于、不属于、有限集、无限集、空集)四.作业;书上习题。
(4)任意一个正整数,能否被5整除是确定的,所以能被5整除的正整数能组成集合.
解(1)能;(2)不能;(3)能;(4)能.
合作交流
同桌两人,其中一人举出一个集合的例子,另一人
说出这个集合中的两个元素,再交换练习,看谁的正确率高.
完成“合作交流”中问题
活动四:
课堂小结
作业布置
(一)课堂小结
(二)作业布置
完成课本中P4 ——练习1./2./3./4.
活动五:板书设计
1.1.1 集合与元素
一、集合与元素概念及其表示方法练习小结
二、集合与元素关系练习作业
三、集合中元素的特征
活动六:教学反思包括5个方面,教学目标、教学内容、教学实施、教学评价、教学效果。
所谓教学反思,是指。
高中数学第一章集合教案1
教学目标:使学生掌握集合的基本概念和表示方法,了解集合的运算及其性质。
一、集合的定义和表示方法
1. 集合的基本概念
- 了解集合的概念和元素的概念
- 掌握集合的表示方法:列举法、描述法
2. 集合的符号表示
- 学习如何用符号表示集合:A={1,2,3,4,5}
二、集合的运算及其性质
1. 集合的运算
- 了解集合的交集、并集、差集等运算
- 学习集合的运算规则和性质:交换律、结合律、分配律
2. 集合的运算应用
- 能够解决实际问题中的集合运算
三、集合的性质和定理
1. 集合的性质
- 了解集合的基本性质:互斥、重复、子集等
- 学习如何判断两个集合是否相等
2. 集合的定理
- 掌握集合的代数定理和逻辑定理
教学步骤:
1. 引入新知识,通过生动有趣的例子引出集合的概念和表示方法
2. 介绍集合的运算及其性质,让学生掌握集合的基本运算规则
3. 练习集合的运算和性质,加深学生的理解和掌握程度
4. 引导学生应用集合运算解决实际问题,培养学生的应用能力
5. 总结本节课的内容,强调重点,帮助学生做好知识的复习和巩固
教学反馈:通过课堂练习、作业布置等方式对学生的学习情况进行及时反馈,发现问题及时纠正,提高学生的学习效果。
教学资源:教科书、课件、练习题等
教学评价方法:通过课堂练习、小测验、作业等不同方式对学生的学习情况进行评价,及时发现问题,实施个性化教学。
高一必修一数学集合教案高一必修一数学集合教案篇1教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的"属于"和"不属于"关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程的解;(5) 某校2021级新生;(6) 血压很高的人;(7) 的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,_是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5. 元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A4A,等等。
集合与元素一、教案背景1.面向学生:中等职业学校一年级2.学科:数学3.课时:第一课时4.课前准备:制作好的课件,畅通的网络二、教学课题课题:集合与元素三、教材分析教学内容:江苏教育出版社职业学校数学教材基础模块(上)集合与元素内容分析:本节内容是集合这一章的开篇,旨在引导学生感受集合语言的好处,发展学生用数学语言进行交流的能力。
学情分析:职业学校学生相对而言基础比较薄弱,学习积极性、主动性较差。
教师在教学过程中要注重兴趣激发,循序渐进地引导学生。
教学目标:1.通过实例,初步体会元素与集合的“属于”、“不属于”关系,从观察、分析集合的元素入手,正确地理解集合。
2.观察集合的几组实例,初步感受集合语言在描述客观现实和数学对象中的意义。
3.在学习运用集合语言的过程中,增强认识事物的能力。
教学重点:正确地理解集合, 元素与集合的“属于”、“不属于”关系教学难点:学生正确地理解集合,并能运用集合语言准确、简洁地表达客观现实。
教学方法:教学中,教师采用启发式、讲解法、交流法等,尊重学生的主体地位,发挥老师的主导作用;用生活实例激发促进学生学习,营造和谐的学习氛围,发展学生的语言交流能力。
教学过程(一)兴趣导入:老师:同学们,你们知道中国的“西南三省”是哪三个省份吗?全世界共有四大洋,它们的名称是什么?太阳光其实是由七种单色光组成的,你知道是哪七种吗?【百度搜索】/albums/149228/149228.html#0$7ac8 80513da7907142a75bce/albums/142118/142118.html#0$1e71 f7243db22b3e4c088dc8/view/597091.htm#2【设计意图】从学生熟悉的地理、物理知识引入,构建自然和谐的氛围。
(二)知识讲解老师:同学们对刚刚的知识回答的很好。
那对于分类后的事物,我们用怎样的数学语言进行描述呢?这节课老师就和同学们一起探索。
板书:集合与元素一般地,由某些确定的对象所组成的整体叫做集合。
集 合教学目标: 1、理解集合的概念和性质.2、了解元素与集合的表示方法.3、熟记有关数集.4、培养学生认识事物的能力.教学重点: 集合概念、性质教学难点: 集合概念的理解教学过程:1、 定义:集合:一般地,某些指定的对象集在一起就成为一个集合(集).元素:集合中每个对象叫做这个集合的元素.由此上述例中集合的元素是什么?例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式3x-2> x+3的实数x ,例(4)的元素为所有直角三角形,例(5)为高一·六班全体男同学.一般用大括号表示集合,{ … }如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。
则上几例可表示为……为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}2(1)确定性;(2)互异性;(3)无序性.3、元素与集合的关系:隶属关系元素与集合的关系有“属于∈”及“不属于∉(∉ 也可表示为 )两种。
如A={2,4,8,16},则4∈A ,8∈A ,32 A.∈∉集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集A 记作a ∈A ,相反,a 不属于集A 记作 a ∉A (或a A )注:1、集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……2、“∈”的开口方向,不能把a ∈A 颠倒过来写。
4注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
(2)非负整数集内排除0的集。
记作N *或N + 。
Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *请回答:已知a+b+c=m ,A={x|ax 2+bx+c=m},判断1与A 的关系。
1.1.2 集合间的基本关系教学目标:1.理解子集、真子集概念;2.会判断和证明两个集合包含关系;3.理解 ”、“⊆”的含义; 4.会判断简单集合的相等关系;5.渗透问题相对的观点。