因式分解相关知识点整理【竞赛专用】
- 格式:pdf
- 大小:127.79 KB
- 文档页数:3
因式分解把一个多项式化成几个整式的积的形式,叫做多项多式的因式分解。
因式分解是整数质因数分解的发展,实质是多项式乘法的逆运算。
它是多项式的一种重要的变化方法,是解决许多数学问题的有力工具。
在几何、三角等解题与证明中扮演着重要角色,因式分解方法灵活,技巧性强,有利于培养学生的解题技能,发展学生思维能力。
它主要包括以下几个方面的内容:(1) 因式分解的对象是多项式,无论是被分解式还是分解后的每个因式都必须是多项式或单项式。
(2) 因式分解的过程是多项式的恒等变形,每一步都必须保持前后两式相等。
(3) 要注意因式分解的范围是在实数范围几因式分解,还是在有理数范围内因式分解。
(4) 因式分解的结果都是整式的乘积的形式,每一个多项式都要在规定范围内分解到不能再分解为止。
主要方法:提公因式法、公式法、分组分解法、十字相乘法、拆项添项法、待定系数法等。
重要公式及结论:()3223333b ab b a a b a ±+±=± ()()3322b a b ab a b a ±=+±()bcac ab c b a c b a 2222222+++++=++()()()()c a c b b a c b a c b a +++-++=++33333 ()()()b x a x ab x b a x ++=+++2()()122321-----+++++-=-n n n n n n n b ab b a b a a b a b a (n 为正整数)()()122321------+-+-+=-n n n n n n n b ab b a b a a b a b a (n 为偶数)()()122321-----+--+-+=+n n n n n n n b ab b a b a a b a b a (n 为奇数)待定系数法因式分解的依据是: n n n n n n n n n n b a b a b a b x b x b x b a x a x a x a ===⇔++++=++++----,,,110011101110 因式定理:如果多项式()001110≠++++--a a x a x a x a n n n n 当a x =时,它的值为0,那么它有因式a x -。
竞赛专题:因式分解一、重要公式1、a2-b2=a+ba-b;a n-1=a-1 a n-1+a n-2+a n-3+…+a2+a+12、a2±2ab+b2=a±b2;3、x2+a+bx+ab=x+ax+b;4、a3+b3=a+ba2-ab+b2; a3-b3=a-ba2+ab+b2;二、因式分解的一般方法及考虑顺序1、基本方法:提公因式法、公式法、十字相乘法、分组分解法;2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法;3、考虑顺序:1提公因式法;2十字相乘法;3公式法;4分组分解法;1、添项拆项例1因式分解:1x4+x2+1;2a3+b3+c3-3abc1分析:x4+1若添上2x2可配成完全平方公式解:x4+x2+1=x4+2x2+1-x2=x2+12-x2=x2+1+xx2+1-x2分析:a3+b3要配成a+b3应添上两项3a2b+3ab2解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b -3ab2=a+b3+c3-3aba+b+c=a+b+ca+b2-a+bc+c2-3aba+b+c =a+b+ca2+b2+c2-ab-ac-bc例2因式分解:1x3-11x+20; 2a5+a+11分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提;注意这里16是完全平方数解:x3-11x+20=x3-16x+5x+20=xx2-16+5x+4=xx+4x-4+5x+4 =x+4x2-4x+52分析:添上-a2和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式解:a 5+a +1=a 5-a 2+a 2+a +1=a 2a 3-1+a 2+a +1=a 2a -1 a 2+a +1+a 2+a +1=a 2+a +1a 3-a 2+12、待定系数法例3因式分解2x 2+3xy -9y 2+14x -3y +20解:∵2x 2+3xy -9y 2=2x -3yx +3y,故用待定系数法,可设2x 2+3xy -9y 2+14x -3y +20=2x -3y +ax +3y +b,其中a,b 是待定的系数,比较右边和左边的x 和y 两项的系数,得⎩⎨⎧-=-=+333142b a b a 解得 54==b a ∴2x 2+3xy -9y 2+14x -3y +20=2x -3y +4x +3y +5另解原式=2x 2+3y +14x -9y 2+3y -20,这是关于x 的二次三项式常数项可分解为-3y -43y +5,用待定系数法,可设2x 2+3y +14x -9y 2+3y -20=mx -3y -4nx +3y +5比较左、右两边的x 2和x 项的系数,得m=2, n=1∴2x 2+3xy -9y 2+14x -3y +20=2x -3y +4x +3y +5三、重点定理1、余式定理:整多项式fx 除以x-a 商为qx,余式为r,则fx=x-aqx+r;当一个fx 除以x – a 时, 所得的等于 fa;例如:当 fx=x^2+x+2 除以 x – 1 时,则=f1=1^2+1+2=4;2、因式定理:即为的推论之一:如果多项式fa=0,那么多项式fx 必定含有因式x-a;反过来,如果fx 含有因式x-a,那么,fa=0;四、填空题1、两个小朋友的年龄分别为a 和b,已知a 2+ab=99,则a= ,b= ;2、计算:x +62x -62=x 2-362 ;3、若x +y=4,x 2+y 2=10,则x -y 2= ;4、分解因式:a 2-b 2+4a +2b +3= ;5、分解因式:4x3-31x+15= ;6、分解因式:x4+1987x2+1986x+1987= ;五、选择题7、x2y-y2z+z2x-x2z+y2x+z2y-2xyz因式分解后的结果是 ;Ay-zx+yx-z By-zx-yx+zCy+zx-yx+z Dy+zx+yx-z8、已知724-1可被40至50之间的两个整数整除,则这两个整数是 ;A41,48 B45,47 C43,48 D41,479、n为某一自然数,代入代数式n3-n中计算其值时,四个同学算出如下四个结果,其中正确的结果只能是 ;A388944 B388945 C388954 D388948六、将下列各式分解因式10、x4+x2y2+y4 11、x4+412、x4-23x2y2+y4 13、x3+4x2-914、x3-41x+30 15、x3+5x2-1816、x3+3x2y+3xy2+2y3 17、x3-3x2+3x+718、x3-9ax2+27a2x-26a3 19、x3+6x2+11x+620、a3+b3+3a2+b2+3a+b+221、3x3-7x+10 22、x3-11x2+31x-21七、解答题23、已知x-y+4是x2-y2+mx+3y+4的一个因式,求m的值;24、求方程xy-x-y+1=3的整数解;解:原方程可化为x-1y-1=3∵x,y整数,∴原方程可化为四个方程组:x-1=1 x-1=3 x-1=-1 x-1=-3y-1=3 y-1=1 y-1=-3 y-1=-1 解得:x,y的解为2,4、4,2、0,-2、-2,0。
第一讲 分解方法的延拓——换元法与主元法因式分解是针对多项式的一种恒等变形,提公因式法、公式法,分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法.一些复杂的因式分解问题.常用到换元法和主元法.所谓换元,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化、明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.所谓主元,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式重新整理成关于这个字母的按降幂排列的多项式,则能排除字母间的干扰,简化问题的结构.例题求解【例1】分解因式:10)3)(4(2424+++-+x x x x = .(第12届“五羊杯”竞赛题)思路点拨 视24x x +为一个整体.用一个新字母代替,从而能简化式子的结构.【例2】 多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .(y -z)(x+y)(x -z)B .(y -z)(x -y)(x +z)C . (y+z)(x 一y)(x+z)D .(y 十z)(x+y)(x 一z) (上海市竞赛题)思路点拨 原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.【例3】把下列各式分解因式:(1)(x+1)(x +2)(x+3)(x+6)+ x 2; (天津市竞赛题)(2)1999x 2一(19992一1)x 一1999; (重庆市竞赛题)(3)(x+y -2xy)(x+y -2)+(xy -1)2; (“希望杯”邀请赛试题)(4)(2x -3y)3十(3x -2y)3-125(x -y)3. (第13届“五羊杯”竞赛题)思路点拔 (1)是形如abcd+e 型的多项式,分解这类多项式时,可适当把4个因式两两分组,使得分组相乘后所得的有相同的部分;(2)式中系数较大,不妨把数用字母表示;(3)式中x+y ;xy 多次出现,可引入两个新字母,突出式子特点;(4)式前两项与后一项有密切联系.【例4】把下列各式分解因式:(1)a 2(b 一c)+b 2(c -a)+c 2 (a 一b); (2)x 2+xy -2y 2-x+7y -6.思路点拨 (1)式字母多次数高,可尝试用主元法;(2)式是形如ax 2+bxy+cy 2+dx+ey+f 的二元二次多项式,解题思路宽,用主元法或分组分解法或用待定系数法分解.【例5】证明:对任何整数 x 和y ,下式的值都不会等于33.x 5+3x 4y -5x 3y 2一15x 2y 3+4xy 4+12y 5.(莫斯科奥林匹克八年级试题)思路点拨 33不可能分解为四个以上不同因数的积,于是将问题转化为只需证明原式可分解为四个以上因式的乘积即可.注:分组分解法是因式分解的量本方法,体现了化整体为局部、又统揽全局的思想.如何恰当分组是解题的关键,常见的分组方法有:(1)按字母分组;(2)按次数分组; (3)按系数分组.为了能迅速解决一些与代教式恒等变形相关的问题,读者因熟悉如下多项式分解因式后的结果:(1)))((2233b ab a b a b a +±=± ;(2)))((3222333ac bc ab c b a c b a abc c b a ---++++=-++学历训练1.分解因式:(x 2+3x)2-2(x 2+3x)-8= .2.分解因式:(x 2+x+1)(x 2+x+2)-12= .3.分解因式:x 2-xy -2y 2-x -y= .4.已知二次三项式82--mx x 在整数范围内可以分解为两个一次因式的积,则整数m 的可能取值为 .5.下列各式分解因式后,可表示为一次因式乘积的是( ).A .2727923-+-x x xB .272723-+-x x xC .272734-+-x x xD .279323-+-x x x (第13届“希望杯”邀请赛试题)6.若51-=+b a ,13=+b a ,则53912322+++b ab a 的值为( ). A .92 B .32 C .54 D .0 7.分解因式:(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2; (2)(2x 2-3x+1)2一22x 2+33x -1;(3)x 4+2001x 2+2000x+2001; (4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;(5)bc ac ab c b a 54332222+++++; (6)613622-++-+y x y xy x .8.分解因式:22635y y x xy x ++++= .9.分解因式:333)()2()2(y x y x -----= .10.613223+-+x x x 的因式是( )A .12-xB .2+xC .3-xD .12+xE .12+x11.已知c b a >>,M=a c c b b a 222++,N=222ca bc ab ++,则M 与N 的大小关系是( )A .M<NB .M> NC .M =ND .不能确定12.把下列各式分解因式:(1)22212)16)(1(a a a a a ++-++; (2)91)72)(9)(52(2---+a a a ; (黄冈市竞赛题)(3)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy ; (天津市竞赛题)(4)4242410)13)(14(x x x x x ++++-;(第13届“五羊杯”竞赛题)(5)z y xy xyz y x z x x 222232242-++--. (天津市竞赛题)17.已知乘法公式:))((43223455b ab b a b a a b a b a +-+-+=+; ))((43223455b ab b a b a a b a b a ++++-=-. 利用或者不利用上述公式,分解因式:12468++++x x x x (“祖冲之杯”邀请赛试题)18.已知在ΔABC 中,010616222=++--bc ab c b a (a 、b 、c 是三角形三边的长).求证:b c a 2=+第二讲 分解方法的延拓——配方法与待定系数法在数学课外活动中,配方法与待定系数法也是分解因式的重要方法。
因式分解、分式和根式【知识梳理】一、因式分解:1、常用的公式:平方差公式:;完全平方公式:;;;;立方和(差)公式:;;2、许多多项式分解因式后的结果在解题中经常用到,我们应熟悉以下的常用结果:(1);(2);(3);(4);(5);(6)。
二、分式:1、分式的意义形如(为整式),其中B中含有字母的式子叫分式。
当分子为零且分母不为零时,分式的值为零,而当分母为零时,分式没有意义。
2、分式的性质(1)分式的基本性质:(其中M是不为零的整式)。
(3)倒数的性质:;若,则(,是整数);。
3、分式的运算分式的运算法则有:;(是正整数)。
4、分式的变形分式的基本性质是分式变形的理论根据之一,分式变形的常用方法有:设参法(主要用于连比式或连等式),拆项法(即分离变形),因式分解法,分组通分法和换元法等。
三、二次根式:1、当时,称为二次根式,显然。
2、二次根式具有如下性质:(1);(2)(3);(4)。
3、二次根式的运算法则如下:(1);(2)。
4、设,且不是完全平方数,则当且仅当时,。
【例题精讲】【例1】分解因式:【巩固】分解因式:1、;2、;【例2】已知是一个三角形的三边,则的值是()A.恒正B.恒负C.可正可负D.非负3、为何值时,多项式能分解成两个一次因式的积?【例3】已知是实数,且,问之间有怎样的关系?请推导。
【专题训练】1、已知,求的值为_____________;2、多项式的一个因式是,试确定的值为_____________;3、设,求的值。
4、若,且设,则___________5、已知,,,则_______________;6、已知,,,且,则______________________7、当变化时,分式的最小值为______________8、设,则____________________;9、已知实数满足,则__________________;10、化简____________________;11、已知,则__________________12、设的整数部分为,小数部分为,则_____________;13、设等式在实数范围内成立,其中两两不同,则__________________;14、使等式成立的整数对的个数为__________________;15、设正整数满足,则这样的的取值有______组;16、求和:17、已知,化简。
因式分解基础知识总结一、因式分解的意义1.定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
2.因式分解与整式乘法的区别、联系:区别:整式乘法是把几个整式相乘,化成一个多项式;因式分解是把一个多项式化成几个因式的积的形式。
联系:因式分解与整式乘法是互逆的过程。
3.公因式及其结构:公因式:一个多项式的各项都含有的因式叫做这个多项式的公因式。
公因式的结构:多项式的公因式由系数和字母部分两部分组成,系数取各项系数的最大公因数,字母取各项都含有的字母,指数取相同字母的最低次幂。
可简记为:“系数大,字母同,指数低”。
二、因式分解的方法(一)提公因式法1.定义:如果一个多项式的各项含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种变形叫做提公因式法。
2.步骤:(1)确定公因式,(2)提公因式并确定另一个因式,原多项式除以公因式所得商就是另一个因式。
3.常用的恒等变形:223344();()();()();()()......y x x y y x x y y x x y y x x y -=---=--=---=-(二)运用公式法1.定义:如果把乘法公式反过来用,就可以把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
2.因式分解公式:(1)平方差公式:22()()a b a b a b -=+-(2)完全平方公式:2222222()2()a ab b a b a ab b a b ++=+-+=-3. 2()()()x a b x ab x a x b +++=++三、因式分解的一般步骤:可以概括为“一提,二套,三分组,四检查”:“一提”:如果多项式的各项有公因式,那么先提公因式。
“二套”:如果多项式的各项没有公因式,那么可尝试套用公式法分解。
“三分组”:对于四项以上的多项式(在没有公因式后),应考虑用分组分解法。
“四检查”:检查每个因式是否还能继续分解因式,因式分解必须进行到每一个因式都不能再分解为止。
n m n a a +=同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
35())a b b += 、幂的乘方法则:mnm aa ((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:幂的乘方法则可以逆用:即考点四、十字相乘法(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式a b 、的积,并且a b +等于一次项系数p 的值,那么它就可以把二次三项式2x px q ++分解成()()()b x a x ab x b a x q px x ++=+++=++22例题讲解1、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=51 2 解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5 用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例题讲解2、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习分解因式(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x2、二次项系数不为1的二次三项式——c bx ax ++2 条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题讲解1、分解因式:101132+-x x分析: 1 -2 3 -5 (-6)+(-5)= -11解:101132+-x x =)53)(2(--x x分解因式:(1)6752-+x x (2)2732+-x x。
1.双十字相乘法分解二次三项式时,我们常用十字相乘法.某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.双十字相乘法因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2; (2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;2.求根法形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.例3 分解因式:9x4-3x3+7x2-3x-2.3.待定系数法在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.例5 分解因式:x4-2x3-27x2-44x+7.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3; (2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6; (2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20; (2)x4+5x3+15x-9.初中数学因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(2x-3y+z)(3x+y-2z).2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3; (2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6; (2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20; (2)x4+5x3+15x-9.。
因式分解一、导入:有两个人相约到山上去寻找精美的石头,甲背了满满的一筐,乙的筐里只有一个他认为是最精美的石头.甲就笑乙:“你为什么只挑一个啊?”乙说:“漂亮的石头虽然多,但我只选一个最精美的就够了.”甲笑而不语,下山的路上,甲感到负担越来越重,最后不得已不断地从一筐的石头中挑一个最差的扔下,到下山的时候他的筐里结果只剩下一个石头!启示:人生中会有许多的东西,值得留恋,有的时候你应该学会去放弃.二、知识点回顾:1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.三、专题讲解例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.※※变式练习1分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例3 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习1分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例4 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例5 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x)要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习1. 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例3 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.五、反思总结。
因式分解的知识点总结因式分解的知识点总结篇1因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必需是整式②结果必需是积的形式③结果是等式因式分解与整式乘法的关系:m(a+b+c)公因式:一个多项式每项都含有的公共的`因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。
②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:①确定公因式。
②确定商式③公因式与商式写成积的形式。
分解因式注意;①不准丢字母②不准丢常数项注意查项数③双重括号化成单括号④结果按数单字母单项式多项式次序排列⑤相同因式写成幂的形式⑥首项负号放括号外⑦括号内同类项合并。
因式分解的知识点总结篇21.因式分把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。
2.因式分解的方法:常用“提取公因式法”“公式法”“分组分解法”“十字相乘法”。
3.公因式确实定:系数的最大公约数?相同因式的最低次幂。
注意公式:a+b=b+a;a—b=—(b—a);(a—b)2=(b—a)2;(a—b)3=—(b—a)3、4.因式分解的公式:(1)平方差公式:a2—b2=(a+b)(a—b);(2)完全平方公式:a2+2ab+b2=(a+b)2,a2—2ab+b2=(a—b)2、5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的.字母都具有整体性;(3)因式分解的最终结果要求分解到每一个因式都不能分解为止;(4)因式分解的最终结果要求每一个因式的首项符号为正;(5)因式分解的最终结果要求加以整理;(6)因式分解的最终结果要求相同因式写成乘方的形式。
6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)敏捷分组;(8)提取分数系数;(9)打开部分括号或全部括号;(10)拆项或补项。
因式分解1、导入:有两个人相约到山上去寻找精美的石头,甲背了满满的一筐,乙的筐里只有一个他认为是最精美的石头。
甲就笑乙:“你为什么只挑一个啊?”乙说:“漂亮的石头虽然多,但我只选一个最精美的就够了。
”甲笑而不语,下山的路上,甲感到负担越来越重,最后不得已不断地从一筐的石头中挑一个最差的扔下,到下山的时候他的筐里结果只剩下一个石头!启示:人生中会有许多的东西,值得留恋,有的时候你应该学会去放弃。
二、知识点回顾:1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.三、专题讲解 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz; 解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). 例2 分解因式:a 3+b 3+c 3-3abc . 本题实际上就是用因式分解的方法证明前面给出的公式(6). 分析 我们已经知道公式(a+b)3=a 3+3a 2b+3ab 2+b 3 的正确性,现将此公式变形为a 3+b 3=(a+b)3-3ab(a+b). 这个式也是一个常用的公式,本题就借助于它来推导. 解 原式=(a+b)3-3ab(a+b)+c 3-3abc =[(a+b)3+c 3]-3ab(a+b+c) =(a+b+c)[(a+b)2-c(a+b)+c 2]-3ab(a+b+c) =(a+b+c)(a 2+b 2+c 2-ab -bc -ca). 说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a 3+b 3+c 3-3abc 显然,当a+b+c=0时,则a 3+b 3+c 3=3abc ;当a+b+c >0时,则a 3+b 3+c 3-3abc≥0,即a 3+b 3+c 3≥3abc,而且,当且仅当a=b=c 时,等号成立. 如果令x=a 3≥0,y=b 3≥0,z=c 3≥0,则有 等号成立的充要条件是x=y=z .这也是一个常用的结论.※※变式练习 1分解因式:x 15+x 14+x 13+…+x 2+x+1. 分析 这个多项式的特点是:有16项,从最高次项x 15开始,x 的次数顺次递减至0,由此想到应用公式a n -b n 来分解. 解 因为 x 16-1=(x -1)(x 15+x 14+x 13+…x 2+x+1), 所以 说明 在本题的分解过程中,用到先乘以(x -1),再除以(x -1)的技巧,这一技巧在等式变形中很常用. 2.拆项、添项法 因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解. 例3 分解因式:x3-9x+8. 分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧. 解法1 将常数项8拆成-1+9. 原式=x3-9x-1+9 =(x3-1)-9x+9 =(x-1)(x2+x+1)-9(x-1) =(x-1)(x2+x-8). 解法2 将一次项-9x拆成-x-8x. 原式=x3-x-8x+8 =(x3-x)+(-8x+8) =x(x+1)(x-1)-8(x-1) =(x-1)(x2+x-8). 解法3 将三次项x3拆成9x3-8x3. 原式=9x3-8x3-9x+8 =(9x3-9x)+(-8x3+8) =9x(x+1)(x-1)-8(x-1)(x2+x+1) =(x-1)(x2+x-8). 解法4 添加两项-x2+x2. 原式=x3-9x+8 =x3-x2+x2-9x+8 =x2(x-1)+(x-8)(x-1) =(x-1)(x2+x-8). 说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习 1分解因式: (1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn; (3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1. 解 (1)将-3拆成-1-1-1. 原式=x9+x6+x3-1-1-1 =(x9-1)+(x6-1)+(x3-1) =(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1) =(x3-1)(x6+2x3+3) =(x-1)(x2+x+1)(x6+2x3+3). (2)将4mn拆成2mn+2mn. 原式=(m2-1)(n2-1)+2mn+2mn =m2n2-m2-n2+1+2mn+2mn =(m2n2+2mn+1)-(m2-2mn+n2) =(mn+1)2-(m-n)2 =(mn+m-n+1)(mn-m+n+1). (3)将(x2-1)2拆成2(x2-1)2-(x2-1)2. 原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4 =[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2 =[(x+1)2+(x-1)2]2-(x2-1)2 =(2x2+2)2-(x2-1)2=(3x2+1)(x2+3). (4)添加两项+ab-ab. 原式=a3b-ab3+a2+b2+1+ab-ab =(a3b-ab3)+(a2-ab)+(ab+b2+1) =ab(a+b)(a-b)+a(a-b)+(ab+b2+1) =a(a-b)[b(a+b)+1]+(ab+b2+1) =[a(a-b)+1](ab+b2+1) =(a2-ab+1)(b2+ab+1). 说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验. 3.换元法 换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰. 例4 分解因式:(x2+x+1)(x2+x+2)-12. 分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了. 解设x2+x=y,则 原式=(y+1)(y+2)-12=y2+3y-10 =(y-2)(y+5)=(x2+x-2)(x2+x+5) =(x-1)(x+2)(x2+x+5). 说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试. 例5 分解因式:(x2+3x+2)(4x2+8x+3)-90. 分析先将两个括号内的多项式分解因式,然后再重新组合. 解原式=(x+1)(x+2)(2x+1)(2x+3)-90 =[(x+1)(2x+3)][(x+2)(2x+1)]-90 =(2x2+5x+3)(2x2+5x+2)-90. 令y=2x2+5x+2,则 原式=y(y+1)-90=y2+y-90 =(y+10)(y-9) =(2x2+5x+12)(2x2+5x-7) =(2x2+5x+12)(2x+7)(x-1). 说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习 1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2. 解设x2+4x+8=y,则 原式=y2+3xy+2x2=(y+2x)(y+x) =(x2+6x+8)(x2+5x+8) =(x+2)(x+4)(x2+5x+8). 说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式. 1.双十字相乘法 分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式. 例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3), 可以看作是关于x的二次三项式.的二次三项式,也可以用十字相乘法,分解为 对于常数项而言,它是关于y 即:-22y2+35y-3=(2y-3)(-11y+1).的二次三项式分解 再利用十字相乘法对关于x 所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1). 上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图: 它表示的是下面三个关系式: (x+2y)(2x-11y)=2x2-7xy-22y2; (x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3. 这就是所谓的双十字相乘法. 用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是: (1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列); (2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx. 例1 分解因式: (1)x2-3xy-10y2+x+9y-2; (2)x2-y2+5x+3y+4; (3)xy+y2+x-y-2; (4)6x2-7xy-3y2-xz+7yz-2z2. 解 (1)原式=(x-5y+2)(x+2y-1).(2) 原式=(x+y+1)(x-y+4).来分解. (3)原式中缺x2项,可把这一项的系数看成0 原式=(y+1)(x+y-2). (4) 原式=(2x-3y+z)(3x+y-2z). 说明 (4)中有三个字母,解法仍与前面的类似.2.求根法 我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如 f(x)=x2-3x+2,g(x)=x5+x2+6,…, 当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0; f(-2)=(-2)2-3×(-2)+2=12. 若f(a)=0,则称a为多项式f(x)的一个根. 定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a. 根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x)要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根. 定理2 的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数. 我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解. 例2 分解因式:x3-4x2+6x-4. 分析 这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有 f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2. 解法1 用分组分解法,使每组都有因式(x-2). 原式=(x 3-2x 2)-(2x 2-4x)+(2x-4) =x 2(x-2)-2x(x-2)+2(x-2) =(x-2)(x 2-2x+2). 解法2 用多项式除法,将原式除以(x-2), 所以原式=(x-2)(x 2-2x+2). 说明 在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习 1. 分解因式:9x 4-3x 3+7x 2-3x-2. 分析 因为9的约数有±1,±3,±9;-2的约数有±1,±为: 所以,原式有因式9x 2-3x-2. 解 9x 4-3x 3+7x 2-3x-2 =9x 4-3x 3-2x 2+9x 2-3x-2 =x 2(9x 3-3x-2)+9x 2-3x-2 =(9x 2-3x-2)(x 2+1) =(3x+1)(3x-2)(x 2+1) 说明 若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程. 总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了. 3.待定系数法 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 例3 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3 =(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn, 比较两边对应项的系数,则有 解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习 1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, 所以有有 由bd=7,先考虑b=1,d=7 所以 原式=(x2-7x+1)(x2+5x+7). 说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止. 本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2). 分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式. 解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则 原式=(u2-v)2-4v(u2-2v) =u4-6u2v+9v2 =(u2-3v)2 =(x2+2xy+y2-3xy)2 =(x2-xy+y2)2.五、反思总结。
初中数学竞赛专题辅导因式分解(二) 1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y 当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.。
因式分解的应用(初中数学竞赛资料)因式分解的应用因式分解是中学代数中的一种重要的变形,它与整式、分式联系极为密切,分式运算、解方程以及一些恒等变换,都经常用到因式分解。
它不仅是初中代数中的一个重要的基础知识,它还是一种重要的数学思想方法,在今后的数学学习中应用很广。
下面,向同学们介绍一些因式分解的初步应用。
一、利用因式分解判断整除性例1 2n-1和2n+1表示两个连续的奇数(n是整数),证明这两个连续奇数的平方差能被8整除.证明(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=4n·2=8n∴这两个连续奇数的平方差能被8整除.例2 x3+y3+z3-3xyz能被(x+y+z)整除.证明因式分解,得原式=(x+y+z)(x2+y2+z2-xy-yz-zx),∴x3+y3+z3-3xyz能被(x+y+z)整除.例3 设4x-y为3的倍数,求证:4x2+7xy-2y2能被9整除.证明∵4x2+7xy-2y2=(4x-y)(x+2y),又∵ x+2y=4x-y-3x+3y=(4x-y)-3(x-y).∴原式=(4x-y)[(4x-y)-3(x-y)]=(4x-y)2-3(4x-y)(x-y) ∵4x-y为3的倍数∴4x2+7xy-2y2能被9整除例4设实数a<b<c<="" p="">A. x<y<z< p="">B. y<z<x< p="">C. z<x<y< p="">D. 不能确定解:∵a<b<c<d,< p="">∴x-y=(a+b)(c+d)-(a+c)(b+d)=ac+bd-ab-cd=(a-d)(c -b)<0,即;x<y。
因式分解知识要点因式分解在代数式的恒等变形、根式运算、分式通分与约分、一元二次方程以及三角函数的变形求解等方面均有着十分重要的应用,下面对因式分解中的有关知识要点进行归纳说明,供大家学习和参考。
1、因式分解的定义把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解(也可叫做把这个多项式分解因式)。
本定义可从以下几方面进行理解:⑴、因式分解是一种恒等变形,如22()()-=+-,无论字母a和b取何值,代数式22a b a b a ba b-与()()+-的值总是相等的;a b a b⑵、因式分解的结果必须是整式的积的形式,分解后的因式可以是单项式,也可以是多项式,但必须都是整式;⑶、由于因式分解是整式乘法运算的逆运算,故因式分解是否正确,通常可以用整式乘法进行检验,看乘得的结果是否等于原多项式;⑷、多项式的因式分解,必须进行到每个因式都不能再分解为止,但要注意是在何种数集内进行因式分解(如无特殊说明,教材一般只要求在有理数范围内进行分解)。
2、因式分解的方法⑴、提公因式法:如果一个多项式的各项都含有公因式,则可利用分配律将此多项式的公因式提出来,从而将原多项式分解成两个因式的积的形式,像这种因式分解的方法,叫做提公因式法。
如:()++=++。
ma mb mc m a b c⑵、运用公式法:利用等式的性质将乘法公式逆用从而实现多项式的因式分解,像这种因式分解的方法就称为公式法。
公式法主要有以下两种:①平方差公式:22()()-=+-;a b a b a b②完全平方公式:222±+=±。
2()a ab b a b⑶、分组分解法(教材中未给出但作业中有所涉及):将一个多项式中所含的各项分成若干组,然后再利用提公因式法或公式法等方法对多项式进行因式分解,像这种因式分解的方法就称为分组分解法。
运用分组分解法的目的和作用主要有两个——①分组后能直接提公因式;②分组后能直接运用公式(平方差公式或完全平方公式)。
初中数学因式分解(一)因式分解是代数式恒等变形的基本形式,是解决数学问题的有力工具.是掌握因式分解对于培养学生解题技能,思维能力,有独特作用.1.运用公式法整式乘法公式,反向使用,即为因式分解(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.分解因式,根据多项式字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例2 分解因式:a3+b3+c3-3abc.例3 分解因式:x15+x14+x13+…+x2+x+1.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.例5 分解因式:(1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.例9分解因式:6x4+7x3-36x2-7x+6.例10 分解因式:(x2+xy+y2)-4xy(x2+y2).练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1; (2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.初中数学因式分解(一)答案多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.。
因式分解知识点归纳总结概述定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。
分解因式与整式乘法互为逆变形。
因式分解的方法:提公因式法、公式法、分组分解法和十字相乘法注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如: -3x^2+x=-x(3x-1))分解因式技巧1.分解因式与整式乘法是互为逆变形。
2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
提出“-”号时,多项式的各项都要变号。
注意:把 2a^2+1/2 变成 2(a^2+1/4)不叫提公因式提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。
例如: -am+bm+cm=a(x-y)+b(y-x)=⑵公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。
因式分解【奥赛花絮】最早的数学竞赛匈牙利是举办中学数学竞赛最早的国家,自1894年匈牙利物理数学学会通过了关于举行中学生奥林匹克数学竞赛的决议起,每年十月举行这种竞赛。
仅仅由于两次世界大战和1956年的匈牙利时件间断过7年。
2003年举行的是第103届匈牙利数学竞赛。
【奥赛赛点】将一个多项式化为几个整式的积的形式,叫做因式分解。
因式分解是一种重要的恒等变形,在数学中有广泛的应用。
因式分解的方法比较多,除了课本介绍的提公因式法,公式法,十字相乘法,分组分解法外,我们还要掌握换元法,主元法,配方法, 待定系数法等。
【解题思路与技巧】1.换元法.在解题的过程中,我们常把某个比较复杂的代数式看成一个整体,将它用一个字母来代替,从而简化这个代数式的结构,这种方法就是换元法.在因式分解中用换元法,又可细分为整体代换(如例1,例2),对称代换(如例3),倒数代换(如例4),平均代换(如例5)等.2.主元法在分解一个含有多个字母的多项式时,我们常选择一个字母作为主要元素,将其他字母看作常数,然后将多项式按选定的字母降幂排列,这种方法叫做主元法。
用主元法往往可以得到恰当的分组,从而找出公因式来,如例6。
3.配方法通过添项,拆项利用公式将一个多项式配成一个完全平方,是一种常用的恒等变形技巧,以便利用公式来分解因式,如例7,例8。
4.待定系数法在解决有关多项式时,可先假定问题的结果已经求出,其中含有未知系数,然后根据多项式恒等的定义或性质,列出含有这些未知数的方程或方程组,通过解方程或方程组,求出未知系数的值,从而解决问题的方法,如例9,例10。
【典型示例】例1 (1994年第6届“五羊杯”数学竞赛试题)在有理数范围内分解因式:(1)16(6x-1)(2x-1)(3x+1)(x-1)+25= .(2)(6x-1)(2x-1)(3x-1)(x-1)+x 2= .(3)(6x-1)(4x-1)(3x-1)(x-1)+9x 4= .[解] (1)原式=(6x-1)(4x-2)(6x+2)(4x+4)+25=(24x 2-16x+2) (24x 2-16x-8)+25 设 24x 2-16x+2=t, 原式=t(t-10)+25=(t-5)2=(24x 2-16x-3)2(2)原式=(6x-1) (x-1) (2x-1)(3x-1) +x 2=(6x 2-7x+1)(6x 2-5x+1) +x 2 设6x 2-7x+1=t, 原式=t(t-2x) +x 2=(t-x)2=(6x 2-6x+1)2(3)原式=(6x-1) (x-1) (4x-1)(3x-1) +9x 4=(6x 2-7x+1) (12x 2-7x+1)+ 9x 4 设6x 2-7x+1=t, 原式=t(6x 2+t)+ 9x 4=(t+3x 2)2=(9x 2-7x+1)2例2 (2000年第12届“五羊杯”数学竞赛试题)分解因式:(2x –3y)3 + (3x –2y)3 –125(x –y)3= .[解]设2x –3y=a, 3x –2y=b, -5x+5y=c,显然a+b+c=0.由公式 a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-bc-ca-ab) 知此时有a 3+b 3+c 3=3abc ,故有原式=3(2x –3y) (3x –2y) (-5x+5y)=-15(2x –3y) (3x –2y)(x-y)例3 (1997-1998年天津市初二数学竞赛决赛试题)分解因式xy(xy+1)+(xy+3)-2(x+y+12)-(x+y-1)2 [解]设xy=a, x+y=b.原式=a(a+1)+(a+3)-2b-1-(b-1)2=a 2+2a+1-b 2=(a+1)2-b 2=(a+1+b)(a+1-b) =(xy+1+x+y)(xy+1-x-y)=(x+1)(y+1)(x-1)(y-1)例4(1991年贵州省初中数学竞赛试题)分解因式:x 4+x 3-4x 2+x+1[解] 原式=2222221111(4)()()4x x x x x x x x x x ⎡⎤+-++=+++-⎢⎥⎣⎦ 设1,x t x +=则22212x t x+=-, 原式=x 2(t+t 2-2-4)= x 2(t+3)(t-2)=211(3)(2)x x x x x +++-=(x 2+3x+1)(x-1)2例5 (1994年石家庄市初中数学竞赛试题)分解因式 (x+1)4+(x+3)4-272[解] x+2=t, 原式=(t-1)4+(t+1)4-272=2t 4+12t 2-270=2(t 2+15)( t 2-9)=2(x 2+4x+19)(x+5)(x-1)例6(1998-1999年天津市初二数学竞赛预赛试题)把2x 3-x 2z-4x 2y+2xyz+2xy 2-y 2z 分解因式[解] 原式=(2x-z)y 2-2(2x-z)xy+(2x-z)x 2=(2x-z)(y-x)2例7 (1986年扬州市数学竞赛试题)因式分解:(1+y)2-2x2(1+y2)+x4(1-y)2[解] 原式=[(1+y)2+2x2(1-y2)+x4(1-y)2]-4x2=[(1+y)+x2(1-y)]2-(2x)2=[(1+y)+x2(1-y)+2x] [(1+y)+x2(1-y)-2x]=[(x+1)2-y(x2-1)] [(x-1)2-y(x2-1)] =(x+1)(x-xy+y+1)(x-1)(x-xy-y-1)例8 (1986年广州,武汉,福州,合肥,重庆五市初中数学联赛试题)若a为正整数,则a4-3a2+9是质数还是合数?给出你的证明。
因式分解【例 1】 分解因式:2222(48)3(48)2x x x x x x ++++++提示:将248x x u ++=看成一个字母,可利用十字相乘【例 2】 (“希望杯”培训试题)分解因式:22(52)(53)12x x x x ++++-【解析】 方法1:将25x x +看作一个整体,设25x x t +=,则方法2:将252x x ++看作一个整体,设252x x t ++=,则方法3:将253x x ++看作一个整体,【巩固】 分解因式:(1)(3)(5)(7)15x x x x +++++ (1)(2)(3)(4)24a a a a ----- 22(1)(2)12x x x x ++++-【例 3】 证明:四个连续整数的乘积加1是整数的平方.【巩固】 若x ,y 是整数,求证:()()()()4234x y x y x y x y y +++++是一个完全平方数.【例 4】 (湖北黄冈数学竞赛题)分解因式2(25)(9)(27)91a a a +---【巩固】 分解因式22(32)(384)90x x x x ++++-【例 5】 分解因式:22224(31)(23)(44)x x x x x x --+--+-提示:可设2231,23x x A x x B --=+-=,则244x x A B +-=+.【巩固】 分解因式:2(2)(2)(1)a b ab a b ab +-+-+-【巩固】 分解因式:21(1)(3)2()(1)2xy xy xy x y x y +++-++-+-【例 6】 (重庆市竞赛题)分解因式:44(1)(3)272x x +-+-练习:1 .分解因式x x 3234+-2.求证:多项式的值一定是非负数3.分解因式:()()()a b c a b b c ++-+-+23334.在∆ABC 中,三边a,b,c 满足a b c ab bc 222166100--++=.求证:a c b +=25.已知:6.若x 为任意整数,求证:()()()7342---x x x 的值不大于100。